A New Hybrid Model Based on SCINet and LSTM for Short-Term Power Load Forecasting
Abstract
:1. Introduction
- (1)
- A new hybrid framework, constructed with SCINet and LSTM, has been proposed to forecast short-term load data with complicated temporal patterns and dynamics. This framework employs an encoder-decoder architecture, effectively capturing feature dependencies of load data across different time scales.
- (2)
- The SCINet, utilizing its unique binary tree structure and a downsample-convolution-interaction architecture, extracts both local and global features and facilitates capturing complex temporal patterns and dynamics through interactive learning between the sub-sequences.
- (3)
- Integrating LSTM into the SCINet-based framework mitigates information loss resulting from iterative downsampling, thereby further enhancing the extraction of long-term dependencies and then improving the prediction accuracy.
- (4)
- In order to effectively capture the nonlinear features of the load data with complex temporal patterns and dynamics, the proposed model employs FFN layers with residual connections prior to SCINet and LSTM modules to improve the nonlinear representations. In this way, the SCINet can largely retain multi-scale temporal features, and the LSTM is strengthened to capture intricate long-term dependencies.
- (5)
- The proposed model is tested on two real-world power load datasets. The experimental results indicate superior performance in STLF compared to other state-of-the-art models.
2. Methodology
2.1. Feed-Forward Network
2.2. Sample Convolution and Interaction Network
2.3. Long Short-Term Memory Network
2.4. Ensemble Framework
3. Experimental Results and Discussions
3.1. Experimental Design
3.1.1. Data Preparation
3.1.2. Sliding Window Configuration
3.1.3. Comparative Models
3.1.4. Performance Evaluation
3.2. Feature Selection and Processing
3.3. Analysis and Comparison of Experimental Results
3.3.1. Southern China Dataset
3.3.2. ISO-NE Dataset
3.3.3. VIC Dataset
3.4. Discussion
3.5. Comparison of the Proposed Model with Other Advanced Models
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brodowski, S.; Bielecki, A.; Filocha, M. A hybrid system for forecasting 24-h power load profile for Polish electric grid. Appl. Soft Comput. 2017, 58, 527–539. [Google Scholar] [CrossRef]
- Wang, H.; Ruan, J.; Wang, G.; Zhou, B.; Liu, Y.; Fu, X.; Peng, J. Deep learning-based interval state estimation of AC smart grids against sparse cyber attacks. IEEE Trans. Ind. Inform. 2018, 14, 4766–4778. [Google Scholar] [CrossRef]
- Alfares, H.K.; Nazeeruddin, M. Electric load forecasting: Literature survey and classification of methods. Int. J. Forecast. 2010, 33, 23–34. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.X.; Zhang, N.; Wang, Y.S. Conditional residual modeling for probabilistic load forecasting. IEEE Trans. Power Syst. 2018, 33, 7327–7330. [Google Scholar] [CrossRef]
- Saksornchai, T.; Lee, W.-J.; Methaprayoon, K.; Liao, J.R.; Ross, R.J. Improve the unit commitment scheduling by using the neural-network-based short-term load forecasting. IEEE Trans. Ind. Appl. 2005, 41, 169–179. [Google Scholar] [CrossRef]
- Lopez, M.; Valero, S.; Rodriguez, A.; Veiras, I.; Senabre, C. New online load forecasting system for the Spanish transport system operator. Electr. Power Syst. Res. 2018, 154, 401–412. [Google Scholar] [CrossRef]
- Christiaanse, W.R. Short-Term load forecasting using general exponential smoothing. IEEE Trans. Power App. 1971, 90, 900–911. [Google Scholar] [CrossRef]
- Woo, G.; Liu, C.; Sahoo, D.; Kumar, A.; Hoi, S. ETSformer: Exponential smoothing transformers for time-series forecasting. arXiv 2022. [Google Scholar] [CrossRef]
