Economic Feasibility Study of the Production of Biogas, Coke and Biofuels from the Organic Fraction of Municipal Waste Using Pyrolysis
Abstract
:1. Introduction
2. Materials and Procedures
2.1. Materials
2.1.1. Composition of Urban Solid Waste
2.1.2. Organic Fraction (Organic Matter + Paper)
2.1.3. Characterization of the Fraction (Organic Matter + Paper)
2.2. Pyrolysis of Materials
2.2.1. The Influence of Temperature on the Pyrolysis Process
2.2.2. The Impact of the Catalyst on Pyrolysis
2.3. Management and Project Assessment Criteria
2.4. Calculation Methodology
2.4.1. Sieving
2.4.2. Drying
2.4.3. Crusher
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simões, A.L.G.; Polastri, P.; Vereschini, D.T.; Gimenes, M.L.; Schalch, V. Panoama Geral dos Residuos Sólifos Urbanos no Âmbito Mundial 2019; Derpatamento de Egenharia Química, Universidade Estadual de Mirangá: Maringá, Brazil, 2019. [Google Scholar]
- Pinto, W.L.H.; Moraes, C.S.B.; Capparol, D.C.A.; Oliveira, J.C.; Ansanelli, S.L.M.; Dilphine, L.M. Prosposta de Indicadores de Sustentabilidade para Gestão De Residuos Solidos. Braz. Appl. Sci. Rev. 2020, 4, 70–111. [Google Scholar] [CrossRef]
- Filho, C.; Appelqvist, B. O Futuro do Setor de Gestão de Resíduos: Tendências, Oportunidades e Desafios a Década; Equipe da ISWA: Paraná, Brazil, 2020. [Google Scholar]
- Lima, U.T.G.M.; da Silva, G.L.; Sobral, M.D.C.M. DA GESTÃO DE RESÍDUOS À ECONOMIA CIRCULAR: MAXIMIZANDO O VALOR DO RESÍDUO. In Proceedings of the 5º Congresso Sul-americano de Resíduos Sólidos e Sustentabilidade, Gramado, Brazil, 18–20 May 2022. [Google Scholar]
- Ness, D. Sustainable urban infrastructure in China: Towards a Factor 10 improvement in resource productivity through integrated infrastructure systems. Int. J. Sustain. Dev. World Ecol. 2018, 15, 288–3011. [Google Scholar]
- Geisendorf, S.; Pietrulla, F. The circular economy and circular economic concepts—A literature analysis and redefinition. Thunderbird Int. Bus. Rev. 2017, 60, 265485. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy e A new sustainability paradigm? J. Clean. Prod. 2016, 143, 757–768. [Google Scholar] [CrossRef]
- Kirchherr, J.; Reike, D.; Hekkert, M.; De Oliveira, I.A. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Zago, V.C.P.; de Vasconcelos Barros, R.T. Management of solid organic in Brazil: From legal ordinance to reality. Eng. Sanit. Ambient. 2019, 24, 219–228. [Google Scholar] [CrossRef]
- Meireles, J.F. O Planejamento Urbano na Gestão de Resíduos Sólidos e Mudanças Climáticas. Pleiade 2023, 17, 5–12. [Google Scholar]
- Fernanda Greco Laureano. Como os municípios cobram pelo lixo? Um diagnóstico sobre a taxa para manejo de resíduos sólidos urbanos dos municípios do Rio de Janeiro. Rev. Bras. De Planej. E Desenvolv. 2023, 12, 28–54. [Google Scholar] [CrossRef]
- Federação das Indústrias do Estado d, o Rio De Janeiro—Firjan. Índice Firjan De Gestão Fiscal 2019; Firjan: Rio de Janeiro, Brazil, 2012–2019; Bienal; Available online: https://www.firjan.com.br/data/files/8F/50/19/81/B2E1E610B71B21E6A8A809C2/IFGF-2019_estudo-completo.pdf (accessed on 20 May 2022).
