Prediction of Betavoltaic Battery Parameters
Abstract
:1. Introduction
2. Principles of Betavoltaic Cell Operation
3. Simulation of Beta Particle Energy Deposition
4. Evaluation of Betavoltaic Cell Efficiency
5. Evaluation of Coupling Efficiency
6. Calculation of Betavoltaic Cell Output Parameters
- (a)
- Calculation of the depth distribution of e-h pair generated rate by the Monte Carlo simulation.
- (b)
- Measurement of the Ic dependence on beam energy Eb in the device under study in the EBIC mode of SEM.
- (c)
- Fitting this dependence with that calculated using Equation (9) allows to determine in the real device all parameters necessary to calculate the collection probability ψ(z,L) [79,90]. It should be noted that while for the Schottky barriers only W, L and metal thickness dm should be used as fitting parameters, for p-n junctions a number of fitting parameters increases. Sometimes it could be difficult to separate their contribution to the measured dependence, for example, this happens for the surface recombination velocity and the diffusion length in the upper thin layer of p-n junction. However, this is not very important, since these parameters will be used for further calculation of very similar dependencies. As an example, Figure 10 shows the measured collected efficiency Q dependencies on beam energy Eb for the two Ni/4H-SiC Schottky barriers and GaN p-n junction together with the simulated dependencies. It can be seen that the calculated dependencies well approximate the measured ones.
- (d)
- The collection probability ψ(z,L) is calculated by a numerical solution of homogeneous diffusion or drift-diffusion equation using the obtained parameters and then Jsc can be calculated using Equation (9). For the planar structures, if the dopant concentration and diffusion length are high enough (the smaller L, the higher dopant concentration should be), as in structures presented in Figure 10, the collection efficiency can be obtained by a solution of homogeneous diffusion equation:
- (e)
- Finally, the beam current of SEM should be chosen so that the induced current Ic is equal to the calculated Jsc value. As follows from Equations (13) and (15), such choice allows the direct measurements of the open circuit voltage Voc and filling factor FF. This makes it possible to measure Voc and FF for the particular converter under the conditions close to those under beta irradiation.
7. Temperature Effect on Output Parameters of Betavoltaic Cells
8. Prediction of Radiation Damage
9. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Olsen, L.C.; Cabauy, P.; Elkind, B.J. Betavoltaic power sources. Phys. Today 2012, 65, 35–38. [Google Scholar] [CrossRef]
- Prelas, M.A.; Weaver, C.L.; Watermann, M.L.; Lukosi, E.D.; Schott, R.J.; Wisniewski, D.A. A review of nuclear batteries. Progr. Nucl. Energy 2014, 75, 117–148. [Google Scholar] [CrossRef]
- Revankar, S.T.; Adams, T.E. Advances in Betavoltaic Power Sources. J. Energy Power Sources 2014, 1, 321–329. [Google Scholar]
- Alam, T.R.; Pierson, M.A. Principles of Betavoltaic Battery Design. J. Energy Power Sources 2016, 3, 11–41. [Google Scholar]
- Spencer, M.G.; Alam, T. High power direct energy conversion by nuclear batteries. Appl. Phys. Rev. 2019, 6, 031305. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, J.; Wang, X.; Yang, Y.; Xu, P.; Li, P.; Zhang, L.; Chen, Z.; Feng, H.; Wu, W. Review—Betavoltaic Cell: The Past, Present, and Future. ECS J. Solid State Sci. Technol. 2021, 10, 027005. [Google Scholar] [CrossRef]
- Qiao, D.-Y.; Chen, X.-J.; Ren, Y.; Yuan, W.-Z. A Micro Nuclear Battery Based on SiC Schottky Barrier Diode. J. Microelectromech. Syst. 2011, 20, 685–690. [Google Scholar] [CrossRef]