- Taylor, J.W.; McSharry, P.E. Short-term load forecasting methods: An evaluation based on European data. IEEE Trans. Power Syst. 2007, 22, 2213–2219. [Google Scholar] [CrossRef]
- Noureen, S.; Atique, S.; Roy, V.; Bayne, S. Analysis and application of seasonal ARIMA model in energy demand forecasting: A case study of small scale agricultural load. In Proceedings of the 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), Dallas, TX, USA, 4–7 August 2019; pp. 521–524. [Google Scholar] [CrossRef]
- Li, G.D.; Wang, C.H.; Masuda, S.; Nagai, M. A research on short term load forecasting problem applying improved grey dynamic model. Int. J. Electr. Power Energy Syst. 2011, 33, 809–816. [Google Scholar] [CrossRef]
- Li, W.; Han, Z.-h. Application of improved grey prediction model for power load forecasting. In Proceedings of the 2008 12th International Conference on Computer Supported Cooperative Work in Design, Xi’an, China, 16–18 April 2008; pp. 1116–1121. [Google Scholar] [CrossRef]
- Li, S.; Wang, P.; Goel, L. Short-term load forecasting by wavelet transform and evolutionary extreme learning machine. Electr. Power Syst. Res. 2015, 122, 96–103. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Y.; Muljadi, E.; Zhang, J.J.; Gao, D.W. A short-term and high-resolution distribution system load forecasting approach using Support Vector Regression with hybrid parameters optimization. IEEE Trans. Smart Grid 2018, 9, 3341–3350. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, P.; Chu, Y.; Li, W.; Wu, Y.; Ni, L.; Bao, Y.; Wang, K. Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings. Appl. Energy 2017, 195, 659–670. [Google Scholar] [CrossRef]
- Guan, C.; Luh, P.B.; Michel, L.D.; Chi, Z. Hybrid Kalman filters for very short-term load forecasting and prediction interval estimation. IEEE Trans. Power Syst. 2013, 28, 3806–3817. [Google Scholar] [CrossRef]
- Sharma, S.; Majumdar, A.; Elvira, V.; Chouzenoux, E. Blind Kalman filtering for short-term load forecasting. IEEE Trans. Power Syst. 2020, 35, 4916–4919. [Google Scholar] [CrossRef]
- Aprillia, H.; Yang, H.-T.; Huang, C.-M. Statistical load forecasting using optimal quantile regression random forest and risk assessment index. IEEE Trans. Smart Grid 2021, 12, 1467–1480. [Google Scholar] [CrossRef]
- Huang, N.; Lu, G.; Xu, D. A Permutation importance-based feature selection method for short-term electricity load forecasting using random forest. Energies 2016, 9, 767. [Google Scholar] [CrossRef]
- Tamimi, M.; Egbert, R. Short term electric load forecasting via fuzzy neural collaboration. Electr. Power Syst. Res. 2000, 56, 243–248. [Google Scholar] [CrossRef]
- Ali, M.; Adnan, M.; Tariq, M.; Poor, H.V. Load forecasting through estimated parametrized based fuzzy inference system in smart grids. IEEE Trans. Fuzzy Syst. 2021, 29, 156–165. [Google Scholar] [CrossRef]
- Asar, A.U.; Hassnain, S.R.U.; Khan, A. Short term load forecasting using particle swarm optimization based ANN approach. In Proceedings of the 2007 International Joint Conference on Neural Networks, Orlando, FL, USA, 12–17 August 2007; pp. 1476–1481. [Google Scholar] [CrossRef]
- Drezga, I.; Rahman, S. Input variable selection for ANN-based short-term load forecasting. IEEE Trans. Power Syst. 1998, 13, 1238–1244. [Google Scholar] [CrossRef]
- MacInnes, J.; Santosa, S.; Wright, W. Visual classification: Expert knowledge guides machine Learning. IEEE Comput. Graph. Appl. 2010, 30, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Steenwinckel, B.; De Paepe, D.; Vanden Hautte, S.; Heyvaert, P.; Bentefrit, M.; Moens, P.; Dimou, A.; Van Den Bossche, B.; De Turck, F.; Van Hoecke, S.; et al. A methodology for adaptive anomaly detection and root cause analysis on sensor data streams by fusing expert knowledge with machine learning. Future Gener. Comput. Syst. 2021, 116, 30–48. [Google Scholar] [CrossRef]