- Dourado, J.; Toneto Junior, R.; Saiani, C.C.S. Resíduos Sólidos no Brasil: Oportunidades e Desafios da lei Federal nº 12.305 (lei de Resíduos Sólidos); Manole: Rio de Janeiro, Brazil, 2014. [Google Scholar]
- de Miranda, R.L.; Soares, A.R. A look at the sustainability of the municipalities of rondônia through the lens of municipal solid waste management. Rev. Livre Sustentabilidade Empreendedorismo 2023, 8, 187–210. [Google Scholar]
- ABRELPE-Associação Brasileira De Empresas De Limpeza Pública E Resíduos Especiais. Panorama de Resíduos Sólidos no Brasil 2012. Available online: http://a3p.jbrj.gov.br/pdf/ABRELPE%20%20Panorama2012.pdf (accessed on 20 May 2022).
- Lohri, C.R.; Diener, S.; Zabaleta, I.; Mertenat, A.; Zurbrügg, C. Tecnologias de tra-tamento de biorresíduos sólidos urbanos para criação de produtos de valor: Uma revisão com foco em cenários de baixa e média renda. Rev. Environ. Sci. Biotechnol. 2017, 16, 81–130. [Google Scholar] [CrossRef]
- Ding, Y.; Zhao, J.; Liu, J.-W.; Zhou, J.; Cheng, L.; Zhao, J.; Shao, Z.; Iris, Ç.; Pan, B.; Li, X.; et al. Uma revisão dos resíduos sólidos urbanos (RSU) da China e comparação com regiões interna-cionais: Gestão e tecnologias em tratamento e utilização de recursos. J. Produção Mais Limpa 2021, 293, 126144. [Google Scholar]
- Miskolczi, N.; Ates, F.; Borsodi, N. Comparação da pirólise de resíduos reais (RSU e MPW) em reator em batelada sobre diferentes catalisadores. Parte II: Propriedades de contaminantes, carvão e óleo de pirólise. Tecnol. Biorecursos 2013, 144, 370–379. [Google Scholar]
- Leme, G.R.; Fernandes, D.M.; Lopes, C.L. Use of Pyrolysis for Waste Treatment in Brazil; Universidade Tecnológica Federal Do Paraná, Medianeira: Pará, Brazil, 2017. [Google Scholar]
- Hauschild, T.; Basegio, T.; Kappler, G.; Bender, F.; Bergmam, C. Produção de Òleo por Meio de Pirólise Catalítica. Available online: https://www.editorarealize.com.br/editora/anais/conepetro/2021/TRABALHO_EV147_MD1_SA_ID216_17052021172851.pdf (accessed on 20 May 2022).
- de Oliveira, L.F.N. Análise Da Viabilidade Econômica E Especificações Técnicas De Um Processo De Pirólise Lenta 2018; Universidade Federal Rural do Semi-Árido: Mossoró, Brazil, 2018. [Google Scholar]
- Ning, S.-K.; Hung, M.-C.; Chang, B.Y.-H.; Wan, H.-P.; Lee, H.-T.; Shih, R.-F. Benefit assessment of cost, energy, and environment for biomass pyrolysis oil. J. Clean. Prod. 2013, 59, 141–149. [Google Scholar] [CrossRef]
- Amaral, A.R.; Bernar, L.P.; Ferreira, C.C.; Pereira, A.M.; Dos Santos, W.G.; Pereira, L.M.; Santos, M.C.; Assunção, F.P.d.C.; Mendonça, N.M.; Pereira, J.A.R.; et al. Economic Analysis of Thermal–Catalytic Process of Palm Oil (Elaeis guineesensis, Jacq) and Soap Phase Residue from Neutralization Process of Palm Oil (Elaeis guineensis, Jacq). Energies 2023, 16, 492. [Google Scholar] [CrossRef]
