Impact of Incremental Methylene Groups on the Energetic Properties of Aromatic Nitramines
Abstract
:1. Introduction
2. Materials and Methods
- The lowest value of total energy indicates the most stable conformers for further study;
- A higher value of the binding energy per atom shows higher thermal stability;
- Obtaining larger values of the HOMO–LUMO gap and chemical hardness points to increasing chemical stability;
- A low chemical softness value denotes a high tendency of the molecule to degrade;
- A higher electronegativity reflects the higher tendency of a compound to form a bond;
- A high negative value of oxygen balance exhibits a low sensitivity of an explosive molecule to shocks. Oxygen balance also expresses the degree to which an explosive can be oxidized and provides information on the strength and brisance of high-energy materials;
- A low value of the impact sensitivity reveals a low resistance to impact;
- The hardness index indicates the resistance to indentation and deformation under mechanical stress and durability. A higher value indicates higher resistance.
3. Results
(a) | ||||||
Compound | D1, km/s | D2, km/s | * D3I, km/s | * D4I, km/s | ** D3II, km/s | ** D4II, km/s, |
2,4,6-Trinitrophenyl-N-nitramine | 8.44 | 8.73 | 8.62 | 8.56 | 8.21 | 8.18 |
Tetryl | 8.07 | 8.64 | 7.94 | 7.98 | 7.83 | 7.88 |
Ethyltetryl | 7.67 | 8.28 | 7.47 | 7.56 | 7.50 | 7.59 |
Propyltetryl | 7.29 | 7.93 | 7.33 | 7.21 | 7.46 | 7.34 |
Butyltetryl | 6.91 | 7.60 | 6.38 | 6.91 | 6.57 | 7.10 |
Amyltetryl | 6.55 | 7.28 | 6.46 | 6.64 | 6.71 | 6.88 |
(b) | ||||||
Compound | D1, km/s | D2, km/s | * D3I, km/s | * D4I, km/s | ** D3II, km/s | ** D4II, km/s |
Bis-tetryl-CH2 | 8.55 | 9.99 | 8.81 | 8.72 | 7.99 | 7.97 |
Bis-tetryl-CH2CH2 | 8.55 | 10.00 | 8.81 | 8.72 | 8.00 | 7.97 |
Bis-tetryl-CH2CH2CH2 | 8.40 | 9.86 | 8.47 | 8.45 | 7.81 | 8.45 |
Bis-tetryl-CH2CH2CH2CH2 | 8.20 | 9.69 | 8.17 | 8.19 | 7.64 | 8.19 |
Bis-tetryl-CH2CH2CH2CH2CH2 | 8.00 | 9.52 | 7.91 | 7.91 | 7.48 | 7.96 |
(c) | ||||||
Compound | D1, km/s | D2, km/s | * D3I, km/s | * D4I, km/s | ** D3II, km/s | ** D4II, km/s |
Tetryl # | 8.07 | 8.64 | 7.94 | 7.98 | 7.83 | 7.88 |
3-Amino-tetryl | 7.97 | 8.55 | 8.09 | 8.19 | 7.80 | 7.92 |
3-Amino-tetryl *,1 | 7.97 | 8.55 | 8.09 | 8.19 | 7.80 | 7.92 |
3-Amino-N-ethyltetryl | 7.58 | 8.20 | 7.61 | 7.76 | 7.49 | 7.65 |
3-Amino-N-propyltetryl | 7.21 | 7.87 | 7.21 | 7.40 | 7.21 | 7.40 |
3-Amino-N-butyltetryl | 6.85 | 7.55 | 6.87 | 7.08 | 6.96 | 7.16 |
3-Amino-N-amyltetryl | 6.10 | 7.24 | 6.18 | 6.42 | 6.73 | 6.95 |
(a) | ||||||||
Compound | * P(D1I), kbar | P(D1II), kbar | P(D2I), kbar | P(D2II), kbar | P(D3I), kbar | P(D3II), kbar | P(D4I), kbar | P(D4II), kbar |
2,4,6-Trinitrophenyl-N-nitramine | 330.00 | 317.94 | 353.21 | 340.3 | 342.40 | 300.88 | 339.72 | 298.83 |
Tetryl | 289.38 | 286.11 | 331.73 | 318.37 | 274.22 | 263.95 | 282.59 | 272.11 |
Ethyltetryl | 253.14 | 254.04 | 294.89 | 291.98 | 230.19 | 232.86 | 246.16 | 248.98 |
Propyltetryl | 222.28 | 225.79 | 263.50 | 267.65 | 196.27 | 217.28 | 217.67 | 228.82 |
Butyltetryl | 199.86 | 203.05 | 241.65 | 246.01 | 169.46 | 168.15 | 194.82 | 211.16 |
Amyltetryl | 171.00 | 177.09 | 211.32 | 218.85 | 147.53 | 164.34 | 175.80 | 195.48 |
(b) | ||||||||
Compound | * P(D1I), kbar | P(D1II), kbar | P(D2I), Kbar | P(D2II), kbar | P(D3I), kbar | P(D3II), kbar | P(D4I), kbar | P(D4II), kbar |
Bis-tetryl-CH2 | 384.62 | 324.43 | 476.26 | 425.53 | 363.07 | 281.88 | 6362.59 | 282.09 |
Bis-tetryl-CH2CH2 | 329.97 | 310.26 | 476.26 | 425.76 | 326.99 | 264.17 | 333.81 | 270.18 |
Bis-tetryl-CH2CH2CH2 | 308.98 | 293.21 | 431.50 | 400.01 | 296.36 | 247.88 | 308.40 | 258.32 |
