Effect of Recycling on the Environmental Impact of a High-Efficiency Photovoltaic Module Combining Space-Grade Solar Cells and Optical Micro-Tracking
Abstract
:1. Introduction
1.1. Recycling of PV Modules
1.2. Policies for End-of-Life Disposal of PV Modules
1.3. New HCPV Module
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Güney, T. Solar energy, governance and CO2 emissions. Renew. Energy 2022, 184, 791–798. [Google Scholar] [CrossRef]
- Holechek, J.L.; Geli, H.M.E.; Sawalhah, M.N.; Valdez, R. A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability 2022, 14, 4792. [Google Scholar] [CrossRef]
- Bhattacharya, S.; John, S. Beyond 30% Conversion Efficiency in Silicon Solar Cells: A Numerical Demonstration. Sci. Rep. 2019, 9, 12482. [Google Scholar] [CrossRef]
- Andreani, L.C.; Bozzola, A.; Kowalczewski, P.; Liscidini, M.; Redorici, L. Silicon Solar Cells: Toward the Efficiency Limits. Adv. Phys. 2019, 4, 125–148. [Google Scholar] [CrossRef]
- Brodziński, Z.; Brodzińska, K.; Szadziun, M. Photovoltaic Farms-Economic Efficiency of Investments in North-East Poland. Energies 2021, 14, 2087. [Google Scholar] [CrossRef]
- Moreno, G.; Santos, C.; Martín, P.; Rodríguez, F.J.; Peña, R.; Vuksanovic, B. Intra-Day Solar Power Forecasting Strategy for Managing Virtual Power Plants. Sensors 2021, 21, 5648. [Google Scholar] [CrossRef] [PubMed]
- Botero-Valencia, J.S.; Ospina-Rojas, E.; Mejia-Herrera, M.; Gonzalez-Montoya, D.; Durango-Flórez, M.; Ramos-Paja, C.A. Low-cost system for sunlight incidence angle measurement using optical fiber. Hardware X 2022, 11, e00302. [Google Scholar] [CrossRef]
- Alharbi, F.H.; Kais, S. Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence. Renew. Sustain. Energy Rev. 2015, 43, 1073–1089. [Google Scholar] [CrossRef]
- Cengiz, M.S.; Mamis, M.S. Price-Efficiency Relationship for Photovoltaic Systems on a Global Basis. Int. J. Photoenergy 2015, 2015, 256101. [Google Scholar] [CrossRef]
- Renno, C. Energy and economic comparison of three optical systems adopted in a point-focus CPV system. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 99. [Google Scholar] [CrossRef]
- Rahmaniana, S.; Moein-Jahromia, M.; Rahmanian-Koushkaki, H.; Sopian, K. Performance investigation of inclined CPV system with composites of PCM, metal foam and nanoparticles. Sol. Energy 2021, 230, 883–901. [Google Scholar] [CrossRef]
- Shanks, K.; Senthilarasu, S.; Mallick, T.K. Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design. Renew. Sustain. Energy Rev. 2016, 60, 394–407. [Google Scholar] [CrossRef]
- Khamooshi, M.; Salati, H.; Egelioglu, F.; Faghiri, A.H.; Tarabishi, J.; Babadi, S. A Review of Solar Photovoltaic Concentrators. Int. J. Photoenergy 2014, 2014, 958521. [Google Scholar] [CrossRef]
- Pérez-Higueras, P.; Muñoz, E.; Almonacid, G.; Vidal, P.G. High Concentrator PhotoVoltaics efficiencies: Present status and forecast. Renew. Sustain. Energy Rev. 2011, 14, 1810–1815. [Google Scholar] [CrossRef]
- Alzahrani, M.; Ahmed, A.; Shanks, K.; Sundaram, S.; Mallick, T. Optical component analysis for ultrahigh concentrated photovoltaic system (UHCPV). Sol. Energy 2021, 227, 321–333. [Google Scholar] [CrossRef]
- Benhammane, M.; Notton, G.; Pichenot, G.; Voarino, P.; Ouvrard, D. Overview of electrical power models for concentrated photovoltaic systems and development of a new operational model with easily accessible inputs. Renew. Sustain. Energy Rev. 2021, 135, 110221. [Google Scholar] [CrossRef]
- Parupudi, R.V.; Singh, H.; Kolokotroni, M. Low Concentrating Photovoltaics (LCPV) for buildings and their performance analyses. Appl. Energy 2022, 279, 115839. [Google Scholar] [CrossRef]