- Gao, H.; Luo, S.; Zhang, H.; Wang, H.; Fu, Z. Demonstration, radiation tolerance and design on a betavoltaic micropower. Energy 2013, 51, 116–122. [Google Scholar] [CrossRef]
- Gorbatsevich, A.A.; Danilin, A.B.; Korneev, V.I.; Magomedbekov, E.P.; Molin, A.A. Analysis (Simulation) of Ni-63 Beta-Voltaic Cells Based on Silicon Solar Cells. Tech. Phys. 2016, 61, 1053–1059. [Google Scholar] [CrossRef]
- Yao, S.; Song, Z.; Wang, X.; San, H.; Yu, Y. Design and simulation of betavoltaic battery using large-grain polysilicon. Appl. Radiat. Isot. 2012, 70, 2388–2394. [Google Scholar] [CrossRef]
- Zuo, G.; Zhou, J.; Ke, G. A Simple theoretical model for 63Ni betavoltaic battery. Appl. Radiat. Isotop. 2013, 82, 119–125. [Google Scholar] [CrossRef]
- Polikarpov, M.A.; Yakimov, E.B. Study of the Properties of Silicon-Based Semiconductor Converters for BetaVoltaic Cells. Semiconductors 2015, 49, 746–748. [Google Scholar] [CrossRef]
- San, H.; Yao, S.; Wang, X.; Cheng, Z.; Chen, X. Design and simulation of GaN based Schottky betavoltaic nuclear micro-battery. Appl. Radiat. Isotop. 2013, 80, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Munson, C.E., IV.; Arif, M.; Streque, J.; Belahsene, S.; Martinez, A.; Ramdane, A.; El Gmili, Y.; Salvestrini, J.-P.; Voss, P.L.; Ougazzaden, A. Model of Ni-63 battery with realistic PIN structure. J. Appl. Phys. 2015, 118, 105101. [Google Scholar] [CrossRef]
- Gui, G.; Zhang, K.; Blanchard, J.P.; Ma, Z. Prediction of 4H–SiC betavoltaic microbattery characteristics based on practical Ni-63 sources. Appl. Radiat. Isotop. 2016, 107, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Alam, T.R.; Pierson, M.A.; Prelas, M.A. Beta particle transport and its impact on betavoltaic battery modeling. Appl. Radiat. Isotop. 2017, 130, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-M.; Lu, J.-B.; Li, X.-Y.; Xu, X.; He, R.; Wang, H.-D. A 4H–SiC betavoltaic battery based on a 63Ni source. Nucl. Sci. Tech. 2018, 29, 168. [Google Scholar] [CrossRef]
- Wu, M.; Wang, S.; Ou, Y.; Wang, W. Optimization design of betavoltaic battery based on titanium tritide and silicon using Monte Carlo code. Appl. Radiat. Isotop. 2018, 142, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Maximenko, S.I.; Moore, J.E.; Affouda, C.A.; Jenkins, P.P. Optimal Semiconductors for 3H and 63Ni Betavoltaics. Sci. Rep. 2019, 9, 10892. [Google Scholar] [CrossRef]
- Zhao, C.; Lei, L.; Liao, F.; Yuan, D.; Zhao, Y. Efficiency prediction of planar betavoltaic batteries basing on precise modeling of semiconductor units. Appl. Phys. Lett. 2020, 117, 263901. [Google Scholar] [CrossRef]
- Zheng, R.; Lu, J.; Wang, Y.; Chen, Z.; Zhang, X.; Li, X.; Liang, L.; Qin, L.; Zeng, Y.; Chen, Y.; et al. Understanding efficiency improvements of betavoltaic batteries based on 4H-SiC, GaN, and diamond. Appl. Phys. Lett. 2022, 121, 103902. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, R.; Lu, J.; Li, X.; Chen, Z.; Zhang, X.; Zhang, Y.; Liang, L.; Zeng, Y.; Qin, L.; et al. Theoretical prediction of output performance of 63NiO-Si heterojunction betavoltaic cell. Appl. Phys. Lett. 2022, 121, 083901. [Google Scholar] [CrossRef]
- Bouzid, F.; Saeed, M.A.; Carotenuto, R.; Pezzimenti, F. Design considerations on 4H-SiC-based p–n junction betavoltaic cells. Appl. Phys. A 2022, 128, 234. [Google Scholar] [CrossRef]
- Chandrashekhar, M.V.S.; Thomas, C.I.; Li, H.; Spencer, M.G.; Lal, A. Demonstration of a 4H SiC betavoltaic cell. Appl. Phys. Lett. 2006, 88, 033506. [Google Scholar] [CrossRef]
- Ulmen, B.; Desai, P.D.; Moghaddam, S.; Miley, G.H.; Masel, R.I. Development of diode junction nuclear battery using 63Ni. J. Radioanal. Nucl. Chem. 2009, 282, 601–604. [Google Scholar] [CrossRef]