Bis-tetryl-CH2CH2CH2CH2 | 289.57 | 277.15 | 409.92 | 386.35 | 269.91 | 232.90 | 286.27 | 247.39 |
Bis-tetryl-CH2CH2CH2CH2CH2 | 233.0 | 258.38 | 339.01 | 370.93 | 234.61 | 209.47 | 282.80 | 226.82 |
(c) | ||||||||
Compound | * P(D1I), kbar | P(D1II), kbar | P(D2I), kbar | P(D2II), kbar | P(D3I), kbar | P(D3II), kbar | P(D4I), kbar | P(D4II), kbar |
Tetryl # | 289.38 | 286.11 | 331.73 | 318.37 | 274.22 | 263.95 | 282.59 | 272.11 |
3-Amino-tetryl *,1 | 287.90 | 331.37 | 279.82 | 311.25 | 295.06 | 267.79 | 304.35 | 276.46 |
3-Amino-N-ethyltetryl | 252.91 | 295.74 | 249.56 | 286.42 | 248.40 | 237.62 | 265.19 | 253.81 |
3-Amino-N-propyltetryl | 222.53 | 264.78 | 222.49 | 263.70 | 211.96 | 211.82 | 234.12 | 233.96 |
3-Amino-N-butyltetryl | 196.05 | 237.79 | 198.17 | 242.83 | 183.20 | 189.58 | 209.29 | 216.48 |
3-Amino-N-amyltetryl | 225.83 | 176.24 | 263.07 | 218.35 | 133.33 | 170.30 | 158.01 | 200.99 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Compound | ρ1, g/cm3 | ρ2, g/cm3 | Deviation, % |
---|---|---|---|
2,4,6-Trinitrophenyl-N-nitramine | 1.574 | 1.642 | −4.30 |
Tetryl | 1.803 | 1.769 | 1.87 |
Ethyltetryl | 1.713 | 1.723 | −0.57 |
Propyltetryl | 1.523 | 1.606 | −8.30 |
Butyltetryl | 1.639 | 1.680 | −2.53 |
Amyltetryl | 1.870 | 1.782 | 4.69 |
Bis-tetryl-CH2 | 2.041 | 1.800 | 11.80 |
Bis-tetryl-CH2CH2 | 1.973 | 1.775 | 10.03 |
Bis-tetryl-CH2CH2CH2 | 1.913 | 1.751 | 8.4 |
Bis-tetryl-CH2CH2CH2CH2 | 1.859 | 1.728 | 7.04 |
Bis-tetryl-CH2CH2CH2CH2CH2 | 1.765 | 1.669 | 5.45 |
3-Amino-tetryl | 1.870 | 1.782 | 4.69 |
3-Amino-N-ethyltetryl | 1.776 | 1.737 | 2.17 |
3-Amino-N-propyltetryl | 1.697 | 1.696 | 0.03 |
3-Amino-N-butyltetryl | 1.631 | 1.659 | −1.70 |
3-Amino-N-amyltetryl | 1.765 | 1.669 | 5.45 |
Appendix B
(a) | ||||||
No. | Name | Structural Formula | Molecular Formula | Molecular Weight | Molecular Composition | |
1. | 2,4,6-Trinitrophenyl-N-nitramine n = 0 | C6H3N5O8 | 273.12 | C | 26.39% | |
H | 1.11% | |||||
N | 25.64% | |||||
O | 46.86% | |||||
2. | Tetryl n = 1 | C7H5N5O8 | 287.15 | C | 29.28% | |
H | 1.76% | |||||
N | 24.39% | |||||
O | 44.57% | |||||
3. | Ethyltetryl n = 2 | C8H7N5O8 | 301.17 | C | 31.90% | |
H | 2.34% | |||||
N | 23.25% | |||||
O | 42.50% | |||||
4. | Propyltetryl n = 3 | C9H9N5O8 | 315.20 | C | 34.30% | |
H | 2.88% | |||||
N | 22.22% | |||||
O | 40.61% | |||||
5. | Butyltetryl n = 4 | C10H11N5O8 | 329.23 | C | 36.48% | |
H | 3.37% | |||||
N | 21.27% | |||||
O | 38.88% | |||||
6. | Amyltetryl n = 5 | C11H13N5O8 | 343.25 | C | 38.49% | |
H | 3.82% | |||||
N | 20.40% | |||||
O | 37.29% | |||||
(b) | ||||||
No. | Name | Structural Formula | Molecular Formula | Molecular Weight | Molecular Composition | |
1. | Bis-tetryl-CH2 n = 1 | C13H6N10O16 | 558.25 | C | 27.97% | |
H | 1.08% | |||||
N | 25.09% | |||||
O | 45.86% | |||||
2. | Bis-tetryl-CH2CH2 n = 2 | C14H8N10O16 | 572.28 | C | 29.38% | |
H | 1.41% | |||||
N | 24.48% | |||||
O | 44.73% | |||||
3. | Bis-tetryl-CH2CH2CH2 n = 3 | C15H10N10O16 | 586.30 | C | 30.73% | |
H | 1.72% | |||||
N | 23.89% | |||||
O | 43.66% | |||||
4. | Bis-tetryl-CH2CH2CH2CH2 n = 4 | C16H12N10O16 | 600.33 | C | 32.01% | |
H | 2.01% | |||||
N | 23.33% | |||||
O | 42.64% | |||||
5. | Bis-tetryl-CH2CH2CH2CH2CH2 n = 5 | C17H14N10O16 | 614.36 | C | 33.24% | |
H | 2.30% | |||||
N | 22.80% | |||||
O | 41.67% | |||||
(c) | ||||||
No. | Name | Structural Formula | Molecular Formula | Molecular Weight | Molecular Composition | |
1. | 3-Amino-tetryl n = 1 | C7H6N6O8 | 302.16 | C | 27.83% | |
H | 2.00% | |||||
N | 27.81% | |||||
O | 42.36% | |||||
2. | 3-Amino-N-ethyltetryl n = 2 | C8H8N6O8 | 316.19 | C | 30.39% | |
H | 2.55% | |||||
N | 26.58% | |||||
O | 40.48% | |||||