- Kavlak, G.; McNerney, J.; Trancik, J.E. Evaluating the causes of cost reduction in photovoltaic modules. Energy Policy 2018, 123, 700–710. [Google Scholar] [CrossRef]
- Ziemińska-Stolarska, A.; Pietrzak, M.; Zbiciński, I. Application of LCA to Determine Environmental Impact of Concentrated Photovoltaic Solar Panels-State-of-the-Art. Energies 2021, 14, 3143. [Google Scholar] [CrossRef]
- Kovacs, E.; Hoaghia, M.A.; Senila, L.; Scurtu, D.A.; Varaticeanu, C.; Roman, C.; Dumitras, D.E. Life Cycle Assessment of Biofuels Production Processes in Viticulture in the Context of Circular Economy. Agronomy 2022, 12, 1320. [Google Scholar] [CrossRef]
- Bhandari, K.P.; Collier, J.M.; Ellingson, R.J.; Apul, D.S. Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis. Renew. Sustain. Energy Rev. 2015, 47, 133–141. [Google Scholar] [CrossRef]
- Gerbinet, S.; Belboom, S.; Léonard, A. Life Cycle Analysis (LCA) of photovoltaic panels: A review. Renew. Sustain. Energy Rev. 2014, 38, 747–753. [Google Scholar] [CrossRef]
- Salibi, M.; Schönberger, F.; Makolli, Q.; Bousi, E.; Almajali, S.; Friedrich, L. Energy payback time of photovoltaic electricity generated by passivated emitter and rear cell (perc) solar modules: A novel methodology proposal. In Proceedings of the 38th European PV Solar Energy Conference and Exhibition, Lisbon, Portugal, 6–10 September 2021. [Google Scholar]
- Wetzel, T.; Borchers, S. Update of energy payback time and greenhouse gas emission data for crystalline silicon photovoltaic modules. Prog. Photovolt. Res. Appl. 2014, 23, 1429–1435. [Google Scholar] [CrossRef]
- Sandwell, P.; Duggan, G.; Nelson, J.; Ekins-Daukes, N. The environmental impact of lightweight HCPV modules: Efficient design and effective deployment. Prog. Photovolt. Res. Appl. 2016, 4, 1458–1472. [Google Scholar] [CrossRef]
- Hu, A.H.; Huang, L.H.; Lou, S.; Kuo, C.H.; Huang, C.Y.; Chian, K.J.; Chien, H.T.; Hong, H.F. Assessment of the Carbon Footprint, Social Benefit of Carbon Reduction, and Energy Payback Time of a High-Concentration Photovoltaic System. Sustainability 2017, 9, 27. [Google Scholar] [CrossRef]
- Frischknecht, R.; Stolz, P.; Heath, G.; Raugei, M.; Sinha, P.; de Wild-Scholten, M. Methodology Guidelines on Life Cycle Assessment of Photovoltaics 2020, IEA-PVPS Task 12, Report T12-18:2020, 4th ed.; IEA: Paris, France, 2020; Available online: https://iea-pvps.org/key-topics/methodology-guidelines-on-life-cycle-assessment-of-photovoltaic-2020/ (accessed on 15 January 2023).
- RSE. Results of the APOLLON Project and Concentrating Photovoltaic Perspective; Ricerca sul Sistema Energetico-RSE S.p.A.: Milan, Italy, 2014. [Google Scholar]
- Fthenakis, V.M.; Kim, H.C. Life cycle assessment of high-concentration photovoltaic systems. Prog. Photovolt. Res. Appl. 2013, 21, 379–388. [Google Scholar] [CrossRef]
- Corona, B.; Escuderol, L.; Quéméré, G.; Luque-Heredia, I.; San Miguel, G. Energy and environmental life cycle assessment of a high concentration photovoltaic power plant in Morocco. Int. J. Life Cycle Assess. 2017, 22, 364–373. [Google Scholar] [CrossRef]
- Ndiaye, A.; Charki, A.; Kobi, A.; Kébé, C.M.F.; Ndiaye, P.A.; Sambou, V. Degradations of Silicon Photovoltaic Modules: A Literature Review. Sol. Energy 2013, 96, 140–151. [Google Scholar] [CrossRef]
- Khan, F.; Alshahrani, T.; Fareed, I.; Kim, J.H. A Comprehensive Degradation Assessment of Silicon Photovoltaic Modules Installed on a Concrete Base under Hot and Low-Humidity Environments: Building Applications. Sustain. Energy Technol. Assess. 2022, 52, 102314. [Google Scholar] [CrossRef]
- Khan, F.; Rezgui, B.D.; Kim, J.H. Reliability Study of c-Si PV Module Mounted on a Concrete Slab by Thermal Cycling Using Electroluminescence Scanning: Application in Future Solar Roadways. Materials 2020, 13, 470. [Google Scholar] [CrossRef]