- Bittencourt, F.P. Simulação E Análise Técnico-Econômica De Uma Planta De Pirólise Multipropósito Para Obtenção De Bio-Óleo A Partir De Diferentes Biomassas; Universidade Federal Fluminense: Niterói, Brazil, 2018. [Google Scholar]
- da Mota Silveira, A.J. Viabilidade Técnica da Pirólise da Biomassa bo Coco: Produção de Bioóleo, Biocarvão e Biogás; Universidade Federal de Alagoas: Rio Largo, Brazil, 2018. [Google Scholar]
- Martins, L.G.D. Análise Da Viabilidade Técnico E Conômic A Para Implantação De Uma Unidade De Processamento De Polímeros, Provenientes Dos Resíduos S Ólid Os Urbanos, Através Da Pirólise; Universidade Estadual Paulista: São Paualo, Brazil, 2021. [Google Scholar]
- Almerindo, G.I.; Rossol, H.V. Analysis of the economic feasibility of industrial production of charcoal from malt bagasse. Eng. Sanit. Ambient. 2023, 28, e20220183. [Google Scholar] [CrossRef]
- Assunção, F.P.D.C.; Pereira, D.O.; Silva, J.C.C.D.; Ferreira, J.F.H.; Bezerra, K.C.A.; Bernar, L.P.; Ferreira, C.C.; Costa, A.F.d.F.; Pereira, L.M.; Paz, S.P.A.d.; et al. A Systematic Approach to Thermochemical Treatment of Municipal Household Solid Waste into Valuable Products: Analysis of Routes, Gravimetric Analysis, Pre-Treatment of Solid Mixtures, Thermochemical Processes, and Characterization of Bio-Oils and Bio-Adsorbents. Energies 2022, 15, 7971. [Google Scholar] [CrossRef]
- Project Management Institute, Inc. Available online: https://www.pmi.org (accessed on 5 January 2023).
- Brigham, E.; Gapenski, L.; Ehrhardt, M.C. Administração Financeira: Teoria e Prática; Atlas: São Paulo, Brazil, 2001. [Google Scholar]
- Amaral, A.R.; Bernar, L.P.; Ferreira, C.C.; de Oliveira, R.M.; Pereira, A.M.; Pereira, L.M.; Santos, M.C.; Assunção, F.P.d.C.; Bezerra, K.C.A.; Almeida, H.d.S.; et al. Economic Feasibility Assessment of the Thermal Catalytic Process of Wastes: Açaí Seeds (Euterpe oleracea) and Scum from Grease Traps. Energies 2022, 15, 7718. [Google Scholar] [CrossRef]
- Colpo, I.; Medeiros, F.S.B.; Weise, A.D. Análise De Retorno Do Investimento: Um Estudo Aplicado Em Uma Microempresa. RACI Getúlio Vargas 2016, 10, 21. [Google Scholar]
- Bruni, A.L.; Famá, R.; de Oliveira Siqueira, J. Análise do riso na avaliação de projetos de investimentos: Uma placa do método de monte carlo. Cad. De Pesuisas Em. Adm. 1998, 6, 62–74. [Google Scholar]
- Goret, P.P.; Spritzer, I.M.A.; Zotes, L.P. Viabilidade Economica-Financeira, 4th ed.; Editora FVG; Available online: https://editora.fgv.br/produto/viabilidade-economico-financeira-de-projetos-2480 (accessed on 15 June 2023).
- da Silva, M.C.; Santos, G.O.D. Densidade Aparente De Resíduos Sólidos Recém Coletados; Institutor Federeal de Educação, Ciência e Tecnologia do Ceará (IFCE): Fotaleza, Brazil, 2010. [Google Scholar]
- Copyright Petrobras. 2022. Available online: https://precos.petrobras.com.br/web/precos-dos-combustiveis/w/glp/pa (accessed on 15 June 2023).