3. | 3-Amino-N-propyltetryl n = 3 | C9H10N6O8 | 330.22 | C | 32.74% | |
H | 3.05% | |||||
N | 25.45% | |||||
O | 38.76% | |||||
4. | 3-Amino-N-butyltetryl n = 4 | C10H12N6O8 | 344.24 | C | 34.89% | |
H | 3.51% | |||||
N | 24.41% | |||||
O | 37.18% | |||||
5. | 3-Amino-N-amyltetryl n = 5 | C11H14N6O8 | 358.27 | C | 36.88% | |
H | 3.94% | |||||
N | 23.46% | |||||
O | 35.73% |
References
- Klapötke, T.M. Chemistry of High-Energy Materials, 6th ed.; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2022; 534p, ISBN 978-3-11-073949-7. [Google Scholar]
- Koch, E.C. High Explosives, Propellants, Pyrotechnics; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2021; 759p, ISBN 978-3-11-066052-4. [Google Scholar]
- Agrawal, J.P. High Energy Materials: Propellants, Explosives and Pyrotechnics; Wiley-VCH: Weinheim, Germany, 2010; 498p, ISBN 978-3-527-32610-5. [Google Scholar]
- Cumming, A.S. (Ed.) Energetics Science and Technology: An Integrated Approach; IOP Publishing: Bristol, UK, 2022; 530p, ISBN 978-0-7503-3941-4. [Google Scholar] [CrossRef]
- Keshavarz, M.H.; Klapötke, T.M. The Properties of Energetic Materials: Sensitivity, Physical and Thermodynamic Properties; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2021; 268p. [Google Scholar] [CrossRef]
- Olah, G.A.; Squire, D.R. (Eds.) . Chemistry of Energetic Materials; Academic Press: Cambridge, MA, US, 2012; 212p, ISBN 978-0-1239-5897-6. [Google Scholar]
- Agrawal, J.P. Recent trends in high-energy materials. Prog. Energy Combust. Sci. 1998, 24, 1–30. [Google Scholar] [CrossRef]
- Muravyev, N.V.; Wozniak, D.R.; Piercey, D.G. Progress and performance of energetic materials: Open dataset, tool, and implications for synthesis. J. Mater. Chem. A 2022, 10, 11054–11073. [Google Scholar] [CrossRef]
- Talawar, M.B.; Sivabalan, R.; Anniyappan, M.; Gore, G.M.; Asthana, S.N.; Gandhe, B.R. Emerging trends in advanced high energy materials. Combust. Explos. Shock Waves 2007, 43, 62–72. [Google Scholar] [CrossRef]
- Fershtat, L.L.; Makhova, N.N. 1,2,5-Oxadiazole-Based High-Energy-Density Materials: Synthesis and Performance (Review). ChemPlusChem 2019, 85, 13–42. [Google Scholar] [CrossRef] [Green Version]
- Sikder, A.K.; Sikder, N. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J. Hazard. Mater. 2004, 112, 1–15. [Google Scholar] [CrossRef]
- Badgujar, D.M.; Talawar, M.B.; Asthana, S.N.; Mahulikar, P.P. Advances in science and technology of modern energetic materials: An overview. J. Hazard. Mater. 2008, 151, 289–305. [Google Scholar] [CrossRef]
- Fried, L.E.; Manaa, M.R.; Pagoria, P.F.; Simpson, R.L. Design and Synthesis of Energetic Materials. Annu. Rev. Mater. Res. 2001, 31, 291–321. [Google Scholar] [CrossRef]
- Tsyshevsky, R.; Pagoria, P.; Zhang, M.; Racoveanu, A.; DeHope, A.; Parrish, D.; Kuklja, M.M. Searching for low-sensitivity cast-melt high-energy-density materials: Synthesis, characterization, and decomposition kinetics of 3, 4-bis (4-nitro-1, 2, 5-oxadiazol-3-yl)-1, 2, 5-oxadiazole-2-oxide. J. Phys. Chem. C 2015, 119, 3509–3521. [Google Scholar] [CrossRef]
- Urbanski, T. Chemistry and Technology of Explosives; PWN-Polish Scientific Publishers Warszawa: Warsaw, Poland, 1964; Volume 1, pp. 1–450. [Google Scholar]
- Urbanski, T. Chemistry and Technology of Explosives; Pergamon Press Ltd.: Oxford, UK, 1984; Volume 4, pp. 1–702. ISBN 0-08-026206-6. [Google Scholar]
- Agrawal, J.P.; Hodgson, R. Organic Chemistry of Explosives; John Wiley & Sons, Ltd.: Chichester, UK, 2007; 414p, ISBN 978-0-470-02967-6. [Google Scholar]
- Rice, B.; Byrd, E. Theoretical chemical characterization of energetic materials. J. Mater. Res. 2006, 21, 2444–2452. [Google Scholar] [CrossRef]
