Production and Quality of Biodiesel under the Influence of a Rapeseed Fertilization System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experience Field
2.2. Fertilization System
2.3. Natural Conditions
2.4. Production of Rapeseed Grains
2.5. Rapeseed oil (RRO) Production
2.6. Quality of RRO and FAs
- Free FAs (%), chemicals: 0.5 Mol/L methanolic KOH by Carl Roth; 2-Propanol 99.5% purity by Carl Roth, neutralized, analytical system: automatic titration system by Metrohm, Herisau, Switzerland;
- Water content (%), chemicals Hydranal-solvent, 34800 by Fluka, Hydranal-Titrant 5, 34801 by Fluka; the analytical system was a Metrohm 870KF Titrino plus with an 803 Ti stirrer.
- Density at 15 °C (kg m−3) with an Anton Paar DMA 4100M analytical system;
- Phosphorus content (mg kg−1) using the ICP-OES System: an Agilent 5110 with an SPS 4 Autosampler;
- Sulfur content (mg kg−1) using the ICP-OES System with an Agilent 5110 with an SPS 4 autosampler;
- Kinematic viscosity at 40 °C in mm2 s−1 using an Anton Paar DMA 3001 analytical system;
- FAs chain (%), using chemicals TMSH 0.2 M: Macherey-Nagel, 0.2 M Trimethylsulfoniumhydroxid diluted in Methanol Purity 99%, 15% Boron trifluoride in Methanol, Sigma-Aldrich, n-Heptan: Bern Kraft Laborchemikalien; analytical system GC 2030 with AOC 20i autosampler by Shimadzu, Kyoto, Japan.
2.7. Transesterification of RRO
2.8. Esterification and Transesterification of FAs
2.8.1. Esterification of FAs
2.8.2. Crude Ester Refining
2.9. Transesterification of Crude Ester
- Washing with 5% glycerol (mixing for 5–10 min)
- Sedimentation (the separation of crude biodiesel from the glycerin phase)
- Washing with acid water (10% distilled water and 2% sulfuric acid (Brenntag GmbH, with a purity of 96%) were added)
- Drying (the samples were mixed on the heater until they reached a temperature of 130 °C, and the water evaporated).
- To determine the quality of BRO and FAs, the following parameters were analyzed [48]:
- Acid value mg KOH g−1, chemicals: 0.5 Mol/L methanolic KOH by Carl Roth; 2-propanol with 99.5% purity by Carl Roth, neutralized, analytical system: automatic Titration system by Metrohm, Herisau, Switzerland;
- Water content (%), used chemicals: Hydranal-Coulomat AG, 34836 by Fluka,; analytical system: Metrohm Karl-Fischer Coulomat;
- Density at 15 °C (kg m−3) analytical system Anton Paar DMA 4100M;
- Phosphorus content (mg kg−1); analytical system ICP-OES System: Agilent 5110 with Autosampler SPS 4;
- Sulfur content; a Trace Elemental Instruments Xplorer TN/TS analytical system with the Archie Autosampler,
- Kinematic viscosity at 40 °C in mm2 s−1 with an Anton Paar DMA 3001 analytical system;
- Free glycerol and Mono-, Di- and Triglycerides% (m/m) method: EN 14105, Chemicals: n-Heptane with 99% purity by Bern Kraft; a Pyridine purity of 99.8% by Sigma-Aldrich; MSTFA by Macherey-Nagel; Monononadecanoin purity > 99% (by Larodan AB; 1,3-Dinonadecanoin purity > 99% by Larodan AB; Trinonadecanoin purity > 99% by Larodan AB; Analytical system: GC 2030 with AOC 20i autosampler by Shimadzu, Kyoto, Japan;
- Ester content% (m/m) method: EN 14103, chemicals: Toluol of 99.9% purity by Carl Roth; Methyl Nonadecanoate > 99.5% purity by ASG AG Neusäß, using a GC 2010 analytical system with an AOC 20i autosampler by Shimadzu, Kyoto, Japan.
2.10. Statistical Analysis
3. Results and Discussions
3.1. Production of Rapeseeds
3.2. Rapeseed Oil Production (l ha−1)
3.3. Efficiency of Oil Extraction (%)
3.4. Regressions between Applied Doses of Complex Fertilizers and Productions of Rapeseed and Oil
3.5. RRO and FAs Quality
3.5.1. Quality of RRO
3.5.2. FAs Quality
3.5.3. Statistical Processing of Quality Parameters for Refined Oil and Fatty Acids
3.6. Quality of BRO and BFA
3.6.1. BRO Quality
3.6.2. BFA Quality
3.6.3. Statistical Processing of the Quality Parameters of BRO and BFA
3.6.4. Comparison of the Differences between the Quality Parameters of BRO and BFA
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gebremariam, S.; Marchetti, J. Economics of biodiesel production: Review. Energy Convers. Manag. 2018, 168, 74–84. [Google Scholar] [CrossRef]
- Ramos, M.; Dias, A.P.S.; Puna, J.F.; Gomes, J.; Bordado, J.C. Biodiesel production processes and sustainable raw materials. Energies 2019, 12, 4408. [Google Scholar] [CrossRef]
- My Climate. Available online: https://www.myclimate.org/information/faq/faq-detail/what-is-sustainability/ (accessed on 17 October 2022).