- Bao, R.P.; Brand, J.; Chrisey, D.B. Betavoltaic Performance of Radiation-Hardened High-Efficiency Si Space Solar Cells. IEEE Trans. Electron Devices 2012, 59, 1286–1294. [Google Scholar] [CrossRef]
- Delfaure, C.; Pomorski, M.; de Sanoit, J.; Bergonzo, P.; Saada, S. Single crystal CVD diamond membranes for betavoltaic cells. Appl. Phys. Lett. 2016, 108, 252105. [Google Scholar] [CrossRef]
- Tarelkin, S.; Bormashov, V.; Korostylev, E.; Troschiev, S.; Teteruk, D.; Golovanov, A.; Volkov, A.; Kornilov, N.; Kuznetsov, M.; Prikhodko, D.; et al. Comparative study of different metals for Schottky barrier diamond betavoltaic power converter by EBIC technique. Phys. Status Solidi A 2016, 213, 2492–2497. [Google Scholar] [CrossRef]
- Khan, M.R.; Smith, J.R.; Tompkins, R.P.; Kelley, S.; Litz, M.; Russo, J.; Leathersich, J.; Shahedipour-Sandvik, F.; Jones, K.A.; Iliadis, A. Design and characterization of GaN p-i-n diodes for betavoltaic devices. Solid-State Electron. 2017, 136, 24–29. [Google Scholar] [CrossRef]
- Song, Z.; Zhao, C.; Liao, F.; Zhao, Y. Perovskite-Betavoltaic Cells: A Novel Application of Organic–Inorganic Hybrid Halide Perovskites. ACS Appl. Mater. Interfaces 2019, 11, 32969–32977. [Google Scholar] [CrossRef]
- Svintsov, A.A.; Yakimov, E.B.; Dorokhin, M.V.; Demina, P.B.; Kuznetsov, Y.M. Simulation of the Parameters of a Titanium-Tritide-Based Beta-Voltaic Cell. Semiconductors 2019, 53, 96–98. [Google Scholar] [CrossRef]
- Kim, D.-S.; Yoon, Y.J.; Lee, J.S.; Kang, I.M.; Lee, J.-H. Experimental and simulation study of power performance improvement of GaN PIN betavoltaic cell. Int. J. Energy Res. 2021, 45, 17622–17630. [Google Scholar] [CrossRef]
- Heuser, T.; Braun, M.; McIntyre, P.; Senesky, D.G. Electron beam irradiation of gallium nitride-on-silicon betavoltaics fabricated with a triple mesa etch. J. Appl. Phys. 2021, 130, 174503. [Google Scholar] [CrossRef]
- Alig, R.C.; Bloom, S. Electron-Hole-Pair Creation Energies in Semiconductors. Phys. Rev. Lett. 1975, 35, 1522–1525. [Google Scholar] [CrossRef]
- Beck, M.; Streb, D.; Vitzethum, M.; Kiesel, P.; Malzer, S.; Metzner, C.; Döhler, G.H. Ambipolar drift of spatially separated electrons and holes. Phys. Rev. B 2001, 64, 085307. [Google Scholar] [CrossRef]
- Bicknell, W.E. Space charge solution of Rittner photoconductor equation for a HgCdTe detector. Infrared Phys. Technol. 2002, 43, 39–50. [Google Scholar] [CrossRef]
- Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices, 3rd ed.; Wiley: Hoboken, NJ, USA, 2007; pp. 663–741. [Google Scholar]
- Thomas, C.; Portnoff, S.; Spencer, M.G. High efficiency 4H-SiC betavoltaic power sources using tritium radioisotopes. Appl. Phys. Lett. 2016, 108, 013505. [Google Scholar] [CrossRef]
- Zhang, K.; Pathak, P.; Cerrina, F.; Ma, Z. Performance Prediction of Nuclear Micro Power Sources Based on Beta Emitters. ECS Transact. 2009, 19, 45–50. [Google Scholar] [CrossRef]
- Zaitsev, S.I.; Pavlov, V.N.; Panchenko, V.Y.; Polikarpov, M.A.; Svintsov, A.A.; Yakimov, E.B. Comparison of the Efficiency of 63Ni Beta-Radiation Detectors Made from Silicon and Wide-Gap Semiconductors. J. Surf. Investig. X-Ray Synchrotron Neutron Techniq. 2014, 8, 843–845. [Google Scholar] [CrossRef]
- Yakimov, E.B. Prediction of betavoltaic battery output parameters based on SEM measurements and Monte Carlo simulation. Appl. Radiat. Isotop. 2016, 112, 98–102. [Google Scholar] [CrossRef]
- Svintsov, A.A.; Krasnov, A.A.; Polikarpov, M.A.; Polyakov, A.Y.; Yakimov, E.B. Betavoltaic battery performance: Comparison of modeling and experiment. Appl. Radiat. Isotop. 2018, 137, 184–189. [Google Scholar] [CrossRef]
- Dorokhin, M.V.; Vikhrova, O.V.; Demina, P.B.; Kalentyeva, I.L.; Vergeles, P.S.; Yakimov, E.B.; Lesnikov, V.P.; Zvonkov, B.N.; Ved, M.V.; Danilov, Y.A.; et al. GaAs diodes for TiT2-based betavoltaic cells. Appl. Radiat. Isotop. 2022, 179, 110030. [Google Scholar] [CrossRef] [PubMed]