- Zlotin, S.G.; Dalinger, I.L.; Makhova, N.N.; Tartakovsky, V.A. Nitro compounds as the core structures of promising energetic materials and versatile reagents for organic synthesis. Russ. Chem. Rev. 2020, 89, 1–54. [Google Scholar] [CrossRef]
- Manzoor, S.; Yin, X.; Zhang, J.G. Nitro-tetrazole based high performing explosives: Recent overview of synthesis and energetic properties. Def. Technol. 2021, 17, 1995–2010. [Google Scholar] [CrossRef]
- Zhao, G.; He, C.; Kumar, D.; Hooper, J.P.; Imler, G.H.; Parrish, D.A.; Shreeve, J.M. 1,3,5-Triiodo-2,4,6-trinitrobenzene (TITNB) from benzene: Balancing performance and high thermal stability of functional energetic materials. Chem. Eng. J. 2019, 378, 122119. [Google Scholar] [CrossRef]
- Yin, P.; Shreeve, J.N.M. From N-Nitro to N-Nitroamino: Preparation of High-Performance Energetic Materials by Introducing Nitrogen-Containing Ions. Angew. Chem. Int. Ed. 2015, 54, 14513–14517. [Google Scholar] [CrossRef]
- Zhao, G.; Kumar, D.; Yin, P.; He, C.; Imler, G.H.; Parrish, D.A.; Shreeve, J.N.M. Construction of polynitro compounds as high-performance oxidizers via a two-step nitration of various functional groups. Org. Lett. 2019, 21, 1073–1077. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, Q.; Shreeve, J.M. Fused heterocycle-based energetic materials (2012–2019). J. Mater. Chem. A 2020, 8, 4193–4216. [Google Scholar] [CrossRef]
- Larin, A.A.; Shaferov, A.V.; Kulikov, A.S.; Pivkina, A.N.; Monogarov, K.A.; Dmitrienko, A.O.; Ananyev, I.V.; Khakimov, D.V.; Fershtat, L.L.; Makhova, N.N. Design and Synthesis of Nitrogen-Rich Azo-Bridged Furoxanylazoles as High-Performance Energetic Materials. Chem. Eur. J. 2021, 27, 14628–14637. [Google Scholar] [CrossRef]
- Klapötke, T.M.; Ang, H.G. Estimation of the Crystalline Density of Nitramine (N-NO2 based) High Energy Density Materials (HEDM). Propellants Explos. Pyrotech. 2001, 26, 221–224. [Google Scholar] [CrossRef]
- Mustafa, A.; Zahran, A.A. Tetryl, Pentyl, Hexyl, and Nonyl. Preparation and Explosive Properties. J. Chem. Eng. Data 1963, 8, 135–150. [Google Scholar] [CrossRef]
- Saal, T.; Rahm, M.; Christe, K.O.; Haiges, R. Protonation of Nitramines: Where Does the Proton Go? Angew. Chem. Int. Ed. 2017, 56, 9587–9591. [Google Scholar] [CrossRef]
- Sukhanov, G.T.; Filippova, Y.V.; Gatilov, Y.V.; Sukhanova, A.G.; Krupnova, I.A.; Bosov, K.K.; Pivovarova, E.V.; Krasnov, V.I. Energetic Materials Based on N-substituted 4 (5)-nitro-1, 2, 3-triazoles. Materials 2022, 15, 1119. [Google Scholar] [CrossRef]
- Qu, Y.; Babailov, S.P. Azo-linked high-nitrogen energetic materials. J. Mater. Chem. A 2018, 6, 1915–1940. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Guo, Y.Q.; Bernstein, E.R. Experimental and theoretical exploration of the initial steps in the decomposition of a model nitramine energetic material: Dimethylnitramine. J. Phys. Chem. A 2009, 113, 811–823. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, D.; Ghule, V.D.; Tewari, S.P.; Muralidharan, K. Synthesis of Amino, Azido, Nitro, and Nitrogen-Rich Azole-Substituted Derivatives of 1H-Benzotriazole for High-Energy Materials Applications. Chem. Eur. J. 2012, 18, 15031–15037. [Google Scholar] [CrossRef] [PubMed]
- Leonov, N.E.; Klenov, M.S.; Anikin, O.V.; Churakov, A.M.; Strelenko, Y.A.; Voronin, A.A.; Lempert, D.B.; Muravyev, N.V.; Fedyanin, I.V.; Semenov, S.E.; et al. Synthesis of New Energetic Materials Based on Furazan Rings and Nitro-NNO-azoxy Groups. ChemistrySelect 2020, 5, 12243–12249. [Google Scholar] [CrossRef]
- He, C.; Shreeve, J.N.M. Energetic Materials with Promising Properties: Synthesis and Characterization of 4, 4′-Bis (5-nitro-1,2,3-2H-triazole) Derivatives. Angew. Chem. 2015, 127, 6358–6362. [Google Scholar] [CrossRef]