- Dieng, M.T.; Iwanaga, T.; Yurie, Y.C.; Torii, S. Production and Characterization of Biodiesel from Rapeseed Oil through Optimization of Transesterification Reaction Conditions. J. Energy Power Eng. 2019, 13, 381–392. [Google Scholar]
- Shadidi, B.; Najafi, G.; Zolfigol, M.A. A Review of the Existing Potentials in Biodiesel Production in Iran. Sustainability 2022, 14, 3284. [Google Scholar] [CrossRef]
- Țărău, D.; Niță, L.; David, G. Pământul și rostul său în existența omenirii. Agric. Banat. 2021, 1, 15–21. [Google Scholar]
- Law, E.P.; Wayman, S.; Pelzer, C.J.; Cullman, S.W.; Gómez, M.I.; DiTommaso, A.; Ryan, M.R. Multi-Criteria Assessment of the Economic and Environmental Sustainability Characteristics of Intermediate Wheatgrass Grown as a Duak-Purpose Grain and Forage Crop. Sustainability 2022, 14, 3548. [Google Scholar] [CrossRef]
- León-Sicard, T.E.; Toro Calderón, J.; Martínez-Bernal, L.F.; Cleves-Leguízamo, J.A. The Main Agroecological Structure (MAS) of the Agroecosystems: Concept, Methodology and Applications. Sustainability 2018, 10, 3131. [Google Scholar] [CrossRef]
- Tang, X.; Lu, C.; Meng, P.; Cheng, W. Spatiotemporal Evolution of the Environmental Adaptability Efficiency of the Agricultural System in China. Sustainability 2022, 14, 3685. [Google Scholar] [CrossRef]
- Barati, A.A.; Azadi, H.; Pour, M.D.; Lebailly, P.; Qafori, M. Determining Key Agricultural Strategic Factors Using AHP-MICMAC. Sustainability 2019, 11, 3947. [Google Scholar] [CrossRef]
- Hasnat, M.; Alam, M.A.; Khanam, M.; Binte, B.I.; Kabir, M.H.; Alam, M.S.; Kamal, M.Z.U.; Rahman, G.K.M.M.; Haque, M.M.; Rahman, M.M. Effect of Nitrogen Fertilizer and Biochar on Organic Matter Mineralization and Carbon Accretion in Soil. Sustainability 2022, 14, 3684. [Google Scholar] [CrossRef]
- Bugin, G.; Lenzi, L.; Ranzani, G.; Barisan, L.; Porrini, C.; Zanella, A.; Bolzonella, C. Agriculture and Pollinating Insects, No Longer a Choice but a Need: EU Agriculture’s Dependence on Pollinators in the @007-2019 Period. Sustainability 2022, 14, 3644. [Google Scholar] [CrossRef]
- Lee, G.; Lee, C.; Kim, H.; Jeon, Y.; Shul, Y.G.; Park, J. Bifunctional 1,2,4-Triazole/12-Tungstophosphoric Acid Composite Nanoparticles for Biodisel production. Nanomaterials 2022, 12, 4022. [Google Scholar] [CrossRef] [PubMed]
- Coughlan, R.; Moane, S.; Larkin, T. Variability of Essential and Nonessential Fatty Acids of Irish Rapeseed Oils as an Indicator of Nutritional Quality. Int. J. Food Sci. 2022, 2022, 7934565. [Google Scholar] [CrossRef] [PubMed]
- Geambașu, S. Cercetări privind Influiența Biocombustibililor asupra Comportamentului Ecologic și Energetic al Motoarelor cu Aprindere prin Comprimare. Ph.D. Thesis, Transilvania University, Brașov, Romania, 2018. [Google Scholar]
- Raboanatahiry, N.; Li, H.; Yu, L.; Li, M. Rapeseed (Brassica napus): Processing, Utilization, and Genetic Improvement. Agronomy 2021, 11, 1776. [Google Scholar] [CrossRef]
- KWS. Umberto KWS. Available online: https://www.kws.com/ro/ro/produse/rapita/umberto-kws/ (accessed on 23 May 2022).
- Lovasz, A.; Borza, I.; Breja, R.; Sabau, N.C. Rapeseed Agrotechnics in Relation with the Quality and Efficiency in Biodiesel Production-Review. Ann. Univ. Oradea Fascicle Environ. Prot. 2021, XXXVI, 51–64. [Google Scholar]
- UE, Uniunea Europeană, Pachetul Energie/Climă. 2020. Available online: https://eur-lex.europa.eu/legal-content/RO/TXT/HTML/?uri=LEGISSUM:2001_8&from=RO (accessed on 27 May 2022).
- Haputta, P.; Bowonthumrongchai, T.; Puttanapong, N.; Gheewala, S.H. Effects of Biofuels Crop expansion on Green Gross Domestic Product. Sustainability 2022, 14, 3369. [Google Scholar] [CrossRef]
- Qalität von Biodiesel. AGQM Analytikseminar. 29–31 August 2018. Available online: https://www.agqm-biodiesel.de/qualitaet/qm-system (accessed on 11 October 2022).