- Cai, M.; Pipattanasomporn, M.; Rahman, S. Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques. Appl. Energy 2019, 236, 1078–1088. [Google Scholar] [CrossRef]
- Shi, H.; Xu, M.; Li, R. Deep learning for household load forecasting: A novel pooling deep RNN. IEEE Trans. Smart Grid 2018, 9, 5271–5280. [Google Scholar] [CrossRef]
- Abbasimehr, H.; Paki, R. Improving time series forecasting using LSTM and attention models. J. Ambient. Intell. Humaniz. Comput. 2022, 13, 673–691. [Google Scholar] [CrossRef]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv 2014. [Google Scholar] [CrossRef]
- Islam, M.R.; Al Mamun, A.; Sohel, M.; Hossain, M.L.; Uddin, M.M. LSTM-Based electrical load forecasting for Chattogram city of Bangladesh. In Proceedings of the 2020 International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, 12–14 March 2020; pp. 188–192. [Google Scholar] [CrossRef]
- Afrasiabi, M.; Mohammadi, M.; Rastegar, M.; Stankovic, L.; Afrasiabi, S.; Khazaei, M. Deep-based conditional probability density function forecasting of residential loads. IEEE Trans. Smart Grid 2020, 11, 3646–3657. [Google Scholar] [CrossRef]
- Kim, T.-Y.; Cho, S.-B. Predicting residential energy consumption using CNN-LSTM neural networks. Energy 2019, 182, 72–81. [Google Scholar] [CrossRef]
- Liu, M.; Qin, H.; Cao, R.; Deng, S. Short-Term load forecasting based on improved TCN and DenseNet. IEEE Access 2022, 10, 115945–115957. [Google Scholar] [CrossRef]
- Deng, Z.; Wang, B.; Xu, Y.; Xu, T.; Liu, C.; Zhu, Z. Multi-Scale convolutional neural network with time-cognition for multi-step short-term load forecasting. IEEE Access 2019, 7, 88058–88071. [Google Scholar] [CrossRef]
- Wang, H.; Peng, J.; Huang, F.; Chen, J.; Xiao, Y. MICN: Multi-Scale Local and Global Context Modeling for Long-Term Series Forecasting. In Proceedings of the Eleventh International Conference on Learning Representations; OpenReview.net. Available online: https://openreview.net/forum?id=zt53IDUR1U (accessed on 15 March 2023).
- Liu, M.; Zeng, A.; Chen, M.; Xu, Z.; Lai, Q.; Ma, L.; Xu, Q. SCINet: Time series modeling and forecasting with sample convolution and interaction. Adv. Neural Inf. Process. Syst. 2022, 35, 5816–5828. [Google Scholar] [CrossRef]
- Parri, S.; Teeparthi, K. VMD-SCINet: A hybrid model for improved wind speed forecasting. Earth Sci. Inform. 2023, 16, 1–22. [Google Scholar] [CrossRef]
- Silva, A.Q.B.; Gonçalves, W.N.; Matsubara, E.T. DESCINet: A hierarchical deep convolutional neural network with skip connection for long time series forecasting. Expert Syst. Appl. 2023, 228, 120246. [Google Scholar] [CrossRef]
- Chen, K.J.; Chen, K.L.; Wang, Q.; He, Z.; Hu, J.; He, J. Short-Term load forecasting with deep residual networks. IEEE Trans. Smart Grid 2018, 10, 3943–3952. [Google Scholar] [CrossRef]
- Wan, R.; Mei, S.; Wang, J.; Liu, M.; Yang, F. Multivariate temporal convolutional network: A deep neural networks approach for multivariate time series forecasting. Electronics 2019, 8, 876. [Google Scholar] [CrossRef]
- Hua, H.; Liu, M.; Li, Y.; Deng, S.; Wang, Q. An ensemble framework for short-term load forecasting based on parallel CNN and GRU with improved ResNet. Electr. Power Syst. Res. 2023, 216, 109057. [Google Scholar] [CrossRef]
Dataset | Total | Training Set | Validation Set | Testing Set | Maximum (MW) | Minimum (MW) |
---|---|---|---|---|---|---|
Southern China | 65,880 | 52,704 | 6588 | 6588 | 11,430 | 1306 |
ISO-NE | 43,920 | 35,136 | 4392 | 4392 | 27,622 | 8820 |
VIC | 43,920 | 35,136 | 4392 | 4392 | 10,240 | 3273 |
16 h | 24 h | 48 h | |||||||