- Svintsov, A.A.; Knyazev, M.A.; Zaitsev, S.I. Calculation of the Absorbed Electron Energy 3D Distribution by the Monte Carlo Method, Presentation of the Proximity Function by Three Parameters α, β, η and Comparison with the Experiment. Materials 2022, 15, 3888. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, Y.; Hu, R.; Yang, Y.; Wang, G.; Zhong, Z.; Luo, S. Simulations about self-absorption of tritium in titanium tritide and the energy deposition in a silicon Schottky barrier diode. Appl. Radiat. Isotop. 2012, 70, 2559–2563. [Google Scholar] [CrossRef]
- Ellis, B.L.; Fritzsche, H.; Patel, J.; Lang, J.; Suppiah, S. Titanium Tritide Films as Betavoltaic Power Sources. Fusion Sci. Technol. 2017, 71, 660–665. [Google Scholar] [CrossRef]
- Alam, T.R.; Spencer, M.G.; Prelas, M.A.; Pierson, M.A. Design and optimization of radioisotope sources for betavoltaic batteries. Int. J. Energy Res. 2018, 42, 2564–2573. [Google Scholar] [CrossRef]
- Russo, J.; Litz, M.; Ray, W., II.; Bayne, S.; Rosen, G.M.; Cho, H.; Yu, J.; Bigio, D.I.; Thomas, C.; Alam, T.R. Demonstration of a Tritiated Nitroxide Nuclear Battery. Appl. Radiat. Isotop. 2019, 144, 93–103. [Google Scholar] [CrossRef]
- Yakimov, E.B.; Polyakov, A.Y.; Shchemerov, I.V.; Smirnov, N.B.; Vasilev, A.A.; Vergeles, P.S.; Yakimov, E.E.; Chernykh, A.V.; Ren, F.; Pearton, S.J. Experimental estimation of electron–hole pair creation energy in β-Ga2O3. Appl. Phys. Lett. 2021, 118, 202106. [Google Scholar] [CrossRef]
- Pavlov, V.N.; Panchenko, V.Y.; Polikarpov, M.A.; Svintsov, A.A.; Yakimov, E.B. Simulation of the Current Induced by 63Ni Beta Radiation. J. Surf. Investig. X-Ray Synchrotron Neutron Techniq. 2013, 7, 852–855. [Google Scholar] [CrossRef]
- Ryan, R.D. Bandgap dependence of the average energy required for electron-hole pair creation in GaAs and in Si. Nucl. Instrum. Methods 1974, 120, 201. [Google Scholar] [CrossRef]
- Olsen, L.C. Review of betavoltaic energy conversion. In Proceedings of the 12th Space Photovoltaic Research and Technology Conference, Cleveland, OH, USA, 20–22 October 1992; pp. 256–267. [Google Scholar]
- Klein, C.A. Bandgap dependence and related features of radiation ionization energies in semiconductors. J. Appl. Phys. 1968, 39, 2029–2038. [Google Scholar] [CrossRef]
- Chandrashekhar, M.V.S.; Thomas, C.I.; Spencer, M.G. Measurement of the mean electron-hole pair ionization energy in 4H SiC. Appl. Phys. Lett. 2006, 89, 042113. [Google Scholar] [CrossRef]
- Lebedev, A.A.; Ivanov, A.M.; Strokan, N.B. Radiation resistance of SiC and nuclearradiation detectors based on SiC films. Semiconductors 2004, 38, 125–147. [Google Scholar] [CrossRef]
- Wrbanek, J.D.; Wrbanek, S.Y.; Fralick, G.C.; Chen, L.Y. Micro-Fabricated Solid State Radiation Detectors for Active Personal Dosimetry; Report No NASA/TM 214674; NASA: Washington, DC, USA, 2007. [Google Scholar]
- Liu, Y.; Tang, X.; Xu, Z.; Hong, L.; Chen, D. Experimental and theoretical investigation of temperature effects on an interbedded betavoltaic employing epitaxial Si and bidirectional 63Ni. Appl. Radiat. Isotop. 2014, 94, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Zhang, J. Design and simulation of high conversion efficiency betavoltaic battery based on a stacked multilayer structure. AIP Adv. 2019, 9, 075124. [Google Scholar] [CrossRef]
- Lee, I.-H.; Polyakov, A.Y.; Smirnov, N.B.; Yakimov, E.B.; Tarelkin, S.A.; Turutin, A.V.; Shemerov, I.V.; Pearton, S.J. Electron traps as major recombination centers in n-GaN films grown by metalorganic chemical vapor deposition. Appl. Phys. Express 2016, 9, 061002. [Google Scholar] [CrossRef]