- Blin, J.; Brunschwig, C.; Chapuis, A.; Changotade, O.; Sidibe, S.; Noumi, E.; Girard, P. Characteristics of vegetable oils for use as fuel in stationary diesel engines—Towards specifications for a standard in West Africa. Renew. Sustain. Energy Rev. 2013, 22, 580–597. [Google Scholar] [CrossRef]
- Jia, Y.; Yao, M.; He, X.; Xiong, X.; Guan, M.; Liu, Z.; Guan, C.; Qian, L. Transcriptome and Regional Association Analyses Reveal the Effects of Oleosin Genes on the Accumulation of the Oil Content in Brassica napus. Plants 2022, 11, 3140. [Google Scholar] [CrossRef]
- Zhang, J.; Cherian, J.; Parvez, A.M.; Samad, S.; Sial, M.S.; Ali, M.A.; Khan, M.A. Consequences of Sustainable agricultural Productivity, Renewable energy, and Environmental Decay: Recent Evidence from ASEAN Countries. Sustainability 2022, 14, 3556. [Google Scholar] [CrossRef]
- Amrullah, A.; Farobie, O.; Bayu, A.; Syaftika, N.; Hartulistiyoso, E.; Moheimani, N.R.; Karnjanakom, S.; Matsumura, Y. Slow Pyrolysis of Ulva lactuca (Chlorophyta) for Sustainable Production of Bio-Oil and Biochar. Sustainability 2022, 14, 3233. [Google Scholar] [CrossRef]
- Rayapureddy, S.M.; Matijošius, J.; Rimkus, A. Comparison of Research Data of Diesel–Biodiesel–Isopropanol and Diesel–Rapeseed Oil–Isopropanol Fuel Blends Mixed at Different Proportions on a CI Engine. Sustainability 2021, 13, 10059. [Google Scholar] [CrossRef]
- Manavalla, S.; Chaudhary, A.; Panchal, S.H.; Ismail, S.; Feroskhan, M.; Khan, T.M.Y.; Javed, S.; Ali, M.A. Energy Analysis of a CI Engine Operating on Ternary Biodiesel Blends. Sustainability 2022, 14, 12350. [Google Scholar] [CrossRef]
- Lamba, B.Y.; Chen, W.H. Experimental Investigation of Biodiesel Blends with Hight-Speed Diesels-A Comprehensive Study. Energies 2022, 15, 7878. [Google Scholar] [CrossRef]
- Luque, R.; Melero, J.A. Introduction. In Advances in Biodiesel Production Processes and Technologies; Rafael Luque, A., Juan Campelo, B., Eds.; Woodhead Publishing Limited: York, UK, 2012; pp. 3–12. [Google Scholar]
- Gassner, T.; Thuneke, K.; Haselbeck, S.; Remmele, E. Standard DIN 51605 for Rapeseed Oil Fuel. In Proceedings of the 13st International Rapeseed Congress, Prague, Czech Republic, 5–9 June 2011. [Google Scholar]
- Salaheldeen, M.; Mariod, A.A.; Aroua, M.K.; Rahman, S.M.A.; Soudagar, M.E.M.; Fattah, I.M.R. Current State and Perspectives on Transesterification of Triglycerides for Biodiesel Production. Catalysts 2021, 11, 1121. [Google Scholar] [CrossRef]
- Babu, S.S.; Gondi, R.; Vincent, G.S.; Samuel, G.C.J.; Jeyakumar, R.B. Microlage Biomass and Lipids as Feedstock for Biofuels: Sustainable Biotechnology Strategies. Sustainability 2022, 14, 15070. [Google Scholar] [CrossRef]
- Kim, E.; Ayuk, A.C.; Kim, D.K.; Kim, H.J.; Ham, H.C. Boosting the Transesterification Reaction by Adding a Single Na Atom into g-C3N4 Catalyst for Biodiesel Production: A First-Principles Study. Energies 2022, 15, 8432. [Google Scholar] [CrossRef]
- Vasili, M. Biodieselul—Producerea si Utilizarea. 2014. Available online: http://repository.utm.md/bitstream/handle/5014/17162/Conf-UTM-2013-Vol-2-p126-127.pdf?sequence=1 (accessed on 9 October 2022).
- Ingendoh, A. Method for Manufacturing Biodiesel by Acid Transesterification, and Use of Sulphonic Acid as a Catalyst in the Manufacture of Biodiesel. European Patent Specification, Nr. PCT/EP2010/004950, 12 August 2010. [Google Scholar]
- Dębowski, M.; Michalski, R.; Zieliński, M.; Kazimierowicz, J. A Comparative Analysis of Emissions from a Compression–Ignition Engine Powered by Diesel, Rapeseed Biodiesel, and Biodiesel from Chlorella protothecoides Biomass Cultured under Different Conditions. Atmosphere 2021, 12, 1099. [Google Scholar] [CrossRef]
- Sane, M.; Hajek, M.; Phiri, J.; Babangida, J.S.; Nwaogu, C. Application of Decoupling Approach to Evaluate Electricity Consumption, Agriculture, GDP, Crude Oil Production, and CO2 Emission Nexus in Support of Economic Instrument in Nigeria. Sustainability 2022, 14, 3226. [Google Scholar] [CrossRef]
- Sakamoto, K.; Kawajiri, K.; Hatori, H.; Tahara, K. Impact of the Manufacturing Processes of Aromatic-Polymer-Based Carbon Fiber on Life Cycle Greenhouse Gas Emissions. Sustainability 2022, 14, 3541. [Google Scholar] [CrossRef]
- The European Oilseed Alliance. Available online: http://www.euoilseed.org/industry-topics/sustainability-of-biodiesel/ (accessed on 11 October 2022).