- Garré, S.O.; Luz, M.L.G.S.; Luz, C.A.S.; Gadotti, I.; Navroski, R. Economic analysis for implantation of a composting plant of urban organic residue. Rev. ESPACIOS 2017, 38, 17. [Google Scholar]
- Nettle—Máquinas Inteligentes. Available online: https://nettle.com.br/produtos/misturador-ribbon-blender-nt5000l-duplicate-1/ (accessed on 10 June 2023).
- Equatorial Energia, Belém-Pará-Brasil. Available online: https://pa.equatorialenergia.com.br/informacoes-gerais/valor-de-tarifas-e-servicos/ (accessed on 15 May 2023).
- Trapp. Available online: https://www.trapp.com.br/pt/produto/tr-600e/ (accessed on 10 June 2023).
- 7LAB Equipamentos E Servicos. Available online: https://www.7lab.com.br/equipamentos-para-laboratorio/estufa-de-secagem-e-esterilizacao/estufa-de-secagem-e-esterilizacao-digital-de-alta-precisao-7lab-480-l-250-c-220v-com-timer (accessed on 10 June 2023).
- Santos, M.C. Estudo do Processo de Craqueamento Termocatálico da Borra de Neutralização do Óleo de Palma Para a Produção de Biocombustível. Ph.D. Thesis, Universidade Federal do Pará, Belém, Brazil, 2015. [Google Scholar]
- Oliveira, C.; Tippayawong, N. Análise Técnica e Econômica de uma Planta de Pirólise de Biomassa. Energ. Procedia 2015, 79, 950–955. [Google Scholar]
Date: | 18/10/2021 | Time | 20/10/2021 | Time | 27/10/2021 | Time | 29/10/2021 | Time |
---|---|---|---|---|---|---|---|---|
Mass of MSW | 102.00 | 07:30 | 106.50 | 07:30 | 107.25 | 07:30 | 113.50 | 07:30 |
Class of MSW | Mass (kg) | (wt.%) | Mass (kg) | (wt.%) | Mass (kg) | (wt.%) | Mass (kg) | (wt.%) |
Paper | 1.00 | 0.98 | 2.70 | 2.54 | 4.70 | 4.40 | 3.70 | 3.27 |
Cardboard | 2.05 | 2.01 | 2.60 | 2.45 | 3.60 | 3.37 | 2.90 | 2.56 |
Tetra Pak | 1.10 | 1.08 | 1.10 | 1.04 | 2.05 | 1.92 | 0.30 | 0.26 |
Hard Plastic | 4.75 | 4.66 | 10.25 | 9.65 | 2.40 | 2.25 | 7.95 | 6.76 |
Soft Plastic | 9.65 | 9.47 | 4.30 | 4.05 | 5.90 | 5.53 | 11.15 | 9.85 |
Metal | 4.80 | 4.71 | 1.75 | 1.65 | 5.50 | 5.16 | 1.60 | 1.41 |
Organic Matter | 55.50 | 54.44 | 69.95 | 65.84 | 62.40 | 58.50 | 76.40 | 68.52 |
Glass | 9.80 | 9.61 | 1.60 | 1.51 | 1.90 | 1.78 | 0.35 | 0.33 |
Inert | 13.30 | 13.05 | 12.00 | 11.29 | 18.20 | 17.06 | 8.80 | 7.77 |
Total | 101.95 | 100.00 | 106.25 | 100.00 | 106.65 | 100.0 | 113.15 | 100.00 |
Centesimal Characterization | (wt.%) |
Lipids | 10.41 |
Proteins | 11.33 |
Moisture | 28.74 |
Ash | 6.73 |
Volatile matter | - |
Fixed carbon | - |
Physicochemical characterization | |
pH, 27.0 °C (-) | 5.77 |
Conductivity, 27.2 °C (μS/m) | 15.31 |
Process Parameters | 0.0% (wt.) | ||
---|---|---|---|
400 °C | 450 °C | 475 °C | |
Mass of residual fat (g) | 50.14 | 50.29 | 50.49 |
Cracking time (min) | 70 | 100 | 70 |
Initial cracking temperature (°C) | 397 | 348 | 318 |
Mechanical system stirring speed (rpm) | 0 | 0 | 0 |
