Thermal Properties of TiO2 Nanoparticle-Treated Transformer Oil and Coconut Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Nanofluids
2.3. Thermal Conductivity Measurement
2.4. Thermal Diffusivity Measurement
2.5. Volumetric Heat Capacity Calculation
3. Results and Discussion
3.1. Stability of Nanofluid with Time
3.2. Effect of Temperature on Thermal Conductivity
3.3. Effect of NanoparticleVolume Fraction on Thermal Conductivity
3.4. Comparison of Thermal Conductivity Enhancement with Experimental Values from Theoretical Model Values at 40 °C
3.5. Comparison of Thermal Conductivity Results with Previous Research on TiO2-Nanofluids
3.6. Effect of Temperature and Volume Fraction on Thermal Diffusivity
3.7. Effect of Temperature and Volume Fraction on Volumetric Heat Capacity
4. Conclusions
- Observation of thermal conductivity at different temperatures of TiO2/transformer oil and TiO2/coconut oil nanofluids for different volume fractions.
- b.
- Observation of thermal diffusivity at different temperatures of TiO2/transformer oil and TiO2/coconut oil nanofluids for different volume fractions
- c.
- Observation of volumetric heat capacity at different temperatures of TiO2/transformer oil and TiO2/coconut oil nanofluids for different volume fractions.
- d.
- Comparison of practical results obtained with the theoretical models for thermal conductivity enhancement.
- e.
- Stability of the nanofluid samples.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stephan, U.S.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles; Argonne National Lab. (ANL): Argonne, IL, USA, 1995.
- Choi, S.U.S. Nanofluids: A New Field of Scientific Research and Innovative Applications. Heat Transf. Eng. 2008, 29, 429–431. [Google Scholar] [CrossRef]
- Yu, W.; Xie, H. A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications. J. Nanomater. 2012, 2012, 435873. [Google Scholar] [CrossRef]
- Eggers, J.R.; Kabelac, S. Nanofluids Revisited. Appl. Therm. Eng. 2016, 106, 1114–1126. [Google Scholar] [CrossRef]
- Rafiq, M.; Lv, Y.; Li, C. A Review on Properties, Opportunities, and Challenges of Transformer Oil-Based Nanofluids. J. Nanomater. 2016, 2016, 8371560. [Google Scholar] [CrossRef]
- Shah, T.R.; Ali, H.M. Applications of Hybrid Nanofluids in Solar Energy, Practical Limitations and Challenges: A Critical Review. Sol. Energy 2019, 183, 173–203. [Google Scholar] [CrossRef]
- Rafiq, M.; Shafique, M.; Azam, A.; Ateeq, M. Transformer Oil-Based Nanofluid: The Application of Nanomaterials on Thermal, Electrical and Physicochemical Properties of Liquid Insulation—A Review. Ain Shams Eng. J. 2021, 12, 555–576. [Google Scholar] [CrossRef]
- Wong, K.V.; De Leon, O. Applications of Nanofluids: Current and Future. Adv. Mech. Eng. 2010, 2010, 519659. [Google Scholar] [CrossRef]
- Murshed, S.M.S. Simultaneous Measurement of Thermal Conductivity, Thermal Diffusivity, and Specific Heat of Nanofluids. Heat Transf. Eng. 2012, 33, 722–731. [Google Scholar] [CrossRef]
- Tahmasebi Sulgani, M.; Karimipour, A. Improve the Thermal Conductivity of 10w40-Engine Oil at Various Temperature by Addition of Al2O3/Fe2O3 Nanoparticles. J. Mol. Liq. 2019, 283, 660–666. [Google Scholar] [CrossRef]
- Okonkwo, E.C.; Wole-Osho, I.; Kavaz, D.; Abid, M. Comparison of Experimental and Theoretical Methods of Obtaining the Thermal Properties of Alumina/Iron Mono and Hybrid Nanofluids. J. Mol. Liq. 2019, 292, 111377. [Google Scholar] [CrossRef]