- Arbeitsgemeinschaft Qualitätsmanagement Biodiesel E.V. 2018. Available online: https://www.agqm-biodiesel.de/ (accessed on 25 October 2022).
- Diaplant, Complex Azomures NPK 16-16-16. Available online: https://diaplant.ro/produs/complex-azomures-npk-16-16-16/ (accessed on 11 December 2022).
- OSPA Oficiul de Studii Pedologice și Agrochimice Bihor. Studiu Pedologic și Agrochimic de Bonitare a Terenului; OSPA Oficiul de Studii Pedologice și Agrochimice Bihor: Leș, Romania, 2020; p. 35. [Google Scholar]
- DIN EN ISO 660; Animal and Vegetable Fats and Oils—Determination of Acid Value And acidity (ISO 660:2020). Available online: https://www.en-standard.eu/din-en-iso-660-animal-and-vegetable-fats-and-oils-determination-of-acid-value-and-acidity-iso-660-2020/ (accessed on 26 October 2022).
- DIN 51777-1:1983-03; Testing of Mineraloil Hydrocarbons and Solvents; Determination of Water Content According to Karl Fischer; Direct Method. Available online: https://www.beuth.de/de/norm/din-51777-1/1021223 (accessed on 26 October 2022).
- DIN EN ISO 12185; Crude Petroleum and Petroleum Products—Determination of Density Using the Oscillating U-Tube Method (ISO 12185:1996). Available online: https://www.en-standard.eu/din-en-iso-12185-crude-petroleum-and-petroleum-products-determination-of-density-using-the-oscillating-u-tube-method-iso-12185-1996/ (accessed on 26 October 2022).
- DIN EN 14538; Fat and Oil Derivatives—Fatty Acid Methyl Ester (FAME)—Determination of Ca, K, Mg and Na Content by Optical Emission Spectral Analysis with Inductively Coupled Plasma (ICP OES). Available online: https://www.en-standard.eu/din-en-14538-fat-and-oil-derivatives-fatty-acid-methyl-ester-fame-determination-of-ca-k-mg-and-na-content-by-optical-emission-spectral-analysis-with-inductively-coupled-plasma-icp-oes/ (accessed on 27 October 2022).
- DIN EN ISO 3104:2021; Petroleum Products—Transparent And Opaque Liquids—Determination of Kinematic Viscosity and Calculation of Dynamic Viscosity (ISO 3104:2020); German Version EN ISO 3104:2020. Available online: https://webstore.ansi.org/standards/din/dineniso31042021 (accessed on 27 October 2022).
- Türck, R. Method for Producing Fatty Acid Esters of Monovalent Alkyl Alcohols and Use Thereof. U.S. Patent US 6,538,146 B2, 25 March 2003. [Google Scholar]
- Grabowski, P.; Jarosiński, P. Examination of Selected Physicochemical Properties of Biodiesel after Electron Beam Sterilization in Flow System. Energies 2021, 14, 1444. [Google Scholar] [CrossRef]
- Ardelean, M.; Sestraș, R.; Codrea, M. Horticultural Experimental Technique.; ACADEMICPRES: Cluj Napoca, Romania, 2005; pp. 38–53. [Google Scholar]
- Woźniak, E.; Waszkowska, E.; Zimny, T.; Sowa, S.; Twardowski, T. The Rapeseed Potential in Poland and Germany in the Context of Production, Legislation, and Intellectual Property Rights. Front. Plant Sci. 2019, 10, 1423. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Cong, R.-H.; Ren, T.; Li, H.; Zhu, Y.; Lu, J.-W. Optimizing agronomic practices for closing rapeseed yield gaps under intensive cropping systems in China. J. Integr. Agric. 2020, 19, 1241–1249. [Google Scholar] [CrossRef]
- Stepien, A.; Wojtkowiak, K.; Pietrzak-Fiecko, R. Nutrient content, fat yield and fatty acid profile of winter rapeseed (Brassica napus L.) grown under different agricultural production systems. Chil. J. Agric. Res. 2017, 77, 266–272. [Google Scholar] [CrossRef]
- Orlovius, K. Fertilizing for High Yield and Quality Oilseed Rape. In IPI Buletinl No. 6; Kirkby, E.A., Ed.; International Potash Institute: Basel, Switzerland, 2003; p. 125. Available online: https://www.ipipotash.org/uploads/udocs/No%2016%20Oilseed%20rape.pdf (accessed on 24 February 2023).