- Nordin, A.H.M.; Sulaiman, S.I.; Shaari, S. Life Cycle Impact of Photovoltaic Module Degradation on Energy and Environmental Metrics. Energy Rep. 2022, 8, 923–931. [Google Scholar] [CrossRef]
- Mahmoudi, S.; Huda, N.; Alavi, Z.; Islam, M.T.; Behnia, M. End-of-life photovoltaic modules: A systematic quantitative literature review. Resour. Conserv. Recycl. 2019, 146, 1–16. [Google Scholar] [CrossRef]
- Farrell, C.C.; Osman, A.I.; Doherty, R.; Saad, M.; Zhang, X.; Murphy, A.; Harrison, J.; Vennard, A.S.M.; Kumaravel, V.; Al-Muhtaseb, A.H.; et al. Technical challenges and opportunities in realising a circular economy for waste photovoltaic modules. Renew. Sustain. Energy Rev. 2020, 128, 109911. [Google Scholar] [CrossRef]
- Calì, M.; Hajji, B.; Nitto, G.; Acri, A. The Design Value for Recycling End-of-Life Photovoltaic Panels. Appl. Sci. 2022, 12, 9092. [Google Scholar] [CrossRef]
- Lunardi, M.M.; Alvarez-Gaitan, J.P.; Bilbao, J.I.; Corkish, R. A Review of Recycling Processes for Photovoltaic Modules. In Solar Panels and Photovoltaic Materials; Zaidi, B., Ed.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Strachala, D.; Hylský, J.; Vanek, J.; Fafilek, G.; Jandová, K. Methods for recycling photovoltaic modules and their impact on environment and raw material extraction. Acta Montan. Slovaca 2017, 22, 257–269. Available online: http://hdl.handle.net/11012/187727 (accessed on 6 March 2023).
- Xu, Y.; Li, J.; Tan, Q.; Peters, A.L.; Yang, C. Global status of recycling waste solar panels: A review. Waste Manag. 2018, 75, 450–458. [Google Scholar] [CrossRef]
- Wang, T.Y. Recycling of Solar Cell Materials at the End of Life. In Advances in Solar Photovoltaic Power Plants. Green Energy and Technology; Islam, M., Rahman, F., Xu, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 287–317. [Google Scholar] [CrossRef]
- Yu, H.F.; Hasanuzzaman, M.; Rahim, N.A.; Amin, N.; Nor Adzman, N. Global Challenges and Prospects of Photovoltaic Materials Disposal and Recycling: A Comprehensive Review. Sustainability 2022, 14, 8567. [Google Scholar] [CrossRef]
- Onusseit, H. The influence of adhesives on recycling. Resour. Conserv. Recycl. 2006, 46, 168–181. [Google Scholar] [CrossRef]
- Sharma, A.; Pandey, S.; Kolhe, M. Global Review of Policies & Guidelines for Recycling of Solar Pv Modules. Int. J. Smart Grid Clean Energy 2019, 8, 597–610. [Google Scholar] [CrossRef]
- European Union. Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on Waste Electrical and Electronic Equipment (WEEE). Off. J. Eur. Union 2012, 197, 38–71. [Google Scholar]
- Hiperion. Available online: https://hiperion-project.eu/ (accessed on 10 January 2023).
- Goedkoop, M.; Oele, M.; Leijting, J.; Ponsioen, T.; Meijer, E. Introduction to LCA with SimaPro. 2016. Available online: https://www.pre-sustainability.com/download/SimaPro8IntroductionToLCA.pdf (accessed on 6 March 2023).
- Intergovernmental Panel on Climate Change. IPCC Fifth Assessment Report. The Physical Science Basis. 2013. Available online: http://www.ipcc.ch/report/ar5/wg1/ (accessed on 6 March 2023).
- International Reference Life Cycle Data System (ILCD). Handbook—General Guide for Life Cycle Assessment—Detailed Guidance; Publications Office of the European Union: Luxembourg, 2010. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC58190 (accessed on 6 March 2023).
- Sima Pro. 2018. Available online: https://simapro.com/ (accessed on 22 March 2019).
- EN ISO 14040; Environmental Management-Life Cycle Assessment-Principles and Framework. ISO: London, UK, 2006. Available online: https://www.iso.org/standard/37456.html (accessed on 22 March 2019).