- Lee, I.-H.; Polyakov, A.Y.; Smirnov, N.B.; Yakimov, E.B.; Tarelkin, S.A.; Turutin, A.V.; Shemerov, I.V.; Pearton, S.J. Studies of deep level centers determining the diffusion length in epitaxial layers and crystals of undoped n-GaN. J. Appl. Phys. 2016, 119, 205109. [Google Scholar] [CrossRef]
- Polyakov, A.Y.; Smirnov, N.B.; Yakimov, E.B.; Tarelkin, S.A.; Turutin, A.V.; Shemerov, I.V.; Pearton, S.J.; Bae, K.-B.; Lee, I.-H. Deep traps determining the non-radiative lifetime and defect band yellow luminescence in n-GaN. J. Alloys Compd. 2016, 686, 1044–1052. [Google Scholar] [CrossRef]
- Tang, X.B.; Liu, Y.P.; Ding, D.; Chen, D. Optimization design of GaN betavoltaic microbattery. Sci. China Technol. Sci. 2012, 55, 659–664. [Google Scholar] [CrossRef]
- Belghachi, A.; Bozkurt, K.; Ozdemir, O.; Avci, O. Enhancement of Ni-63 planar source efficiency for betavoltaic batteries. J. Phys. D Appl. Phys. 2020, 53, 445501. [Google Scholar] [CrossRef]
- Bormashov, V.S.; Troschiev, S.Y.; Tarelkin, S.A.; Volkov, A.P.; Teteruk, D.V.; Golovanov, A.V.; Kuznetsov, M.S.; Kornilov, N.V.; Terentiev, S.A.; Blank, V.D. High power density nuclear battery prototype based on diamond Schottky Diodes. Diamond Relat. Mater. 2018, 84, 41–47. [Google Scholar] [CrossRef]
- Yakimov, E.B.; Polyakov, A.Y.; Pearton, S.J. Betavoltaic cell based on Ni/β-Ga2O3 and 63Ni source. J. Vac. Sci. Technol. A 2022, 40, 010401. [Google Scholar] [CrossRef]
- Murphy, J.W.; Voss, L.F.; Frye, C.D.; Shao, Q.; Kazkaz, K.; Stoyer, M.A.; Henderson, R.A.; Nikolic, R.J. Design considerations for three-dimensional betavoltaics. AIP Adv. 2019, 9, 065208. [Google Scholar] [CrossRef]
- Sun, W.; Kherani, N.P.; Hirschman, K.D.; Gadeken, L.L.; Fauchet, P.M. Three-dimensional porous silicon pen diode for betavoltaics and photovoltaics. Adv. Mater. 2005, 17, 1230–1233. [Google Scholar] [CrossRef]
- Yakimov, E.B.; Polikarpov, M.A.; Krasnov, A.A. Prediction of Betavoltaic Battery Output Parameters Based on SEM Measurements. J. Nano Electron. Phys. 2016, 8, 04062. [Google Scholar] [CrossRef]
- Krasnov, A.A.; Starkov, V.V.; Legotin, S.A.; Rabinovich, O.I.; Didenko, S.I.; Murashev, V.N.; Cheverikin, V.V.; Yakimov, E.B.; Fedulova, N.A.; Rogozev, B.I.; et al. Development of betavoltaic cell technology production based on microchannel silicon and its electrical parameters evaluation. Appl. Radiat. Isotop. 2017, 121, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Wagner, D.; Novog, D.R.; LaPierre, R.R. Simulation and optimization of current generation in gallium phosphide nanowire betavoltaic devices. J. Appl. Phys. 2019, 125, 165704. [Google Scholar] [CrossRef]
- McNamee, S.; Wagner, D.; Fiordaliso, E.M.; Novog, D.; LaPierre, R.R. GaP nanowire betavoltaic device. Nanotechnology 2019, 30, 075401. [Google Scholar] [CrossRef]
- Wagner, D.; Novog, D.R.; LaPierre, R.R. Design and optimization of nanowire betavoltaic generators. J. Appl. Phys. 2020, 127, 244303. [Google Scholar] [CrossRef]
- Wagner, D.; Novog, D.R.; LaPierre, R.R. Genetic Algorithm Optimization of Core-Shell Nanowire Betavoltaic Generators. Nanotechnology 2020, 31, 455403. [Google Scholar] [CrossRef]
- Meier, D.E.; Garnov, A.Y.; Robertson, J.D.; Kwon, J.W.; Wacharasindhu, T. Production of 35S for a liquid semiconductor betavoltaic. J. Radioanal. Nucl. Chem. 2009, 282, 271–274. [Google Scholar] [CrossRef]
- Movahedian, Z.; Tavakoli-Anbaran, H. Design and optimization of Si-35S betavoltaic liquid nuclear battery in micro dimensions in order to build. Ann. Nucl. Energy 2020, 143, 107483. [Google Scholar] [CrossRef]
- Wacharasindhu, T.; Nullmeyer, B.R.; Kwon, J.W.; Robertson, J.D.; Garnov, A.Y. Mechanisms Leading to Losses in Conventional Betavoltaics and Evolution: Utilizing Composite Semiconductor with Infused Radioisotope for Efficiency Improvement. J. Microelectromech. Syst. 2014, 23, 56–65. [Google Scholar] [CrossRef]