- Wang, C.; Xu, M.; Wang, Y.; Batchelor, W.D.; Zhang, J.; Kuai, J.; Ling, L. Long-Term Optimal Management of Rapeseed Cultivation Simulated with the CROPGRO-Canola Model. Agronomy 2022, 12, 1191. [Google Scholar] [CrossRef]
- Sokólski, M.; Załuski, D.; Szatkowski, A.; Jankowski, K.J. Winter Oilseed Rape: Agronomic Management in Different Tillage Systems and Seed Quality. Agronomy 2023, 13, 524. [Google Scholar] [CrossRef]
- He, B.B.; Van Gerpen, J.H.; Thompson, J.C. Sulfur Content in Selected Oils and Fats and their Corresponding Methyl Esters. Appl. Eng. Agric. 2009, 25, 223–226. [Google Scholar]
- Kim, J.K.; Jeon, C.H.; Lee, H.W.; Park, Y.K.; Min, K.; Hwang, I.; Kimet, Y.M. Effect of Accelerated High Temperature on Oxidation and Polymerization of Biodiesel from Vegetable Oils. Energies 2018, 11, 3514. [Google Scholar] [CrossRef]
- Encinar, J.M.; Pardal, A.; Sánchez, N.; Nogales, S. Biodiesel by Transesterification of Rapeseed Oil Using Ultrasound: A Kinetic Study of Base-Catalysed Reactions. Energies 2018, 11, 2229. [Google Scholar] [CrossRef]
- DIN EN 14104; Fat and Oil Derivates—Fatty Acid Methyl Ester (FAME)—Determination of Acid Value. Available online: https://www.en-standard.eu/din-en-14104-fat-and-oil-derivates-fatty-acid-methyl-ester-fame-determination-of-acid-value/ (accessed on 30 October 2022).
- ISO 12937:2000(en); Petroleum Products—Determination of Water—Coulometric Karl Fischer Titration Method. Available online: https://www.iso.org/obp/ui/#iso:std:iso:12937:ed-1:v1:en (accessed on 30 October 2022).
- Khan, E.; Ozaltin, K.; Spagnuolo, D.; Bernal-Ballen, A.; Piskunov, M.V.; Di Martino, A. Biodiesel from Rapeseed and Sunflower Oil: Effect of the Transesterification Conditions and Oxidation Stability. Energies 2023, 16, 657. [Google Scholar] [CrossRef]
- DIN EN 14103; Fat and Oil Derivatives—Fatty Acid Methyl Esters (FAME)—Determination of Ester and Linolenic Acid Methyl ester Contents. Available online: https://www.en-standard.eu/din-en-14103-fat-and-oil-derivatives-fatty-acid-methyl-esters-fame-determination-of-ester-and-linolenic-acid-methyl-ester-contents/ (accessed on 30 October 2022).
- Sendzikiene, E.; Makareviciene, V. Synthesis of Biodiesel by Interesterification of Triglycerides with Methyl Formate. Appl. Sci. 2022, 12, 9912. [Google Scholar] [CrossRef]
- Barbosa, S.L.; Rocha, A.C.P.; Nelson, D.L.; de Freitas, M.S.; Mestre, A.A.P.F.; Klein, S.I.; Clososki, G.C.; Caires, F.J.; Flumignan, D.L.; Dos Santos, L.K.; et al. Catalytic Transformation of Triglycerides to Biodiesel with SiO2-SO3H and Quaternary Ammonium Salts in Toluene or DMSO. Molecules 2022, 27, 953. [Google Scholar] [CrossRef] [PubMed]
- Pisarello, M.L.; Maquirriain, M.A.; Querini, C.A. Free and Total Glycerin Analyses in Biodiesel–Diesel Blends. Energy Fuels 2018, 32, 8431–8437. [Google Scholar] [CrossRef]
- Etim, A.O.; Jisieike, C.F.; Ibrahim, T.H.; Betiku, E. Chapter 2—Biodiesel and its properties, In Production of Biodiesel from Non-Edible Sources; Arumugam, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 39–79. [Google Scholar]
Specification | Dose | Unit of Measurement |
---|---|---|
Specific consumption (per tone of seed) | ||
Nitrogen (N) | 50–60 | kg |
Phosphorus (P) | 30–60 | kg |
Potassium (K) | 40–50 | kg |
Calcium (Ca) | 50–60 | kg |
