Effects Analysis of FAME on the Engine Characteristics of Different Polymerized Biofuels in Compression Ignition Engine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fundamental Equations
2.1.1. Fundamental Governing Equations
2.1.2. Turbulence Simulation
2.1.3. Liquid Droplet Breakup Model
2.1.4. Liquid Density
2.1.5. Emission Model
2.2. Boundary Conditions
2.3. Mesh Generation
2.4. Dual-Fuel Engine Configuration
2.4.1. Fuel Characteristics
2.4.2. Diesel Engine Specifications
2.4.3. Feasibility Testing and Model Validation
3. Effect of Biodiesel with Different Blending Ratios on Engines
3.1. Characteristics of Combustion
3.1.1. In-Cylinder Pressure
3.1.2. In-Cylinder Temperature
3.2. Dynamic Characteristics
3.2.1. Fuel Consumption
3.2.2. Thermal Efficiency
3.3. Emission Characteristic
3.3.1. Soot Emission
3.3.2. NOx Emission
3.3.3. CO Emission
3.3.4. HC Emission
4. EGR Ratios
4.1. Characteristics of Combustion
4.1.1. In-Cylinder Pressure
4.1.2. In-Cylinder Temperature
4.2. Dynamic Characteristics
4.2.1. Thermal Efficiency
4.2.2. Fuel Consumption
4.3. Emission Characteristic
4.3.1. Soot Emission
4.3.2. NOx Emission
4.3.3. CO Emissions
4.3.4. HC Emission
5. Multi-Objective Optimization Based on Response Surface Methodology
5.1. Model Fitting Analysis and Evaluation
5.2. Analysis and Evaluation of Fitting Model
5.3. Optimization Results Analysis
5.3.1. Specific Fuel Consumption for Brakes
5.3.2. Thermal Efficiency
5.3.3. HC Emission
5.3.4. NOx Emission
5.3.5. Multi-Objective Optimization
6. Conclusions
- (1)
- Increasing the biodiesel proportion in the fuel blend at 50%, 75%, and 100% loads amplified the cylinder pressure and temperature. This augmentation was more conspicuous at higher biodiesel ratios. Nonetheless, integrating biodiesel affected the engine’s economic viability. Irrespective of the load conditions examined, higher biodiesel ratios correlated with heightened fuel consumption and diminished thermal efficiency. Additionally, raising the biodiesel content substantially reduced soot, CO, and HC emissions in the exhaust, albeit at the expense of escalated NOx emissions.
- (2)
- At 50%, 75%, and 100% engine loads, elevating the EGR rate diminished both cylinder combustion temperature and pressure. This reduction was more pronounced at higher EGR rates. However, the utilization of EGR technology in the engine did affect its economic performance to a certain extent. Across all loads investigated, augmenting the EGR rate led to increased fuel consumption and decreased thermal efficiency of the engine. Furthermore, raising the engine’s EGR rate markedly diminished NOx emissions in the exhaust, albeit resulting in elevated emissions of soot, CO, and HC.
- (3)
- Increasing the engine load had a significant effect on improving BSFC and BTE. Augmenting the proportion of canola oil and load can reduce HC emissions, but may increase NOx emissions. However, the utilization of EGR technology can notably decrease NOx emissions.
- (4)
- Utilizing the response surface methodology for multi-objective optimization, the optimum operating conditions for the engine were found to be running at 100% load, with a biodiesel blend of 6.9% and an EGR rate of 7.7%. Following a comprehensive analysis, an ideal value of 0.656 was determined. At this configuration, the corresponding values for BSFC, BTE, HC, and NOx emissions were established as 282.62 g/(kW·h), 38.15%, 410.37 ppm, and 274.38 ppm, respectively.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
3D | Three-dimensional |
CFD | Computational fluid dynamics |
ANOVA | Analysis of variance |
CPs | Cylinder pressures |
B5 | 5% biodiesel + 95%diesel |
D100 | Pure diesel |
B10 | 10% biodiesel + 90%diesel |
EGR | Exhaust gas recirculation |