- Donolato, C. A reciprocity theorem for charge collection. Appl. Phys. Lett. 1985, 46, 270–272. [Google Scholar] [CrossRef]
- Donolato, C. An alternative proof of the generalized reciprocity theorem for charge collection. J. Appl. Phys. 1989, 66, 4524–4525. [Google Scholar] [CrossRef]
- Yakimov, E.B. What is the real value of diffusion length in GaN? J. Alloys Compd. 2015, 627, 344–351. [Google Scholar] [CrossRef]
- Yakimov, E.B. Diffusion length measurements in GaN. Jpn. J. Appl. Phys. 2016, 55, 05FH04. [Google Scholar] [CrossRef]
- Yakimov, E.B.; Polyakov, A.Y.; Smirnov, N.B.; Shchemerov, I.V.; Yang, J.; Ren, F.; Yang, G.; Kim, J.; Pearton, S.J. Diffusion length of non-equilibrium minority charge carriers in β-Ga2O3 measured by electron beam induced current. J. Appl. Phys. 2018, 123, 185704. [Google Scholar] [CrossRef]
- Zhao, C.; Liao, F.; Liu, K.; Zhao, Y. Breaking the myth: Wide-bandgap semiconductors not always the best for betavoltaic batteries. Appl. Phys. Lett. 2021, 119, 153904. [Google Scholar] [CrossRef]
- Green, M.A. Accuracy of analytical expressions for solar cell fill factors. Solar Cells 1982, 7, 337–340. [Google Scholar] [CrossRef]
- Li, X.-Y.; Ren, Y.; Chen, X.-J.; Qiao, D.-Y.; Yuan, W.-Z. 63Ni schottky barrier nuclear battery of 4H-SiC. J. Radioanal. Nucl. Chem. 2011, 287, 173–176. [Google Scholar] [CrossRef]
- Wang, G.; Yao, C. Gallium Nitride for nuclear batteries. Adv. Mater. Res. 2012, 343–344, 56–61. [Google Scholar] [CrossRef]
- Kuruoğlu, N.A.; Ozdemir, O.; Bozkurt, K. Betavoltaic study of a GaN p-i-n structure grown by metal-organic vapour phase epitaxy with a Ni-63 source. Thin Solid Film. 2017, 636, 746–750. [Google Scholar] [CrossRef]
- Aydin, S.; Kam, E. Investigation of nickel-63 radioisotope-powered GaN betavoltaic nuclear battery. Int. J. Energy Res. 2019, 43, 8725–8738. [Google Scholar] [CrossRef]
- Eiting, C.J.; Krishnamoorthy, V.; Rodgers, S.; George, T.; Robertson, J.D.; Brockman, J. Demonstration of a radiation resistant, high efficiency SiC betavoltaic. Appl. Phys. Lett. 2006, 88, 064101. [Google Scholar] [CrossRef]
- Cheng, Z.J.; San, H.S.; Feng, Z.H.; Liu, B.; Chen, X.Y. High open-circuit voltage betavoltaic cell based on GaN pin homojunction. Electr. Lett. 2011, 47, 720–722. [Google Scholar] [CrossRef]
- Yakimov, E.B. Study of Wide-Gap Semiconductors Using Electron-Beam Induced Current Method. Crystallogr. Rep. 2021, 66, 581–593. [Google Scholar] [CrossRef]
- Wang, G.; Hu, R.; Wei, H.; Zhang, H.; Yang, Y.; Xiong, X.; Liu, G.; Luo, S. The effect of temperature changes on electrical performance of the betavoltaic cell. Appl. Radiat. Isot. 2010, 68, 2214–2217. [Google Scholar] [CrossRef]
- Butera, S.; Lioliou, G.; Krysa, A.B.; Barnett, A.M. Temperature dependence of an AlInP 63Ni betavoltaic cell. J. Appl. Phys. 2016, 120, 144501. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, X.; Jin, Z.; Tang, X. Temperature dependence of 63Ni–Si betavoltaic microbattery. Appl. Radiat. Isot. 2018, 135, 47–56. [Google Scholar] [CrossRef]
- O’Connor, A.; Manuel, M.V.; Shaw, H. An extended-temperature, volumetric source model for betavoltaic power generation. Trans. Am. Nucl. Soc. 2019, 121, 542–545. [Google Scholar] [CrossRef]
- Novikov, S.G.; Berintsev, A.V.; Alekseev, A.S.; Somov, A.I.; Svetukhin, V.V. Investigation of the Temperature Effect on the Output Parameters of Radioisotope Sources of Electricity Based on Double Energy Conversion of Radiative Decay. Semiconductors 2019, 53, 2040–2043. [Google Scholar] [CrossRef]
- Yakimov, E.B. Low energy electron irradiation effect on optical and electrical properties of InGaN/GaN multiple quantum well structures. Int. J. Nanoparticles 2013, 6, 191–200. [Google Scholar] [CrossRef]