Sulfur (S) | 20–30 | kg |
Specific consumption (per 100 kg seed) | ||
N | 2 | kg |
P2O5 | 2.5 | kg |
K2O | 10 | kg |
Fertilization with N | ||
Nitrogen | 35–45 | kg ha−1 |
Mineral nitrogen (from soil) | 45–60 | kg ha−1 |
Fertilization with P | ||
P2O5 | 50–80 | kg ha−1 |
Fertilization with K | ||
K2O | 200–400 | kg ha−1 |
Fertilization with S | ||
(NH4)2SO4 | 125 | kg ha−1 |
Parameters | Unit | Test Method |
---|---|---|
Free fatty acids | % (m/m) | DIN EN ISO 660 [43] |
Water content | % (m/m) | DIN 51777-1 [44] |
Density at 15 °C | Kg m−3 | DIN EN 12185 [45] |
Phosphorus content | mg kg−1 | DIN EN 14538 [46] |
Sulfur content | mg kg−1 | DIN EN 14538 [46] |
Kinematic viscosity at 40 °C | mm2 s−1 | DIN EN ISO 3104 [47] |
Variant | Average Productions | Differences | Signification | ||
---|---|---|---|---|---|
(q ha−1) | (%) | (q ha−1) | (%) | ||
N0P0K0 (Control) | 10.98 | 100.00 | - | - | - |
N160P160K160 | 13.30 | 121.18 | +2.33 | +21.18 | - |
N320P320K320 | 38.53 | 351.03 | +27.55 | +251.03 | ** |
N480P480K480 | 47.00 | 428.25 | +36.02 | +328.25 | *** |
LD 5% | 13.48 | ||||
LD 1% | 20.41 | ||||
LD 0.1% | 32.79 |
Variant | Average Oil Production (l ha−1) | Relative Oil Production (%) | Differences ± l ha−1 | t | P% | Significance |
---|---|---|---|---|---|---|
N0P0K0 (Control) | 522.7 | 100.00 | - | - | - | - |
N160P160K160 | 629.8 | 120.51 | 107.2 | 0.44 | 70.6 | - |
N320P320K320 | 1794.4 | 343.32 | 1271.7 | 5.16 | 0.2 | ** |
N480P480K480 | 2130.8 | 407.69 | 1608.2 | 6.53 | <0.1 | *** |
Variant | Average Efficiency | Differences | Significance | ||
---|---|---|---|---|---|
(%) | (%) | (%) | (%) | ||
N0P0K0 (Control) | 43.75 | 100.00 | - | - | - |
N160P160K160 | 43.23 | 98.80 | −0.53 | −1.20 | - |
N320P320K320 | 42.80 | 97.82 | −0.95 | −2.17 | - |
N480P480K480 | 41.13 | 94.00 | −2.63 | −6.00 | ooo |
LD 5% | 1.00 | ||||
LD 1% | 1.51 | ||||
LD 0.1% | 2.43 |
Parameters | Unit | N0P0K0 (Control) | N160P160K160 | N320P320K320 | N480P480K480 |
---|---|---|---|---|---|
Values | Values | Values | Values | ||
Acidity | mg KOH g−1 | 0.099 | 0.102 | 0.092 | 0.089 |
Water content | % (m/m) | 0.03 | 0.04 | 0.03 | 0.03 |
Density at 15 °C | kg m3 | 919.9 | 920.0 | 920.6 | 919.8 |
Phosphorus content | mg kg−1 | 2.76 | 2.80 | 2.62 | 2.73 |
Sulfur content | mg kg−1 | 7.43 | 7.03 | 7.03 | 3.00 |
Kinematic viscosity at 40 °C | mm2 s−1 | 35.010 | 34.950 | 34.961 | 34.996 |
C18:1 Oleic acid | % (m/m) | 65.8 | 65.8 | 66.7 | 66.7 |
C18:2 Linoleic acid | % (m/m) | 19.3 | 19.2 | 19.3 | 19.3 |
C18:3 Linolenic acid | % (m/m) | 7.4 | 7.3 | 7.0 | 6.9 |
Parameters | Unit | N0P0K0 (Control) | N160P160K160 | N320P320K320 | N480P480K480 |
---|---|---|---|---|---|
Values | Values | Values | Values | ||
Free FAs | % (m/m) | 59.83 | 59.88 | 60.07 | 59.95 |
Water content | % (m/m) | 1.27 | 1.21 | 1.22 | 1.23 |
Density at 15 °C | kg m−3 | 919.3 | 919.4 | 918.8 | 918.6 |
Phosphorus content | mg kg−1 | 906 | 904 | 900 | 893 |
Sulfur content | mg kg−1 | 145 | 144 | 143 | 138 |
Kinematic viscosity at 40 °C | mm2 s−1 | 36.858 | 36.176 | 36.221 | 35.972 |
C16:0 Methyl Hex decanoate | % (m/m) | 6.1 | 6.2 | 6.1 | 6.1 |
C16:1 Methyl cis-Palmitoleate | % (m/m) | 0.4 | 0.4 | 0.4 | 0.4 |
C17:0 Methyl Heptadecanoate | % (m/m) | 0.1 | 0.1 | 0.1 | 0.1 |
C18:0 Methyl Octadecenoate | % (m/m) | 1.9 | 2 | 1.9 | 1.9 |