B15 | 15% biodiesel + 85%diesel |
FAME | Fatty acid methyl esters |
B100 | Pure biodiesel |
HC | Hydrocarbon |
BTE | Brake thermal efficiency |
HRR | Heat release rate |
BSFC | Brake specific fuel consumption |
KH-RT | Kelvin Helmholtz model and Rayleigh Taylor |
CI | Compression ignition |
NOx | Nitrogen oxides |
CO | Carbon monoxide |
RSM | Response surface methodology |
References
- Zhao, D.; Guan, Y. Characterizing Modal Exponential Behaviors of Self-excited Transverse and Longitudinal Combustion Instabilities. Phys. Fluids 2022, 34, 024109. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhong, W.; Mao, C.; Xu, Y.; Lu, K.; Ye, Y.; Guan, W.; Pan, M.; Tan, D. Multi-objective optimization of Fe-based SCR catalyst on the NOx conversion efficiency for a diesel engine based on FGRA-ANN/RF. Energy 2024, 294, 130899. [Google Scholar] [CrossRef]
- Fan, L.; Cheng, F.; Zhang, T.; Liu, G.; Yuan, J.; Mao, P. Visible-light photoredox-promoted desilylative allylation of a-silylamines: An efficient route to synthesis of homoallylic amines. Tetrahedron Lett. 2021, 81, 153357. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, S.; Pan, M.; Lv, J.; Lu, K.; Ye, Y.; Tan, D. Utilization of Hydrogen-Diesel Blends for the Improvements of a Dual-Fuel Engine Based on the Improved Taguchi Methodology. Energy 2024, 292, 130474. [Google Scholar] [CrossRef]
- Zhao, D.; Ephraim, J.; Gutmark, A. Reinecke, Mitigating self-excited flame pulsating and thermoacoustic oscillations using perforated liners. Sci. Bull. 2019, 64, 941–952. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, S.J.; Chen, X.L.; Fan, L.L.; Li, X.Y.; Zhu, S.S.; Qu, L.B.; Yu, B. Mn(III)—Mediated Regioselective 6—endo—trig Radical Cyclization of o—Vinylaryl Isocyanides to Access 2—Functionalized Quinolines. Adv. Synth. Catal. 2019, 362, 688–694. [Google Scholar] [CrossRef]
- Cai, T.; Zhao, D.; Gutmark, E. Overview of fundamental kinetic mechanisms and emission mitigation in ammonia combustion. Chem. Eng. J. 2023, 458, 141391. [Google Scholar] [CrossRef]
- Cai, T.; Tang, A.; Li, C. Experimental and kinetic analyses on the flame dynamics and stabilization of ammonia/hydrogen-air mixtures in a micro-planar combustor. Chem. Eng. J. 2023, 477, 147038. [Google Scholar] [CrossRef]
- Tan, D.; Dong, R.; Zhang, Z.; Zhang, B.; Jiang, F.; Ye, Y.; Li, D.; Liu, H. Multi-Objective Impact Mechanism on the Performance Characteristic for a Diesel Particulate Filter by RF-NSGA III-TOPSIS during Soot Loading. Energy 2024, 286, 129582. [Google Scholar] [CrossRef]
- Zhang, Z.; E, J.; Deng, Y.; Pham, M.; Zuo, W.; Peng, Q.; Yin, Z. Effects of Fatty Acid Methyl Esters Proportion on Combustion and Emission Characteristics of a Biodiesel Fueled Marine Diesel Engine. Energy Convers. Manag. 2018, 159, 244–253. [Google Scholar] [CrossRef]
- Cheng, F.; Fan, L.; Lv, Q.; Chen, X.; Yu, B. Alkyl radicals from diacyl peroxides: Metal-/base-/additive-free photocatalytic alkylation of N-heteroaromatics. Green Chem 2023, 25, 7971–7977. [Google Scholar] [CrossRef]
- Zhang, Z.; Lv, J.; Xie, G.; Wang, S.; Ye, Y.; Huang, G.; Tan, D. Effect of assisted hydrogen on combustion and emission characteristics of a diesel engine fueled with biodiesel. Energy 2022, 254, 124269. [Google Scholar] [CrossRef]
- Chang, Y.C.; Lee, W.J.; Wang, L.C.; Yang, H.H.; Cheng, M.T.; Lu, J.H.; Tsai, Y.I.; Young, L.H. Effects of Waste Cooking Oil-Based Biodiesel on the Toxic Organic Pollutant Emissions from a Diesel Engine. Appl. Energy 2014, 113, 631–638. [Google Scholar] [CrossRef]
- Mourad, M.; Mahmoud, K.R.M.; NourEldeen, E.S.H. Improving Diesel Engine Performance and Emissions Characteristics Fuelled with Biodiesel. Fuel 2021, 302, 121097. [Google Scholar] [CrossRef]