- Michael Joseph Stalin, P.; Arjunan, T.V.; Matheswaran, M.M.; Manoj Kumar, P.; Sadanandam, N. Investigations on Thermal Properties of CeO2/Water Nanofluids for Heat Transfer Applications. Mater. Today Proc. 2021, 47, 6815–6820. [Google Scholar] [CrossRef]
- Sunil, J.; Vignesh, J.; Vettumperumal, R.; Maheswaran, R.; Raja, R.A.A. The Thermal Properties of CaO-Nanofluids. Vacuum 2019, 161, 383–388. [Google Scholar] [CrossRef]
- Yao, W.; Huang, Z.; Li, J.; Wu, L.; Xiang, C. Enhanced Electrical Insulation and Heat Transfer Performance of Vegetable Oil Based Nanofluids. J. Nanomater. 2018, 2018, 4504208. [Google Scholar] [CrossRef]
- Nadolny, Z.; Dombek, G. Electro-Insulating Nanofluids Based on Synthetic Ester and TiO2 or C60 Nanoparticles in Power Transformer. Energies 2018, 11, 1953. [Google Scholar] [CrossRef]
- Elsaid, K.; Abdelkareem, M.A.; Maghrabie, H.M.; Sayed, E.T.; Wilberforce, T.; Baroutaji, A.; Olabi, A.G. Thermophysical Properties of Graphene-Based Nanofluids. Int. J. Thermofluids 2021, 10, 100073. [Google Scholar] [CrossRef]
- Almeida, C.; Paul, S.; Asirvatham, L.G.; Manova, S.; Nimmagadda, R.; Bose, J.R.; Wongwises, S. Experimental Studies on Thermophysical and Electrical Properties of Graphene-Transformer Oil Nanofluid. Fluids 2020, 5, 172. [Google Scholar] [CrossRef]
- Bhunia, M.M.; Panigrahi, K.; Das, S.; Chattopadhyay, K.K.; Chattopadhyay, P. Amorphous Graphene—Transformer Oil Nanofluids with Superior Thermal and Insulating Properties. Carbon 2018, 139, 1010–1019. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, S.; Lin, Y.; Feng, M.; Wu, Q. Stability, Thermal Conductivity, and Rheological Properties of Controlled Reduced Graphene Oxide Dispersed Nanofluids. Appl. Therm. Eng. 2017, 119, 132–139. [Google Scholar] [CrossRef]
- Amiri, A.; Shanbedi, M.; Ahmadi, G.; Rozali, S. Transformer Oils-Based Graphene Quantum Dots Nanofluid as a New Generation of Highly Conductive and Stable Coolant. Int. Commun. Heat Mass Transf. 2017, 83, 40–47. [Google Scholar] [CrossRef]
- Maxwell, J.C. A Treatise on Electricity and Magnetism I–II; Clarendon: Oxford, UK, 1881. [Google Scholar]
- Zhou, Y.; Sui, S.Y.; Li, J.; Wang, Z.Y.; Cui, W.; Lv, Y.Z.; Li, C.R. Statistical Analysis of Moisture’s Effect on AC Breakdown Strength of TiO2 Nanofluids. J. Mol. Liq. 2018, 249, 420–428. [Google Scholar] [CrossRef]
- Bhunia, M.M.; Panigrahi, K.; Naskar, C.B.; Bhattacharjee, S.; Chattopadhyay, K.K.; Chattopadhyay, P. 2D Square Nanosheets of Anatase TiO2: A Surfactant Free Nanofiller for Transformer Oil Nanofluids. J. Mol. Liq. 2021, 325, 115000. [Google Scholar] [CrossRef]
- Neha Deepak, S.; Nathi Ram, C. Physio-Chemical Study of Traditional Lubricant SAE 20 W40 and Virgin Coconut Oil Using TiO2 nano-Additives. Mater. Today Proc. 2021, 42, 1024–1029. [Google Scholar] [CrossRef]
- Nor, S.F.M.; Azis, N.; Jasni, J.; Ab Kadir, M.Z.A.; Yunus, R.; Yaakub, Z. Investigation on the Electrical Properties of Palm Oil and Coconut Oil Based TiO2 Nanofluids. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3432–3442. [Google Scholar] [CrossRef]
- Pak, B.C.; Cho, Y.I. Choi Hydraulic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles. Exp. Heat Transf. 1998, 11, 151–170. [Google Scholar] [CrossRef]
- Nazari, M.; Rasoulifard, M.H.; Hosseini, H. Dielectric Breakdown Strength of Magnetic Nanofluid Based on Insulation Oil after Impulse Test. J. Magn. Magn. Mater. 2016, 399, 1–4. [Google Scholar] [CrossRef]
- NYNAS AB Nytro Libra (IEC 60296, Ed. 5)—Standard Grade. Available online: https://www.nyas.com/en/products/transformer-oils/products/nytro-libra (accessed on 10 September 2023).