- Gupta, S.; Singh, H.J. Computational studies on nitro derivatives of BN indole as high energetic material. J. Mol. Model. 2020, 26, 83. [Google Scholar] [CrossRef]
- Tamuliene, J.; Sarlauskas, J.; Bekesiene, S. Modeling and investigation of new explosive materials based on N-(3, 5-dimethyl-2, 4, 6-trinitrophenyl)-1H-1,2,4-triazol-3-amine. J. Mol. Model. 2017, 23, 228. [Google Scholar] [CrossRef]
- Tamuliene, J.; Sarlauskas, J.; Bekesiene, S.; Kravcov, A. Benzimidazole derivatives as energetic materials: A theoretical study. Materials 2021, 14, 4112. [Google Scholar] [CrossRef]
- Gribov, P.S.; Suponitsky, K.Y.; Sheremetev, A.B. Efficient synthesis of N-(chloromethyl) nitramines via TiCl4-catalyzed chlorodeacetoxylation. New J. Chem. 2022, 46, 17548–17553. [Google Scholar] [CrossRef]
- Mazilov, E.A.; Ogurtsova, E.V.; Shamov, A.G.; Khrapkovskii, G.M. Theoretical study of the competition between various mechanisms of gas-phase decomposition in the series of primary N-nitramines. Russ. J. Appl. Chem. 2009, 82, 1792–1798. [Google Scholar] [CrossRef]
- Lothrop, W.C.; Handrick, G.R. The Relationship between Performance and Constitution of Pure Organic Explosive Compounds. Chem. Rev. 1949, 44, 419–445. [Google Scholar] [CrossRef]
- Stepanov, R.S.; Astachov, A.M.; Kruglyakova, L.A. 29th International Annual ICT-Conference; 1998; pp. 128/1–128/7. Available online: https://archive.org/details/DTIC_ADA371351 (accessed on 27 February 2023).
- Astachov, A.M.; Stepanov, R.R.; Kruglyakova, L.A.; Kekin, Y.V. 31st International Annual ICT-Conference; 2000; pp. 13/1–13/10. Available online: https://www.researchgate.net/publication/9059728_12-Dinitroguanidine (accessed on 27 February 2023).
- Bénazet, S.; Jacob, G.; Pèpe, G. GenMolTM supramolecular descriptors predicting reliable sensitivity of energetic compounds. Propellants Explos. Pyrotech. 2009, 34, 120–135. [Google Scholar] [CrossRef]
- Farahani, B.V.; Rajabi, F.H.; Hosseindoust, B.; Zenooz, N. DSC study of solid-liquid equilibria for energetic binary mixtures of methylnitramine with 2, 4-dinitro-2, 4-diazapentane and 2, 4-dinitro-2,4-diazahexane. J. Phase Equilibria Diffus. 2010, 31, 536–541. [Google Scholar] [CrossRef]
- Parakhin, V.V.; Pokhvisneva, G.V.; Ternikova, T.V.; Nikitin, S.V.; Smirnov, G.A.; Kon’kova, T.S.; Lempert, D.B.; Pivkina, A.N. Energetic alkylnitramine-functionalized pentanitro hexaazaisowurtzitanes: Towards advanced less sensitive CL-20 analogues. J. Mater. Chem. A 2022, 10, 818–828. [Google Scholar] [CrossRef]
- Daszkiewicz, Z.; Kyzioł, J.B.; Preżdo, W.W.; Zaleski, J. Structure and properties of some nitro derivatives of N-methyl-N-phenylnitramine. J. Mol. Struct. 2000, 553, 9–18. [Google Scholar] [CrossRef]
- Daszkiewicz, Z.; Spaleniak, G.; Kyzioł, J.B. Acidity and basicity of primary N-phenylnitramines: Catalytic effect of protons on the nitramine rearrangement. J. Phys. Org. Chem. 2002, 15, 115–122. [Google Scholar] [CrossRef]
- Anulewicz, R.; Krygowski, T.M.; Gawinecki, R.; Rasała, D. Crystal and molecular structure of N-nitro-N-methyl-p-nitroaniline: Analysis of substituent effects on the ring geometry and estimation of the Hammett substituent constant for the N-methylnitramino group. J. Phys. Org. Chem. 1993, 6, 257–260. [Google Scholar] [CrossRef]
- Holden, J.R.; Dickinson, C. Crystal structure of N-(.beta.,.beta.,.beta.-trifluoroethyl)-N,2,4,6-tetranitro-aniline. J. Phys. Chem. 1969, 73, 1199–1204. [Google Scholar] [CrossRef]
- White, W.N.; Hathaway, C.; Huston, D. Acid-catalyzed nitramine rearrangement. III. Nature of the acid catalysis. J. Org. Chem. 1970, 35, 737–739. [Google Scholar] [CrossRef]