Mass of solid (Coke) (kg) | 22.94 | 19.07 | 17.82 |
Mass of liquid (Bio-oil) (kg) | 1.32 | 3.74 | 4.75 |
Mass of H2O (kg) | 17.59 | 17.10 | 14.43 |
Mass of gas (kg) | 8.29 | 10.09 | 13.49 |
Yield of Bio-oil (wt.%) | 2.63 | 7.43 | 9.41 |
Yield of H2O (wt.%) | 35.08 | 34.00 | 28.58 |
Yield of Coke (wt.%) | 45.75 | 37.92 | 35.29 |
Yield of Gas (wt.%) | 16.54 | 20.65 | 26.72 |
Process Parameters | 475 (°C) | |||
---|---|---|---|---|
0.0 (wt.) | 5.0 (wt.) | 10.0 (wt.) | 15.0 (wt.) | |
Mass of the organic fraction of municipal solid waste (g) | 50.49 | 40.0 | 40.0 | 40.0 |
Cracking time (min) | 70 | 75 | 70 | 70 |
Initial cracking temperature (°C) | 318 | 220 | 206 | 268 |
Mass of solids (Coke) (kg) | 17.82 | 14.11 | 13.56 | 12.16 |
Mass of liquid (Bio-oil) (kg) | 4.75 | 2.21 | 2.27 | 3.16 |
Mass of H2O (kg) | 14.43 | 14.15 | 13.72 | 13.73 |
Gas mass (kg) | 13.49 | 9.53 | 10.45 | 10.95 |
Bio-oil yield (by weight) | 9.41 | 5.52 | 5.67 | 7.90 |
H2O yield (by weight) | 28.58 | 35.37 | 34.30 | 34.32 |
Coke yield (by weight) | 35.29 | 35.27 | 33.90 | 30.40 |
Gas yield (in weight) | 26.72 | 23.82 | 26.12 | 27.37 |
Process Parameters | Value | Unit | Reference |
---|---|---|---|
M = is the mass of organic material + paper | 2.610 | kg/day | author |
Nsh = number of shifts per day | 3 | - | author |
d = density of organic material + paper | 1.213 | kg/dm3 | [35] |
Ybio-oil = yield of the bio-oil pyrolysis process | 9.41 | % | [28] |
Ycoke = material coke yield in the pyrolysis process | 35.29 | % | [28] |
Pcoke = price of coke | 0.224 | $/kg | [31] |
dcoke = absolute density of coke | 1 × 10−3 | kg/dm3 | [31] |
Ygas = yield of methane gas from the material’s pyrolysis process | 2672 | % | [28] |
PLPG = price of liquefied petroleum gas | 0.275 | $/dm3 | [36] |
dgas = density of methane gas | 0.72 × 10−3 | kg/dm3 | [31] |
Yd,bio-oil = yield of the material distillate process | 60 | % | author |
PRM = raw material price of the material | 0.1953 | $/kg | [37] |
Psieve = power of the sieve equipment | 0.7457 | kW | [38] |
tsieve = sieving time per day | 2 | h | author |
Nsieve = number of sieving batches per day | 2 | - | author |
PKWh = price of KWh | 0.2186 | $/kWh | [39] |
Pdry = drying equipment power | 3 | kW | [40] |
tdry = drying time per day | 24 | h | author |
Ndry = number of drying batches per day | 5 | - | author |
Pcrus = power of crusher equipment | 11 | kW | [41] |
tcrus = crusher time per day | 1 | h | author |
Ncrus = number of crusher batches per day | 1 | - | author |
mLPG = percentage of liquefied petroleum gas in relation to the feed rate | 10 | % | [42] |
Cm = labor cost in thirty days | 2343.7 | $/month | author |
PKWd = distillation column power | 5 | kW | [31] |
td = distillation operating time during one day | 24 | h | author |