∑C20-C24 (Area%) | % (m/m) | 2.3 | 1.9 | 2.4 | 2.5 |
Parameters | Unit | Mean | Min. | Max. | SD | MSE |
---|---|---|---|---|---|---|
The quality parameters for RRO | ||||||
Acidity | mg KOH g−1 | 0.10 | 0.089 | 0.102 | 0.01 | 0.003 |
Water content | % (m/m) | 0.03 | 0.03 | 0.04 | 0.01 | 0.003 |
Density at 15 °C | kg m−3 | 920.08 | 919.8 | 920.6 | 0.36 | 0.18 |
Phosphorus content | mg kg−1 | 2.73 | 2.62 | 2.80 | 0.08 | 0.04 |
Sulfur content | mg kg−1 | 6.12 | 3 | 7.43 | 2.09 | 1.05 |
Kinematic viscosity at 40 °C | mm2 s−1 | 34.98 | 34.950 | 35.010 | 0.03 | 0.01 |
C18:1 Oleic acid | % (m/m) | 66.25 | 65.8 | 66.7 | 0.52 | 0.26 |
C18:2 Linoleic acid | % (m/m) | 19.28 | 19.2 | 19.3 | 0.05 | 0.03 |
C18:3 Linolenic acid | % (m/m) | 7.15 | 6.9 | 7.4 | 0.24 | 0.12 |
The quality parameters for FAs | ||||||
Free FAs | % (m/m) | 59.93 | 59.8 | 60.07 | 0.10 | 0.05 |
Water content | % (m/m) | 1.23 | 1.21 | 1.27 | 0.03 | 0.01 |
Density at 15 °C | kg m−3 | 919.03 | 918.6 | 919.4 | 0.39 | 0.19 |
Phosphorus content | mg kg−1 | 900.75 | 893 | 906 | 5.74 | 2.87 |
Sulfur content | mg kg−1 | 142.50 | 138 | 145 | 3.11 | 1.55 |
Kinematic viscosity at 40 °C | mm2 s−1 | 36.31 | 35.972 | 36.858 | 0.38 | 0.19 |
C16:0 Methyl Hex decanoate | % (m/m) | 6.13 | 6.1 | 6.2 | 0.05 | 0.03 |
C16:1 Methyl cis-Palmitoleate | % (m/m) | 0.40 | - | - | 0 | 0 |
C17:0 Methyl Heptadecanoate | % (m/m) | 0.10 | - | - | 0 | 0 |
C17:0 Methyl Heptadecanoate | % (m/m) | 0.10 | - | - | 0 | 0 |
∑C20–C24 (Area%) | % (m/m) | 2.28 | 1.9 | 2.5 | 0.26 | 0.13 |
Parameters | Unit | N0P0K0 (Control) | N160P160K160 | N320P320K320 | N480P480K480 |
---|---|---|---|---|---|
Values | Values | Values | Values | ||
Acid value | mg KOH g−1 | 0.130 | 0.055 | 0.150 | 0.146 |
Water content | % (m/m) | 0.014 | 0.035 | 0.041 | 0.013 |
Density at 20 °C | kg m−3 | 882.6 | 882.5 | 882.9 | 882.6 |
Phosphorus | mg kg−1 | 0.05 | 0.01 | 0.05 | 0.03 |
Sulfur content | mg kg−1 | 3.79 | 3.75 | 3.57 | 3.23 |
Kinematic viscosity at 40 °C | mm2 s−1 | 4.414 | 4.397 | 4.427 | 4.397 |
Monoglycerides | % (m/m) | 0.24 | 0.23 | 0.23 | 0.23 |
Diglycerides | % (m/m) | 0.18 | 0.15 | 0.15 | 0.15 |
Triglycerides | % (m/m) | 0.36 | 0.31 | 0.31 | 0.31 |
Free glycerol | % (m/m) | 0.001 | 0.003 | 0.003 | 0.003 |
Ester content | % (m/m) | 97.1 | 98.2 | 98.2 | 98.2 |
Parameters | Unit | N0P0K0 (Control) | N160P160K160 | N320P320K320 | N480P480K480 |
---|---|---|---|---|---|
Values | Values | Values | Values | ||
Acid value | mg KOH g−1 | 0.535 | 0.207 | 0.328 | 0.493 |
Water content | % (m/m) | 0.013 | 0.006 | 0.013 | 0.007 |
Density at 20 °C | kg m−3 | 890.3 | 881.3 | 881.8 | 882.5 |
Phosphorus | mg kg−1 | 2.68 | 0.51 | 1.27 | 1.51 |
Sulfur content | mg kg−1 | 14.4 | 11.4 | 11.8 | 11.6 |
Kinematic viscosity at 40 °C | mm2 s−1 | 4.985 | 4.479 | 4.612 | 4.558 |
Monoglycerides | % (m/m) | 0.53 | 0.37 | 0.30 | 0.22 |
Diglycerides | % (m/m) | 0.21 | 0.19 | 0.17 | 0.15 |
Triglycerides | % (m/m) | 0.23 | 0.04 | 0.19 | 0.02 |
Free glycerol | % (m/m) | 0.008 | 0.006 | 0.006 | 0.004 |
Ester content | % (m/m) | 90.8 | 95.5 | 95.5 | 97.1 |
Parameters | Unit | Mean | SD | Variation Range | MSE | |
---|---|---|---|---|---|---|
The quality parameters for BRO | ||||||
Acid value | mg KOH g | 0.12 | 0.04 | 0.16 | −0.08 | 0.02 |