- Singh, B.; Korstad, J.; Sharma, Y.C. A Critical Review on Corrosion of Compression Ignition (CI) Engine Parts by Biodiesel and Biodiesel Blends and Its Inhibition. Renew. Sustain. Energy Rev. 2012, 16, 3401–3408. [Google Scholar] [CrossRef]
- Manaf, I.S.A.; Embong, N.H.; Khazaai, S.N.M.; Rahim, M.H.A.; Yusoff, M.M.; Lee, K.T.; Maniam, G.P. A Review for Key Challenges of the Development of Biodiesel Industry. Energy Convers. Manag. 2019, 185, 508–517. [Google Scholar] [CrossRef]
- Vélez Godiño, J.A.; Torres García, M.; Jiménez-Espadafor Aguilar, F.J. Experimental Analysis of Late Direct Injection Combustion Mode in a Compression-Ignition Engine Fuelled with Biodiesel/Diesel Blends. Energy 2022, 239, 121895. [Google Scholar] [CrossRef]
- Karavalakis, G.; Johnson, K.C.; Hajbabaei, M.; Durbin, T.D. Application of Low-Level Biodiesel Blends on Heavy-Duty (Diesel) Engines: Feedstock Implications on NO and Particulate Emissions. Fuel 2016, 181, 259–268. [Google Scholar] [CrossRef]
- Yoon, S.; Kim, M.; Kim, H.; Choi, N. Effects of Canola Oil Biodiesel Fuel Blends on Combustion, Performance, and Emissions Reduction in a Common Rail Diesel Engine. Energies 2014, 7, 8132–8149. [Google Scholar] [CrossRef]
- Uyumaz, A.; Aydoğan, B.; Yılmaz, E.; Solmaz, H.; Aksoy, F.; Mutlu, İ.; İpci, D.; Calam, A. Experimental Investigation on the Combustion, Performance and Exhaust Emission Characteristics of Poppy Oil Biodiesel-Diesel Dual Fuel Combustion in a CI Engine. Fuel 2020, 280, 118588. [Google Scholar] [CrossRef]
- Zhang, Z.; Ye, J.; Tan, D.; Feng, Z.; Luo, J.; Tan, Y.; Huang, Y. The Effects of Fe2O3 Based DOC and SCR Catalyst on the Combustion and Emission Characteristics of a Diesel Engine Fueled with Biodiesel. Fuel 2021, 290, 120039. [Google Scholar] [CrossRef]
- Maiboom, A.; Tauzia, X.; Hétet, J.F. Experimental Study of Various Effects of Exhaust Gas Recirculation (EGR) on Combustion and Emissions of an Automotive Direct Injection Diesel Engine. Energy 2008, 33, 22–34. [Google Scholar] [CrossRef]
- Chintala, V.; Subramanian, K.A. CFD Analysis on Effect of Localized In-Cylinder Temperature on Nitric Oxide (NO) Emission in a Compression Ignition Engine under Hydrogen-Diesel Dual-Fuel Mode. Energy 2016, 116, 470–488. [Google Scholar] [CrossRef]
- Yokomura, H.; Kouketsu, S.; Kotooka, S.; Akao, Y. Transient EGR Control for a Turbocharged Heavy Duty Diesel Engine; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2004; No. 2004–01–0120. [Google Scholar] [CrossRef]
- Maurya, R.K.; Mishra, P. Parametric Investigation on Combustion and Emissions Characteristics of a Dual Fuel (Natural Gas Port Injection and Diesel Pilot Injection) Engine Using 0-D SRM and 3D CFD Approach. Fuel 2017, 210, 900–913. [Google Scholar] [CrossRef]
- Rajesh Kumar, B.; Saravanan, S. Effect of Exhaust Gas Recirculation (EGR) on Performance and Emissions of a Constant Speed DI Diesel Engine Fueled with Pentanol/Diesel Blends. Fuel 2015, 160, 217–226. [Google Scholar] [CrossRef]
- Dodge, L.G.; Simescu, S.; Neely, G.D.; Maymar, M.J.; Dickey, D.W.; Savonen, C.L. Effect of Small Holes and High Injection Pressures on Diesel Engine Combustion; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2002; No. 2002–01–0494. [Google Scholar] [CrossRef]
- Basha, S.A.; Gopal, K.R.; Jebaraj, S. A Review on Biodiesel Production, Combustion, Emissions and Performance. Renew. Sustain. Energy Rev. 2009, 13, 1628–1634. [Google Scholar] [CrossRef]
- Han, Z.; Reitz, R.D. Turbulence Modeling of Internal Combustion Engines Using RNG κ-ε Models. Combust. Sci. Technol. 1995, 106, 267–295. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Y.; Luo, K.; Liang, M.; Lei, B. Development and Validation of an Improved Atomization Model for GDI Spray Simulations: Coupling Effects of Nozzle-Generated Turbulence and Aerodynamic Force. Fuel 2021, 299, 120871. [Google Scholar] [CrossRef]