Ndest. = number of distillation batches per day | 2 | - | author |
%T = tax percentage | 10 | % | [31] |
SPbio = selling price of biofuels produced with organic material + paper | 1.30 | $/dm3 | author |
Lifespan | 10 | years |
Plant Size/Feeding Rate | 2610 | kg/day |
Discount rate | 10 | % per year |
Financing | 100 | % own capital |
Depreciation | - | % per year |
Investment recovery period | 10 | years |
Taxes | 10 | % |
Start-up | - | months |
Raw material cost | 0.1953 | $/kg |
Plant availability | 87.5 | % |
Plant operating time | 7665 | h |
Reference year | 2023 | |
Electricity price | 0.2186 | $/kWh |
Total equipment cost (CTE) | 112,793.25 | $ |
Direct costs (include installation of equipment, instrumentation and control, piping, electricity and buildings) | 68,803.88 | $ (61% CTE) |
Total equipment installation cost (CTIE) | 181,597.13 | $ (61% CTE + CTE) |
Storage | 2723.96 | $ (1.5% CTIE) |
Space construction-warehouse | 8171.87 | $ (4.5% CTIE) |
Total installation cost (CTI) | 192,492.96 | $ (CTIE + warehouse + space development) |
Field Indirect Costs (CI) | ||
| 38,498.59 | $ (20% CTI) |
| 48,123.24 | $ (25% CTI) |
| 5774.79 | $ (3% CTI) |
| 19,249.30 | $ (10% CTI) |
Total Capital Investments (ITC) | 304,138.88 | $ (CTI + CI) |
Other costs (start-up, licenses, etc.) | 30,413.89 | $ (10% ITC) |
Total project investment (ITP) | 334,552.77 | $ (ITC+ other costs) |
Revenues | ||
---|---|---|
Feed_87.50% (Availability)_Cracking (1) | 2151.69 | dm3/day_d = 1.213 kg/m3 |
PLO product/bio-oil_9.41% (2) | 202.47 | dm3/day_Fre. distillation |
Solid product (coke)_35.29% (3) | 170.55 | $/day |
Gaseous Product (biogas)_26.72% (4) | 11.23 | $/day |
Biofuel Product Distillation_60% (5) | 121.5 | $/day |
Sale price (6) | 1.30 | $/dm3 |
Total expenses (7) = (8) + (9) + (10) + (11) + (12) + (13) + (14) + (15) | 1.24 | $/dm3 |
Raw Material (Neutralization Waste)_1 $/kg (8) | 0.543 | $/dm3 |
Sieving (0.7457 kW)_(2T/h) (9) | 0.0003 | $/dm3 |
Drying (3 kW)_(0.582 T/h) (10) | 0.1118 | $/dm3 |
Crusher (11 kW)_0.425 t/h (11) | 0.0026 | $/dm3 |
Liquefied Petroleum Gas (LPG)_10% (12) | 0.063 | $/dm3 |
Manpower (8MIL) (13) | 0.333 | $/dm3 |
Distillation (Heating)_5 kW (14) | 0.056 | $/dm3 |
Taxes_10% (15) | 0.130 | $/dm3 |
Profit Margin (16) = (6)–(7) | 0.06 | $/dm3 |
Total Profit | 189.1 | $/day |
Month | 5672 | $/month |
Year | 68,063 | $/year |
Year | 0 | 1 | 2 | 3 | 4 | 5 |
Cash flow | −334,552.77 | 68,062.78 | 68,062.78 | 68,062.78 | 68,062.78 | 68,062.78 |
Accumulated value | −33,452.77 | −266,489.98 | −198,427.20 | −130,364.42 | −62,301.64 | 5761.14 |
Year | 6 | 7 | 8 | 9 | 10 | |
Cash flow | 68,062.78 | 68,062.78 | 68,062.78 | 68,062.78 | 68,062.78 | |
Accumulated value | 73,823.92 | 141,886.70 | 209,949.49 | 278,012.27 | 346,075.05 |
Year | 0 | 1 | 2 | 3 | 4 | 5 |