Water content | % (m/m) | 0.03 | 0.01 | 0.04 | −0.01 | 0.01 |
Density at 20 °C | kg m−3 | 882.65 | 0.17 | 882.82 | −882.48 | 0.09 |
Phosphorus | mg kg−1 | 0.04 | 0.02 | 0.05 | −0.02 | 0.01 |
Sulfur content | mg kg−1 | 3.59 | 0.26 | 3.84 | −3.33 | 0.13 |
Kinematic viscosity at 40 °C | mm2 s−1 | 4.41 | 0.01 | 4.42 | −4.39 | 0.01 |
Monoglycerides | % (m/m) | 0.23 | 0.005 | 0.24 | −0.23 | 0.003 |
Diglycerides | % (m/m) | 0.6 | 0.02 | 0.17 | −0.14 | 0.01 |
Triglycerides | % (m/m) | 0.32 | 0.03 | 0.35 | −0.30 | 0.01 |
Free glycerol | % (m/m) | 0.003 | 0.001 | 0.004 | −0.002 | 0.001 |
Ester content | % (m/m) | 97.93 | 0.55 | 98.48 | −97.38 | 0.28 |
The quality parameters for BFA | ||||||
Acid value | mg KOH g−1 | 0.39 | 0.15 | 0.54 | −0.24 | 0.08 |
Water content | % (m/m) | 0.01 | 0.004 | 0.01 | −0.01 | 0.002 |
Density at 20 °C | kg m−3 | 883.98 | 4.25 | 888.22 | −879.73 | 2.12 |
Phosphorus | mg kg−1 | 1.49 | 0.90 | 2.39 | −0.59 | 0.45 |
Sulfur content | mg kg−1 | 12.30 | 1.41 | 13.71 | −10.89 | 0.70 |
Kinematic viscosity at 40 °C | mm2 s−1 | 4.66 | 0.22 | 4.88 | −4.43 | 0.11 |
Monoglycerides | % (m/m) | 0.36 | 0.13 | 0.49 | −0.22 | 0.07 |
Diglycerides | % (m/m) | 0.18 | 0.03 | 0.21 | −0.15 | 0.01 |
Triglycerides | % (m/m) | 0.12 | 0.11 | 0.23 | −0.01 | 0.05 |
Free glycerol | % (m/m) | 0.01 | 0.002 | 0.01 | −0.004 | 0.001 |
Ester content | % (m/m) | 94.73 | 2.72 | 97.45 | −92.00 | 1.36 |
Acidity | BFA (mg KOH g−1) | BRO (mg KOH g−1) | Differences (mg KOH g−1) | % |
---|---|---|---|---|
N0P0K0 (Control) | 0.535 | 0.130 | +0.405 | 100 |
N160P160K160 | 0.207 | 0.055 | +0.152 | 37.5 |
N320P320K320 | 0.150 | 0.328 | +0.178 | 44.0 |
N480P480K480 | 0.493 | 0.146 | +0.347 | 85.7 |
Average | 0.391 | 0.120 | 0.271 | 67 |
Density at 20 °C | BFA (kg m−3) | BRO (kg m−3) | Differences (kg m−3) | % |
---|---|---|---|---|
N0P0K0 (Control) | 890.3 | 882.6 | +7.7 | 100 |
N160P160K160 | 881.3 | 882.5 | −1.2 | −15.6 |
N320P320K320 | 881.8 | 882.9 | −1.1 | −14.3 |
N480P480K480 | 882.5 | 882.6 | −0.1 | −1.30 |
Average | 884.0 | 882.7 | 1.3 | 17 |
Kinematic Viscosity 40 °C | BFA (mm2 s−1) | BRO (mm2 s−1) | Differences (mm2 s−1) | % |
---|---|---|---|---|
N0P0K0 (Control) | 4.9846 | 4.4141 | +0.57 | 100 |
N180P160K160 | 4.4793 | 4.3972 | +0.08 | 14.4 |
N320P320K320 | 4.6122 | 4.4272 | +0.19 | 32.4 |
N480P480K480 | 4.5579 | 4.3972 | +0.16 | 28.2 |
Average | 4.6585 | 4.4086 | 0.25 | 44.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lovasz, A.; Sabau, N.C.; Borza, I.; Brejea, R. Production and Quality of Biodiesel under the Influence of a Rapeseed Fertilization System. Energies 2023, 16, 3728. https://doi.org/10.3390/en16093728
Lovasz A, Sabau NC, Borza I, Brejea R. Production and Quality of Biodiesel under the Influence of a Rapeseed Fertilization System. Energies. 2023; 16(9):3728. https://doi.org/10.3390/en16093728
Chicago/Turabian StyleLovasz, Andra, Nicu Cornel Sabau, Ioana Borza, and Radu Brejea. 2023. "Production and Quality of Biodiesel under the Influence of a Rapeseed Fertilization System" Energies 16, no. 9: 3728. https://doi.org/10.3390/en16093728
APA StyleLovasz, A., Sabau, N. C., Borza, I., & Brejea, R. (2023). Production and Quality of Biodiesel under the Influence of a Rapeseed Fertilization System. Energies, 16(9), 3728. https://doi.org/10.3390/en16093728