---|---|---|---|---|---|---|---|---|---|
Model | MAPE (%) | RMSE(MW) | R2 (%) | MAPE (%) | RMSE(MW) | R2 (%) | MAPE (%) | RMSE(MW) | R2 (%) |
CNN | 1.94 | 372.33 | 97.808 | 0.96 | 258.57 | 98.836 | 1.91 | 347.95 | 98.08 |
LSTM | 1.01 | 284.54 | 98.72 | 0.87 | 242.92 | 98.87 | 1.12 | 276.01 | 98.792 |
Proposed model | 0.53 | 192.43 | 99.415 | 0.49 | 166.18 | 99.441 | 0.57 | 175.80 | 99.51 |
Model | Hyperparameters |
---|---|
CNN | Conv1: out_channels = 24, kernel_size = 3, Conv2: out_channels = 48, kernel_size = 3 |
LSTM | hidden_size = 10, num_layers= 3, dropout= 0.1 |
TCN | num_channels = [20, 20, 20], dilation_size = 2, kernel_size = 2, dropout = 0.2 |
SCINet | hidden_size = 1, num_stacks = 1, num_levels = 3, kernel_size = 5, dropout = 0.5 |
TCN-LSTM | TCN: num_channels = [20, 20, 20], dilation_size = 2, kernel_size = 2, dropout = 0.2, LSTM: hidden_size = 10, num_layers = 3, dropout = 0.1 |
FFN-SCINet-TCN | FFN: mult = 4, dropout = 0.2, TCN: num_channels = [20, 20, 20], dilation_size = 2, kernel_size = 2, dropout = 0.2, SCINet: hidden_size = 1, num_stacks = 1, num_levels = 3, kernel_size= 5, dropout rate = 0.5 |
Proposed model | FFN: mult = 4, dropout = 0.2, LSTM: hidden_size = 10, num_layers = 3, dropout = 0.1, SCINet: hidden_size = 1, num_stacks = 1, num_levels = 3, kernel_size = 5, dropout = 0.5 |
Feature | Size | Description | ||
---|---|---|---|---|
Demand | 1 × 24 | Maximum-min normalized power load data | ||
Temperature | 1 × 24 | Maximum-min normalized temperature data | ||
Season | 4 × 24 | One-hot encoder | 4 seasons | [1, 0, 0, 0] to [0, 0, 0, 1] |
Holiday | 2 × 24 | One-hot encoder | Yes/No | [1, 0]/[0, 1] |
Weekend | 2 × 24 | One-hot encoder | Yes/No | [1, 0]/[0, 1] |
Model | MAPE (%) | RMSE (MW) | R2 (%) | Cost Time (s) |
---|---|---|---|---|
CNN | 1.09 | 118.50 | 99.541 | 442.28 |
LSTM | 1.05 | 115.12 | 99.624 | 487.11 |
TCN | 0.96 | 106.18 | 99.718 | 771.37 |
SCINet | 0.78 | 92.55 | 99.834 | 1723.2 |
TCN-LSTM | 0.85 | 93.36 | 99.818 | 812.46 |
FFN-SCINet-TCN | 0.61 | 66.47 | 99.874 | 2121.9 |
Proposed model | 0.46 | 48.30 | 99.922 | 1945.55 |
Model | MAPE (%) | RMSE (MW) | R2 (%) | Cost Time(s) |
---|---|---|---|---|
CNN | 0.96 | 258.57 | 98.836 | 316.44 |
LSTM | 0.87 | 242.92 | 98.87 | 361.41 |
TCN | 0.76 | 228.77 | 99.177 | 515.47 |
SCINet | 0.73 | 216.86 | 99.35 | 1247.51 |
TCN-LSTM | 0.71 | 213.90 | 99.333 | 587.51 |
FFN-SCINet-TCN | 0.61 | 209.11 | 99.36 | 1439.85 |
Proposed model | 0.49 | 166.18 | 99.441 | 1362.41 |
Model | MAPE (%) | RMSE(MW) | R2 (%) | Cost Time(s) |
---|---|---|---|---|
CNN | 2.75 | 174.79 | 95.52 | 365.26 |
LSTM | 2.63 | 167.78 | 95.874 | 419.96 |
TCN | 2.23 | 144.51 | 96.92 | 621.20 |
SCINet | 2.09 | 134.86 | 97.312 | 2437.90 |
TCN-LSTM | 2.00 | 128.18 | 97.576 | 641.76 |
FFN-SCINet-TCN | 1.64 | 106.57 | 98.334 | 2985.40 |
Proposed model | 1.56 | 101.06 | 98.493 | 2935.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Li, Y.; Hu, J.; Wu, X.; Deng, S.; Li, H. A New Hybrid Model Based on SCINet and LSTM for Short-Term Power Load Forecasting. Energies 2024, 17, 95. https://doi.org/10.3390/en17010095
Liu M, Li Y, Hu J, Wu X, Deng S, Li H. A New Hybrid Model Based on SCINet and LSTM for Short-Term Power Load Forecasting. Energies. 2024; 17(1):95. https://doi.org/10.3390/en17010095
Chicago/Turabian StyleLiu, Mingping, Yangze Li, Jiangong Hu, Xiaolong Wu, Suhui Deng, and Hongqiao Li. 2024. "A New Hybrid Model Based on SCINet and LSTM for Short-Term Power Load Forecasting" Energies 17, no. 1: 95. https://doi.org/10.3390/en17010095
APA StyleLiu, M., Li, Y., Hu, J., Wu, X., Deng, S., & Li, H. (2024). A New Hybrid Model Based on SCINet and LSTM for Short-Term Power Load Forecasting. Energies, 17(1), 95. https://doi.org/10.3390/en17010095