- Marina, A.M.; Che Man, Y.B.; Nazimah, S.A.H.; Amin, I. Chemical Properties of Virgin Coconut Oil. JAOCS J. Am. Oil Chem. Soc. 2009, 86, 301–307. [Google Scholar] [CrossRef]
- Mansor, T.S.T.; Man, C.; Afiq, A.; Nurul, K. Physicochemical Properties of Virgin Coconut Oil Extracted from Different Processing Methods. Int. Food Res. J. 2012, 19, 837–845. [Google Scholar] [CrossRef]
- ASTM D7896-19; Standard Test Method for Thermal Conductivity, Thermal Diffusivity, and Volumetric Heat Capacity of Engine Coolants and Related Fluids by Transient Hot Wire Liquid Thermal Conductivity Method. ASTM: West Conshohocken, PA, USA, 2019.
- Turgut, A.; Tavman, I.; Tavman, S. Measurement of Thermal Conductivity of Edible Oils Using Transient Hot Wire Method. Int. J. Food Prop. 2009, 12, 741–747. [Google Scholar] [CrossRef]
- Krishnakumar, T.S.; Sheeba, A.; Mahesh, V.; Jose Prakash, M. Heat Transfer Studies on Ethylene Glycol/Water Nanofluid Containing TiO2 Nanoparticles. Int. J. Refrig. 2019, 102, 55–61. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Ozkaymak, M.; Sözen, A.; Menlik, T.; Fahed, A. Improving Car Radiator Performance by Using TiO2-Water Nanofluid. Eng. Sci. Technol. Int. J. 2018, 21, 996–1005. [Google Scholar] [CrossRef]
- Wei, B.; Zou, C.; Li, X. Experimental Investigation on Stability and Thermal Conductivity of Diathermic Oil Based TiO2 Nanofluids. Int. J. Heat Mass Transf. 2017, 104, 537–543. [Google Scholar] [CrossRef]
- Prasanth, R.T.A.R.; Mahato, S.N.; Roy, N.K. Dielectric and Thermal Conductivity Studies on Synthetic Ester Oil Based TiO2 Nanofluids. In Proceedings of the 3rd International Conference on Condition Assesment Techniques in Electrical Systems, Rupnagar, India, 16–18 November 2017; pp. 289–292. [Google Scholar] [CrossRef]
- Sukkar, K.A.; Karamalluh, A.A.; Jaber, T.N. Rheological and Thermal Properties of Lubricating Oil Enhanced by the Effect of CuO and TiO2 Nano-Additives. Al-Khwarizmi Eng. J. 2019, 15, 24–33. [Google Scholar] [CrossRef]
- Khedkar, R.S.; Shrivastava, N.; Sonawane, S.S.; Wasewar, K.L. Experimental Investigations and Theoretical Determination of Thermal Conductivity and Viscosity of TiO2-Ethylene Glycol Nanofluid. Int. Commun. Heat Mass Transf. 2016, 73, 54–61. [Google Scholar] [CrossRef]
- Abdolbaqi, M.K.; Sidik, N.A.C.; Aziz, A.; Mamat, R.; Azmi, W.H.; Yazid, M.N.A.W.M.; Najafi, G. An Experimental Determination of Thermal Conductivity and Viscosity of BioGlycol/Water Based TiO2 Nanofluids. Int. Commun. Heat Mass Transf. 2016, 77, 22–32. [Google Scholar] [CrossRef]
- Hamid, A.; Azmi, W.H.; Mamat, R.; Usri, N.A. Thermal Conductivity Enhancement of TiO2 Nanofluid in Water and Ethylene Glycol (EG) Mixture. Indian J. Pure Appl. Phys. 2016, 54, 651–655. [Google Scholar]
Nanoparticle Type | TiO2 Anatase |
---|---|
Purity | 99.5% |
Color | White powder |
Particle size | 3–5 nm |