- Avakyan, V.G.; Fateyev, O.V. Quantum-chemical study on the tautomerism of primary nitramines: The mechanism of N-nitro-anion protonation excluding aci-form formation. Russ. Chem. Bull. 1993, 42, 90–94. [Google Scholar] [CrossRef]
- Davis, T.L. The Chemistry of Powder and Explosives; Pickle Partners Publishing: Potomac, MD, USA, 2016; pp. 1–358. [Google Scholar]
- Ritter, H.; Licht, H.H. Synthesis and Characterization of Methylnitramino-Substituted pyridines and triazines. Propellants Explos. Pyrotech. 1993, 18, 81–88. [Google Scholar] [CrossRef]
- Xu, J.G.; Li, X.Z.; Wu, H.F.; Zheng, F.K.; Chen, J.; Guo, G.C. Substitution of nitrogen-rich linkers with insensitive linkers in azide-based energetic coordination polymers toward safe energetic materials. Cryst. Growth Des. 2019, 19, 3934–3944. [Google Scholar] [CrossRef]
- Anniyappan, M.; Talawar, M.B.; Sinha, R.K.; Murthy, K.P.S. Review on Advanced Energetic Materials for Insensitive Munition Formulations. Combust. Explos. Shock Waves 2020, 56, 495–519. [Google Scholar] [CrossRef]
- Becke, A.D. Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648. [Google Scholar] [CrossRef] [Green Version]
- Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision A.2; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Cardia, R.; Malloci, G.; Mattoni, A.; Cappellini, G. Effects of TIPS-Functionalization and Perhalogenation on the Electronic, Optical, and Transport Properties of Angular and Compact Dibenzochrysene. J. Phys. Chem. A 2014, 118, 5170–5177. [Google Scholar] [CrossRef]
- Cardia, R.; Malloci, G.; Rignanese, G.M.; Blasé, X.; Molteni, E.; Cappellini, G. Electronic and optical properties of hexathiapentacene in the gas and crystal phases. Phys. Rev. B 2016, 93, 235132. [Google Scholar] [CrossRef]
- Dardenne, N.; Cardia, R.; Li, J.; Malloci, G.; Cappellini, G.; Blasé, X.; Charlier, J.C.; Rignanese, G. Tuning Optical Properties of Dibenzochrysenes by Functionalization: A Many-Body Perturbation Theory Study. Phys. Chem. C 2017, 121, 24480–24488. [Google Scholar] [CrossRef]
- Antidormi, A.; Aprile, G.; Cappellini, G.; Cara, E.; Cardia, R.; Colombo, L.; Farris, R.; d’Ischia, M.; Mehrabanian, M.; Melis, C.; et al. Physical and Chemical Control of Interface Stability in Porous Si–Eumelanin Hybrids. J. Phys. Chem. C 2018, 122, 28405–28415. [Google Scholar] [CrossRef]
- Mocci, P.; Cardia, R.; Cappellini, G. Inclusions of Si-atoms in Graphene nanostructures: A computational study on the ground-state electronic properties of Coronene and Ovalene. J. Phys. Conf. Ser. 2018, 956, 012020. [Google Scholar] [CrossRef]
- Mocci, P.; Cardia, R.; Cappellini, G. Si-atoms substitutions effects on the electronic and optical properties of coronene and ovalene. New J. Phys. 2018, 20, 113008. [Google Scholar] [CrossRef]
- Kumar, A.; Cardia, R.; Cappellini, G. Electronic and optical properties of chromophores from bacterial cellulose. Cellulose 2018, 25, 2191–2203. [Google Scholar] [CrossRef]
- Szafran, M.; Koput, J. Ab initio and DFT calculations of structure and vibrational spectra of pyridine and its isotopomers. J. Mol. Struct. 2001, 565, 439–448. [Google Scholar] [CrossRef]
- Begue, D.; Carbonniere, P.; Pouchan, C. Calculations of Vibrational Energy Levels by Using a Hybrid ab Initio and DFT Quartic Force Field: Application to Acetonitrile. J. Phys. Chem. A 2005, 109, 4611–4616. [Google Scholar] [CrossRef]
- Parthasarathi, R.; Padmanabhan, J.; Subramanian, V.; Maiti, B.; Chattaraj, P.K. Toxicity analysis of 3,3’,4,4’,5-pentachloro biphenyl through chemical reactivity and selectivity profiles. Curr. Sci. 2004, 86, 535–542. Available online: https://www.jstor.org/stable/24107906 (accessed on 30 January 2023).