- Chen, B.; Chen, J.; Yao, Y.; Sekiguchi, T.; Matsuhata, H.; Okumura, H. In situ monitoring of stacking fault formation and its carrier lifetime mediation in p-type 4H-SiC. Appl. Phys. Lett. 2014, 105, 042104. [Google Scholar] [CrossRef]
- Orlov, V.I.; Regula, G.; Yakimov, E.B. Low temperature stacking fault nucleation and expansion from stress concentrators in 4H-SiC. Acta Mater. 2017, 139, 155–162. [Google Scholar] [CrossRef]
- Yakimov, E.B.; Yakimov, E.E.; Orlov, V.I.; Gogova, D. Some new insights into the impact of annealing on single stacking faults in 4H-SiC. Superlattices Microstruct. 2018, 120, 7–14. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Sudo, M.; Yao, Y.-Z.; Sugawara, Y.; Kato, M. Expansion of a single Shockley stacking fault in a 4H-SiC (11-20) epitaxial layer caused by electron beam irradiation. J. Appl. Phys. 2018, 123, 225101. [Google Scholar] [CrossRef]
- Yakimov, E.E.; Yakimov, E.B. Radiation-enhanced dislocation glide in 4H-SiC at low temperatures. J. Alloys Compd. 2020, 837, 155470. [Google Scholar] [CrossRef]
- Yakimov, E.E.; Yakimov, E.B. Cathodoluminescence and EBIC investigations of stacking fault expansion in 4H-SiC due to e-beam irradiation at fixed points. J. Phys. D Appl. Phys. 2022, 55, 245101. [Google Scholar] [CrossRef]
- Yakimov, E.E.; Yakimov, E.B. Kink Migration along 30° Si-Core Partial Dislocations in 4H-SiC. Phys. Status Solidi A 2022, 219, 2200119. [Google Scholar] [CrossRef]
- Yakimov, E.B.; Vergeles, P.S.; Polyakov, A.Y.; Lee, I.-H.; Pearton, S.J. Movement of basal plane dislocations in GaN during electron beam Irradiation. Appl. Phys. Lett. 2015, 106, 132101. [Google Scholar] [CrossRef]
- Yakimov, E.B.; Vergeles, P.S.; Polyakov, A.Y.; Lee, I.-H.; Pearton, S.J. Radiation enhanced basal plane dislocation glide in GaN. Jpn. J. Appl. Phys. 2016, 55, 05FM03. [Google Scholar] [CrossRef]
- Vergeles, P.S.; Orlov, V.I.; Polyakov, A.Y.; Yakimov, E.B.; Kim, T.; Lee, I.-H. Recombination and optical properties of dislocations gliding at room temperature in GaN under applied stress. J. Alloy. Compd. 2019, 776, 181–186. [Google Scholar] [CrossRef]
- Amano, H.; Kito, M.; Hiramatsu, K.; Akasaki, I. P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI). Jpn. J. Appl. Phys. 1989, 28, L2112–L2114. [Google Scholar] [CrossRef]
- Seager, C.H.; Myers, S.M.; Vaandrager, B.; Nelson, J.S. Isotope effects on the rate of electron-beam dissociation of Mg–H complexes in GaN. Appl. Phys. Lett. 2002, 80, 2693–2695. [Google Scholar] [CrossRef]
- Gelhausen, O.; Klein, H.N.; Phillips, M.R.; Goldys, E.M. Influence of low-energy electron beam irradiation on defects in activated Mg-doped GaN. Appl. Phys. Lett. 2002, 81, 3747–3749. [Google Scholar] [CrossRef]
- Juday, R.; Fischer, A.M.; Huang, J.; Huang, J.Y.; Kim, H.J.; Ryou, J.-H.; Dupuis, R.D.; Bour, D.P.; Ponce, F.A. Hydrogen-related, deeply bound excitons in Mg-doped GaN films. Appl. Phys. Lett. 2013, 103, 082103. [Google Scholar] [CrossRef]
- Feklisova, O.V.; Yakimov, E.B.; Yarykin, N.A. Effect of Irradiation in SEM on Electrical Properties of Silicon. Mater. Sci. Engineer. 1996, 42, 274–276. [Google Scholar] [CrossRef]
- Gfrörer, O.; Gemmer, C.; Off, J.; Im, J.S.; Scholz, F.; Hangleiter, A. Direct Observation of Pyroelectric Fields in InGaN/GaN and AlGaN/GaN Heterostructures. Phys. Status Solidi B 1999, 216, 405–408. [Google Scholar] [CrossRef]
- Shmidt, N.M.; Vergeles, P.S.; Yakimov, E.E.; Yakimov, E.B. Effect of low-energy electron irradiation on the cathodoluminescence of multiple quantum well (MQW) InGaN/GaN structures. Solid State Commun. 2011, 151, 208–211. [Google Scholar] [CrossRef]
- Nykänen, H.; Suihkonen, S.; Kilanski, L.; Sopanen, M.; Tuomisto, F. Low energy electron beam induced vacancy activation in GaN. Low energy electron beam induced vacancy activation in GaN. Appl. Phys. Lett. 2012, 100, 122105. [Google Scholar] [CrossRef]