BET value | 150–200 m2/g |
Density | 3.89 g/cm3 |
Phase | Anatase |
Base Oil Type | Transformer Oil | Coconut Oil |
---|---|---|
Color | Transparent | Transparent |
Density | 843.74 kg/m3 | 880.40 kg/m3 |
Thermal Conductivity at 30 °C | 108.12 mW/K | 156.21 mW/K |
Parameter | Value |
---|---|
Measuring Range | 10 to 2000 mW/(mK) |
Reproducibility | ±1% |
Temperature Range | −50 to 300 °C |
Temperature Accuracy | ±0.1 °C |
Nanoparticle Volume Fraction | 0.002 | 0.004 | 0.008 | 0.012 |
---|---|---|---|---|
Experimental Values | 1.009 | 1.029 | 1.034 | 1.042 |
Maxwell Model (% diff) | 1.003 (0.59%) | 1.007 (2.14%) | 1.014 (1.93%) | 1.021 (2.01%) |
Maxwell–Garnett Model (% diff) | 1.004 (0.50%) | 1.007 (2.14%) | 1.014 (1.93%) | 1.022 (2.01%) |
Pak and Cho Model (% diff) | 1.015 (0.59%) | 1.030 (0.10%) | 1.060 (2.51%) | 1.090 (4.61%) |
Nanoparticle Volume Fraction | 0.002 | 0.004 | 0.008 | 0.012 |
---|---|---|---|---|
Experimental Values | 1.007 | 1.007 | 1.010 | 1.014 |
Maxwell Model (% diff) | 1.003 (0.40%) | 1.006 (0.10%) | 1.012 (0.20%) | 1.018 (0.39%) |
Maxwell–Garnett Model (% diff) | 1.003 (0.40%) | 1.007 (0.00%) | 1.009 (0.01%) | 1.018 (0.39%) |
Pak and Cho Model (% diff) | 1.015 (0.79%) | 1.030 (2.28%) | 1.060 (4.85%) | 1.090 (7.50%) |
Nanoparticle Volume Fraction (%) | Base Fluid | Nanoparticle | Concentration | Maximum Enhancement |
---|---|---|---|---|
[35] | Diathermal oil | TiO2—Anatase | 0.2–1.0 vol.% | 7.1% |
[15] | Synthetic ester oil | TiO2 | 0.82 g·L−1 | 3.2% |
[36] | Synthetic ester oil | TiO2—Rutile | 0.005–0.05 vol.% | 8.3% |
[37] | SAE 15W40 engine oil | TiO2 | 0.1–1.0 wt. % | 4.54% |
[38] | Ethylene glycol | TiO2 | 1.0–7.0 vol.% | 19.52% |
[39] | BioGlycol:water (20:80) mixture | TiO2 | 0.5–2.0 vol.% | 12.6% |
[40] | Water:ethylene glycol (60:40) mixture | TiO2 | 0.5–1.5 vol.% | 15.35% |
Present Study | Transformer oil | TiO2—Anatase | 0.002–0.012 vol.% | 4.2% |
Coconut oil | TiO2—Anatase | 0.002–0.012 vol.% | 1.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Induranga, A.; Galpaya, C.; Vithanage, V.; Koswattage, K.R. Thermal Properties of TiO2 Nanoparticle-Treated Transformer Oil and Coconut Oil. Energies 2024, 17, 49. https://doi.org/10.3390/en17010049
Induranga A, Galpaya C, Vithanage V, Koswattage KR. Thermal Properties of TiO2 Nanoparticle-Treated Transformer Oil and Coconut Oil. Energies. 2024; 17(1):49. https://doi.org/10.3390/en17010049
Chicago/Turabian StyleInduranga, Ashan, Chanaka Galpaya, Vimukthi Vithanage, and Kaveenga Rasika Koswattage. 2024. "Thermal Properties of TiO2 Nanoparticle-Treated Transformer Oil and Coconut Oil" Energies 17, no. 1: 49. https://doi.org/10.3390/en17010049
APA StyleInduranga, A., Galpaya, C., Vithanage, V., & Koswattage, K. R. (2024). Thermal Properties of TiO2 Nanoparticle-Treated Transformer Oil and Coconut Oil. Energies, 17(1), 49. https://doi.org/10.3390/en17010049