- Kaya, S.; Kaya, C. New equation based on ionization energies and electron affinities of atoms for calculating of group electronegativity. Comput. Theor. Chem. 2015, 1052, 42–46. [Google Scholar] [CrossRef]
- (E-57) Free Chemical Drawing Software. ChemSketch. Version 10.0. ACD/Labs. Available online: https://www.acdlabs.com/resources/free-chemistry-software-apps/chemsketch-freeware/ (accessed on 30 January 2023).
- Keshavarz, M.H. New method for calculating densities of nitroaromatic explosive compounds. J. Hazard. Mater. 2007, 145, 263–269. [Google Scholar] [CrossRef]
- Keshavarz, M.H. A new computer code to evaluate detonation performance of high explosives and their thermochemical properties, part I. J. Hazard. Mater. 2009, 172, 1218–1228. [Google Scholar] [CrossRef]
- Cooper, P.W. Explosives Engineering; Wiley-VCH: New York, NY, USA, 1996; 480p, ISBN 0-471-18636-8. [Google Scholar]
- Shevchenko, A.A.; Dolgoborodov, A.Y.; Brazhnikov, M.A.; Kirilenko, V.G. Pseudoideal detonation of mechanoactivated mixtures of ammonium perchlorate with nanoaluminum. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2018; Volume 946, p. 012055. [Google Scholar] [CrossRef]
- Kozak, G.D. Measurement and calculation of the ideal detonation velocity for liquid nitrocompounds. Combust Explos. Shock Waves 1998, 34, 581–586. [Google Scholar] [CrossRef]
- Bolton, O.; Simke, L.R.; Pagoria, P.F.; Matzger, A.J. High Power Explosive with Good Sensitivity: A 2:1 Cocrystal of CL-20:HMX. Cryst. Growth Des. 2012, 12, 4311–4314. [Google Scholar] [CrossRef]
- Viswanath, D.S.; Ghosh, T.K.; Boddu, V.M. 5-Nitro-2,4-dihydro-3H-1,2,4-Triazole-3-one (NTO). Chapter 5; In Emerging Energetic Materials: Synthesis, Physicochemical, and Detonation Properties; Springer: Dordrecht, The Netherlands, 2018; pp. 163–211. [Google Scholar] [CrossRef]
- Eaton, P.E.; Gilardi, R.G.; Zhang, M. Polynitrocubanes: Advanced high-density, high-energy materials. Adv. Mater. 2000, 12, 1143–1148. [Google Scholar] [CrossRef]
- Keshavarz, M.H.; Pouretedal, H.R. Simple empirical method for prediction of impact sensitivity of selected class of explosives. J. Hazard. Mater. 2005, 124, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz, M.H. Prediction of impact sensitivity of nitroaliphatic, nitroaliphatic containing other functional groups and nitrate explosives. J. Hazard. Mater. 2007, 148, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz, M.H. A new general correlation for predicting impact sensitivity of energetic compounds. Propellants Explos. Pyrotech. 2013, 38, 754–760. [Google Scholar] [CrossRef]
- Türker, L. Velocity of detonation—A mathematical model. Acta Chim. Slov. 2010, 57, 288–296. [Google Scholar]
- Kamlet, M.J.; Jacobs, S.J. Chemistry of Detonations. I. Simple Method for Calculating Detonation Properties of CHNO Explosives. J. Chem. Phys. 1968, 48, 23–55. [Google Scholar] [CrossRef]
- Rahimi, R.; Akbarzadeh, A.; Shakeri, S.; Keshavarz, M.H.; Yousefinejad, S. New Method for Calculating Densities of Nitroaromatic Explosive Compounds and Prediction of their Biological Activity. Iran. Semin. Org. Chem. 2014, e910582. Available online: https://www.sid.ir/paper/910582/en (accessed on 26 February 2023).
- Keshavarz, M.H. A simple approach for determining detonation velocity of high explosive at any loading density. J. Hazard. Mater. 2005, 121, 31–36. [Google Scholar] [CrossRef]
- Schaftenaar, G. Molden. 2018. Available online: https://www3.cmbi.umcn.nl/molden/ (accessed on 1 February 2023).