- Yakimov, E.B.; Vergeles, P.S.; Polyakov, A.Y.; Cho, H.-S.; Jang, L.-W.; Lee, I.-H. Microcathodoluminescence spectra evolution for planar and nanopillar multi-quantum-well GaN-based structures as a function of electron irradiation dose. J. Vac. Sci. Technol. B 2014, 32, 011207. [Google Scholar] [CrossRef]
- Yakimov, E.B.; Vergeles, P.S.; Polyakov, A.Y.; Jeon, D.-W.; Lee, I.-H. Low Energy Electron Beam Irradiation Effect on Optical Properties of Nanopillar MQW InGaN/GaN Structures. AIP Conf. Proc. 2014, 1583, 268–271. [Google Scholar] [CrossRef]
- Cazaux, J. Scenario for time evolution of insulator charging under various focused electron irradiations. J. Appl. Phys. 2004, 95, 731–742. [Google Scholar] [CrossRef]
- Di Santo, G.; Coluzza, C.; Flammini, R.; Zanoni, R.; Decker, F. Spatial, energy, and time-dependent study of surface charging using spectroscopy and microscopy techniques. J. Appl. Phys. 2007, 102, 114505. [Google Scholar] [CrossRef]
- Jbara, O.; Fakhfakh, S.; Belhaj, M.; Rondot, S.; Hadjadj, A.; Patat, J.M. Charging effects of PET under electron beam irradiation in a SEM. J. Phys. D Appl. Phys. 2008, 41, 245504. [Google Scholar] [CrossRef]
- Cornet, N.; Goeuriot, D.; Guerret-Piecourt, C.; Juve, D.; Treheux, D.; Touzin, M.; Fitting, H.-J. Electron beam charging of insulators with surface layer and leakage currents. J. Appl. Phys. 2008, 103, 064110. [Google Scholar] [CrossRef]
- Rau, E.I.; Tatarintsev, A.A. Modification of the model of charging dielectrics under electron beam irradiation. J. Appl. Phys. 2022, 132, 184102. [Google Scholar] [CrossRef]
- Oldham, T.R.; McLean, F.B. Total Ionizing Dose Effects in MOS Oxides and Devices. IEEE Trans. Nucl. Sci. 2003, 50, 483–498. [Google Scholar] [CrossRef]
- Schwank, J.R.; Shaneyfelt, M.R.; Fleetwood, D.M.; Felix, J.A.; Dodd, P.E.; Paillet, P.; Ferlet-Cavrois, V. Radiation Effects in MOS Oxides. IEEE Trans. Nucl. Sci. 2008, 55, 1833–1853. [Google Scholar] [CrossRef]
- Vergeles, P.S.; Kulanchikov, Y.O.; Yakimov, E.B. Charging Effects in Al-SiO2-p-Si Structures after Low-Energy Electron Beam Irradiation. J. Electron. Mater. 2020, 49, 5178–5183. [Google Scholar] [CrossRef]
- Lei, Y.; Yang, Y.; Liu, Y.; Li, H.; Wang, G.; Hu, R.; Xiong, X.; Luo, S. The radiation damage of crystalline silicon PN diode in tritium beta-voltaic battery. Appl. Radiat. Isotop. 2014, 90, 165–169. [Google Scholar] [CrossRef] [PubMed]
Si | GaAs | 4H-SiC | GaN | Ga2O3 | Diamond | |
---|---|---|---|---|---|---|
Ei | 3.65 eV | 4.5 eV | 8.23 eV | 9.59 eV | 15.6 eV | 12.4 eV |
z0, 63Ni | 3.3 μm | 1.5 μm | 2.5 μm | 1.2 μm | 1.3 μm | 2.3 μm |
z0, TiT2 | 300 nm | 130 nm | 230 nm | 115 nm | 120 nm | 210 nm |
Si | GaAs | 4H-SiC | GaN | Ga2O3 | Diamond | |
---|---|---|---|---|---|---|
Ei | 3.65 eV | 4.5 eV | 8.23 eV | 9.59 eV | 15.6 eV | 12.4 eV |
Jsc, 63Ni | 1.31 × 10−7 A/cm2 | 9.32 × 10−8 A/cm2 | 6.05 × 10−8 A/cm2 | 4.49 × 10−8 A/cm2 | 2.84 × 10−8 A/cm2 | 4.28 × 10−8 A/cm2 |
Jsc, TiT2 | 3.22 × 10−7 A/cm2 | 2.19 × 10−7 A/cm2 | 1.47 × 10−7 A/cm2 | 1.06 × 10−7 A/cm2 | 6.62 × 10−8 A/cm2 | 1.06 × 10−7 A/cm2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakimov, E.B. Prediction of Betavoltaic Battery Parameters. Energies 2023, 16, 3740. https://doi.org/10.3390/en16093740
Yakimov EB. Prediction of Betavoltaic Battery Parameters. Energies. 2023; 16(9):3740. https://doi.org/10.3390/en16093740
Chicago/Turabian StyleYakimov, Eugene B. 2023. "Prediction of Betavoltaic Battery Parameters" Energies 16, no. 9: 3740. https://doi.org/10.3390/en16093740
APA StyleYakimov, E. B. (2023). Prediction of Betavoltaic Battery Parameters. Energies, 16(9), 3740. https://doi.org/10.3390/en16093740