Cash flow | −334,552.7 | 68,062.78 | 68,062.78 | 68,062.78 | 68,062.78 | 68,062.78 |
Present value | −334,552.77 | 61,875.26 | 56,250.23 | 51,136.57 | 46,487.80 | 42,261.63 |
Accumulated value | −334,552.77 | −272,677.51 | −216,427.28 | −165,290.70 | −118,802.91 | −76,541.27 |
Year | 6 | 7 | 8 | 9 | 10 | |
Cash flow | 68,062.78 | 68,062.78 | 68,062.78 | 68,062.78 | 68,062.78 | |
Present value | 38,419.67 | 34,926.97 | 31,751.79 | 28,865.26 | 26,241.15 | |
Accumulated value | −38,121.61 | −3194.64 | 28,557.15 | 57,422.41 | 83,663.56 |
Year | 0 | 1 | 2 | 3 | 4 | 5 |
Cash flow | −334,552.77 | 68,062.78 | 68,062.78 | 68,062.78 | 68,062.78 | 68,062.78 |
Present value | −334,552,77 | 58,903.42 | 50,976.65 | 44,116.61 | 38,179.73 | 33,041.80 |
Accumulated value | −334,552.77 | −275,649.35 | −224,672.70 | −180,556.09 | −142,376.36 | −109,334.56 |
Year | 6 | 7 | 8 | 9 | 10 | |
Cash flow | 68,062.78 | 68,062.78 | 68,062.78 | 68,062.78 | 68,062.78 | |
Present value | 28,595.29 | 24,747.16 | 21,416.88 | 18,534.76 | 16,040.49 | |
Accumulated value | −80,739.27 | −55,992.11 | −34,575.23 | −16,040.48 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, B.F.F.; Amaral, A.R.; Assunção, F.P.d.C.; Bernar, L.P.; Santos, M.C.; Mendonça, N.M.; Pereira, J.A.R.; Castro, D.A.R.d.; Duvoisin, S., Jr.; Oliveira, P.H.A.; et al. Economic Feasibility Study of the Production of Biogas, Coke and Biofuels from the Organic Fraction of Municipal Waste Using Pyrolysis. Energies 2024, 17, 269. https://doi.org/10.3390/en17010269
Rodrigues BFF, Amaral AR, Assunção FPdC, Bernar LP, Santos MC, Mendonça NM, Pereira JAR, Castro DARd, Duvoisin S Jr., Oliveira PHA, et al. Economic Feasibility Study of the Production of Biogas, Coke and Biofuels from the Organic Fraction of Municipal Waste Using Pyrolysis. Energies. 2024; 17(1):269. https://doi.org/10.3390/en17010269
Chicago/Turabian StyleRodrigues, Benedito Franciano Ferreira, Anderson Rocha Amaral, Fernanda Paula da Costa Assunção, Lucas Pinto Bernar, Marcelo Costa Santos, Neyson Martins Mendonça, José Almir Rodrigues Pereira, Douglas Alberto Rocha de Castro, Sergio Duvoisin, Jr., Pablo Henrique Ataide Oliveira, and et al. 2024. "Economic Feasibility Study of the Production of Biogas, Coke and Biofuels from the Organic Fraction of Municipal Waste Using Pyrolysis" Energies 17, no. 1: 269. https://doi.org/10.3390/en17010269
APA StyleRodrigues, B. F. F., Amaral, A. R., Assunção, F. P. d. C., Bernar, L. P., Santos, M. C., Mendonça, N. M., Pereira, J. A. R., Castro, D. A. R. d., Duvoisin, S., Jr., Oliveira, P. H. A., Borges, L. E. P., & Machado, N. T. (2024). Economic Feasibility Study of the Production of Biogas, Coke and Biofuels from the Organic Fraction of Municipal Waste Using Pyrolysis. Energies, 17(1), 269. https://doi.org/10.3390/en17010269