- Franklin Associates. Summary Report: LCA Streamlining Demonstration Study; Franklin Associates, Ltd. for Research Triangle Institute: Research Triangle Park, NC, USA, 1996. [Google Scholar]
- Fraunhofer Institute for Solar Energy Systems. Photovoltaics Report; ISE: Freiburg, Germany, 2023. [Google Scholar]
Component | Recycling Techniques |
---|---|
Glass | Closed-loop-recycled glass can be used to manufacture the same product. The glass should be separated from PV modules (using chemical or thermal procedures). The first step is the cleaning process of removing unwanted layers, such as an anti-reflective coating [39]. Chemical delamination to separate such materials from PV modules is possible with tetrahydrofuran (THF) [42]. The separated glass is then washed and crushed. If further purification of the glass cullet is required, the remaining contamination can be optically sorted by blowing compressed air at the point detected by the optical sensor. Standard glass cullet is melted at a high temperature (about 1550 °C). Adhesives based on synthetic polymers generally do not disturb the recycling process because they burn at high temperatures without influencing glass recycling [43]. |
Solar cell | Chemical and thermal separation. Si particles are eliminated with acid and then melted to be reused. Si doped by chemical additives can be extracted by hydrometallurgy processes [37]. |
Fresnel lens (PMMA) | Crushing and pyrolysis—Fresnel lenses. Thermal methods such as the melting and shaping of PMMA into other forms at temperatures above 160 °C. Depolymerization process such as by mixing with molten lead at approximately 500 °C, which produces a 98% pure methyl methacrylate (MMA) monomer [41]. |
Materials | Ecoinvent Database | |
---|---|---|
Top glass | Glass | Solar glass production |
AR (anti-reflective) coating | Market for anti-reflex coating, etching, solar glass | |
Poly(methyl methacrylate) (PMMA) | Polymethyl methacrylate | |
PMMA | Polymethyl methacrylate | |
Monomer (60%) 1 or mixture for balance properties: methyl methacrylate/butyl acrylate Additives (0.1–1%) light stabilizer: octabenzone Photo initiator (1–6%): Hydroxy dimethyl acetophenone/α-Hydroxy-acetophenone | Methyl methacrylate Butyl acrylate Octabenzone 2,5-dimethylhexane-2,5-dihydroperoxide | |
Typical formulation for acrylic adhesive (two-component): Butyl acrylate (26%) Vinyl acetate (26%) Acrylic acid (1%) Ethylene oxide condensate (0.5%) Water (45%) Potassium peroxide disulfate (0.05%) | Butyl acrylate Vinyl acetate Acrylic acid Ethylene oxide Water Potassium peroxide | |
Backplane | Glass | Solar glass production, low-iron |
AR coating | Market for anti-reflex-coating, etching, solar glass Titanium dioxide Zirconium oxide | |
Solar cells include the latest triple and quadruple junction technology | Gallium, semiconductor-grade Indium | |
LED package | Ceramic Silicon production, electronics-grade | |
Diode | Diode production, auxiliaries and energy use | |
Row material: plastic—polypropylene Semiconductor material: silicon, germanium, selenium | Polypropylene Silicon production, electronics-grade Selenium | |
Structural element | Flexible film: polyimide/polyester/fluoropolymer (standard PCD: epoxy resin plus glass fiber plus copper) | Electronic component |
Window material with resin coating | Ceramic | |
Photosensitive area (Si photodiode) with silicone resin | Diode production, auxiliaries and energy use | |
Silicone resin sealant | Silicone product production | |
Resistor | Resistor production, auxiliaries and energy use | |
Sensor made of silicon | Silicon production, electronics-grade | |
Sensor housing: plated copper, lead frame, epoxy-based mold compound | Copper Market for epoxy resin, liquid | |
Aluminum | Aluminum/ market for aluminum | |
Stainless steel | Stainless steel | |
Silicone adhesives and sealants | PDMS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziemińska-Stolarska, A.; Pietrzak, M.; Zbiciński, I. Effect of Recycling on the Environmental Impact of a High-Efficiency Photovoltaic Module Combining Space-Grade Solar Cells and Optical Micro-Tracking. Energies 2023, 16, 3302. https://doi.org/10.3390/en16083302
Ziemińska-Stolarska A, Pietrzak M, Zbiciński I. Effect of Recycling on the Environmental Impact of a High-Efficiency Photovoltaic Module Combining Space-Grade Solar Cells and Optical Micro-Tracking. Energies. 2023; 16(8):3302. https://doi.org/10.3390/en16083302
Chicago/Turabian StyleZiemińska-Stolarska, Aleksandra, Monika Pietrzak, and Ireneusz Zbiciński. 2023. "Effect of Recycling on the Environmental Impact of a High-Efficiency Photovoltaic Module Combining Space-Grade Solar Cells and Optical Micro-Tracking" Energies 16, no. 8: 3302. https://doi.org/10.3390/en16083302
APA StyleZiemińska-Stolarska, A., Pietrzak, M., & Zbiciński, I. (2023). Effect of Recycling on the Environmental Impact of a High-Efficiency Photovoltaic Module Combining Space-Grade Solar Cells and Optical Micro-Tracking. Energies, 16(8), 3302. https://doi.org/10.3390/en16083302