- Edri, I.; Feldgun, V.R.; Yankelevsky, D.Z. Afterburning Aspects in an Internal TNT Explosion. Int. J. Prot. Struct. 2013, 4, 97–116. [Google Scholar] [CrossRef]
- Urizar, M.J.; James, E., Jr.; Smith, L.C. Detonation velocity of pressed TNT. Phys. Fluids. 1961, 4, 262–274. [Google Scholar] [CrossRef]
- Garn, W.B. Detonation pressure of liquid TNT. J. Chem. Phys. 1960, 32, 653–655. [Google Scholar] [CrossRef]
(a) | |||||
Compound | Binding Energy per Atom, eV | Hardness, eV | Softness, eV | Electronegativity, eV | Hardness Index Y |
2,4,6-Trinitrophenyl-N-nitramine | 4.344 | 2.222 | 0.225 | 6.441 | 0.90 |
Tetryl | 4.835 | 2.171 | 0.230 | 6.193 | 0.89 |
Ethyltetryl | 5.339 | 2.130 | 0.235 | 6.127 | 0.89 |
Propyltetryl | 5.841 | 2.111 | 0.237 | 6.095 | 0.89 |
Propyltetryl 1 | 5.840 | 2.109 | 0.237 | 6.119 | 0.89 |
Butyltetryl | 6.396 | 2.161 | 0.231 | 6.183 | 0.89 |
Amyltetryl | 6.845 | 2.160 | 0.232 | 6.173 | 0.89 |
(b) | |||||
Compound | Binding Energy per Atom, eV | Hardness, eV | Softness, eV | Electronegativity, eV | Hardness Index Y |
Bis-tetryl-CH2 | 9.233 | 2.191 | 0.228 | 6.545 | 0.90 |
Bis-tetryl-CH2CH2 | 9.769 | 2.098 | 0.238 | 6.375 | 0.89 |
Bis-tetryl-CH2CH2CH2 | 10.305 | 2.071 | 0.241 | 6.375 | 0.88 |
Bis-tetryl-CH2CH2CH2CH2 | 10.299 | 2.191 | 0.228 | 6.545 | 0.90 |
Bis-tetryl-CH2CH2CH2CH2CH2 | 11.362 | 2.072 | 0.241 | 6.256 | 0.88 |
(c) | |||||
Compound | Binding Energy per Atom, eV | Hardness, eV | Softness, eV | Electronegativity, eV | Hardness Index Y |
3-Amino-tetryl | 5.207 | 2.130 | 0.253 | 6.127 | 0.86 |
3-Amino-tetryl 1 | 5.207 | 1.984 | 0.252 | 5.913 | 0.87 |
3-Amino-N-ethyltetryl | 5.709 | 1.918 | 0.261 | 5.872 | 0.86 |
3-Amino-N-propyltetryl | 6.209 | 1.917 | 0.261 | 5.876 | 0.86 |
3-Amino-N-butyltetryl | 6.712 | 1.984 | 0.252 | 5.913 | 0.87 |
3-Amino-N-amyltetryl | 7.213 | 1.894 | 0.264 | 5.858 | 0.86 |
(a) | |||
Compound | Oxygen Balance, % | logh1 | logh2 |
2,4,6-Trinitrophenyl-N-nitramine | −32.22 | 1.545 | 1.309 |
Tetryl | −47.36 | 1.906 | 1.573 |
Ethyltetryl | −61.09 | 2.233 | 1.813 |
Propyltetryl | −73.60 | 2.530 | 2.032 |
Butyltetryl | −85.05 | 2.803 | 2.232 |
Amyltetryl | −95.56 | 3.053 | 2.415 |
(b) | |||
Compound | Oxygen Balance, % | Logh1 | Logh2 |
Bis-tetryl-CH2 | −37.26 | 1.515 | 1.365 |
Bis-tetryl-CH2CH2 | −44.73 | 1.697 | 1.497 |
Bis-tetryl-CH2CH2CH2 | −51.85 | 1.870 | 1.622 |
Bis-tetryl-CH2CH2CH2CH2 | −58.63 | 2.035 | 1.741 |
Bis-tetryl-CH2CH2CH2CH2CH2 | −61.11 | 2.192 | 1.855 |
(c) | |||
Compound | Oxygen Balance, % | Logh1 | Logh2 |
3-Amino-tetryl | −47.66 | 2.104 | 1.581 |
3-Amino-N-ethyltetryl | −60.72 | 2.407 | 1.809 |
3-Amino-N-propyltetryl | −72.68 | 2.684 | 2.018 |
3-Amino-N-butyltetryl | −83.66 | 2.938 | 2.210 |
3-Amino-N-amyltetryl | −93.78 | 3.173 | 2.386 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamuliene, J.; Sarlauskas, J. Impact of Incremental Methylene Groups on the Energetic Properties of Aromatic Nitramines. Energies 2023, 16, 3117. https://doi.org/10.3390/en16073117
Tamuliene J, Sarlauskas J. Impact of Incremental Methylene Groups on the Energetic Properties of Aromatic Nitramines. Energies. 2023; 16(7):3117. https://doi.org/10.3390/en16073117
Chicago/Turabian StyleTamuliene, Jelena, and Jonas Sarlauskas. 2023. "Impact of Incremental Methylene Groups on the Energetic Properties of Aromatic Nitramines" Energies 16, no. 7: 3117. https://doi.org/10.3390/en16073117
APA StyleTamuliene, J., & Sarlauskas, J. (2023). Impact of Incremental Methylene Groups on the Energetic Properties of Aromatic Nitramines. Energies, 16(7), 3117. https://doi.org/10.3390/en16073117