- Gao, S.; Ye, Y.; Tan, D.; Jia, G.; Zhang, B.; Liu, H.; Li, D.; Zhang, J.; Zhong, W.; Zhang, Z. Improvements of Performance and Emission Characteristics of a Diesel Engine Fueled with Diesel/PODE3/n-Butanol Blended Fuels by RSM-NSGA III in Plateau Environment. Process Saf. Environ. Prot. 2024, 185, 184–210. [Google Scholar] [CrossRef]
- Pham, Q.; Park, S.; Agarwal, A.K.; Park, S. Review of Dual-Fuel Combustion in the Compression-Ignition Engine: Spray, Combustion, and Emission. Energy 2022, 250, 123778. [Google Scholar] [CrossRef]
- Zhang, F.; Lei, F.; Feng, M.; Liao, G.; E, J. Investigation on the Effect of the Cooler Design on the Performance of Onboard Supercritical Carbon Dioxide Power Cycle for Hypersonic Vehicles. Appl. Therm. Eng. 2024, 236, 121854. [Google Scholar] [CrossRef]
- Tan, D.; Meng, Y.; Tian, J.; Zhang, C.; Zhang, Z.; Yang, G.; Cui, S.; Hu, J.; Zhao, Z. Utilization of Renewable and Sustainable Diesel/Methanol/n-Butanol (DMB) Blends for Reducing the Engine Emissions in a Diesel Engine with Different Pre-Injection Strategies. Energy 2023, 269, 126785. [Google Scholar] [CrossRef]
- Zhang, Z.; Lv, J.; Li, W.; Long, J.; Wang, S.; Tan, D.; Yin, Z. Performance and Emission Evaluation of a Marine Diesel Engine Fueled with Natural Gas Ignited by Biodiesel-Diesel Blended Fuel. Energy 2022, 256, 124662. [Google Scholar] [CrossRef]
- Tan, D.; Wu, Y.; Lv, J.; Li, J.; Ou, X.; Meng, Y.; Lan, G.; Chen, Y.; Zhang, Z. Performance Optimization of a Diesel Engine Fueled with Hydrogen/Biodiesel with Water Addition Based on the Response Surface Methodology. Energy 2023, 263, 125869. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Tian, J.; Dong, R.; Zou, Z.; Gao, S.; Tan, D. Performance, Combustion and Emission Characteristics Investigations on a Diesel Engine Fueled with Diesel/Ethanol/n-Butanol Blends. Energy 2022, 249, 123733. [Google Scholar] [CrossRef]
- Buyukkaya, E. Effects of Biodiesel on a DI Diesel Engine Performance, Emission and Combustion Characteristics. Fuel 2010, 89, 3099–3105. [Google Scholar] [CrossRef]
- Daho, T.; Vaitilingom, G.; Ouiminga, S.K.; Piriou, B.; Zongo, A.S.; Ouoba, S.; Koulidiati, J. Influence of Engine Load and Fuel Droplet Size on Performance of a CI Engine Fueled with Cottonseed Oil and Its Blends with Diesel Fuel. Appl. Energy 2013, 111, 1046–1053. [Google Scholar] [CrossRef]
- Mehta, R.N.; Chakraborty, M.; Parikh, P.A. Nanofuels: Combustion, Engine Performance and Emissions. Fuel 2014, 120, 91–97. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, H.; Li, Y.; Ye, Y.; Tian, J.; Li, J.; Xu, Y.; Lv, J. Research and Optimization of Hydrogen Addition and EGR on the Combustion, Performance, and Emission of the Biodiesel-Hydrogen Dual-Fuel Engine with Different Loads Based on the RSM. Heliyon 2024, 10, e23389. [Google Scholar] [CrossRef]
- Park, Y.; Bae, C. Experimental Study on the Effects of High/Low Pressure EGR Proportion in a Passenger Car Diesel Engine. Appl. Energy 2014, 133, 308–316. [Google Scholar] [CrossRef]
- Hua, Y.; Wang, Z.; Li, R.; Liu, S.; Zhao, Y.; Qu, L.; Mei, D.; Lv, H. Experimental Study on Morphology, Nanostructure and Oxidation Reactivity of Particles in Diesel Engine with Exhaust Gas Recirculation (EGR) Burned with Different Alternative Fuels. Energy 2022, 261, 125249. [Google Scholar] [CrossRef]
- Gatts, T.; Liu, S.; Liew, C.; Ralston, B.; Bell, C.; Li, H. An Experimental Investigation of Incomplete Combustion of Gaseous Fuels of a Heavy-Duty Diesel Engine Supplemented with Hydrogen and Natural Gas. Int. J. Hydrogen Energy 2012, 37, 7848–7859. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, J.; Li, J.; Lv, J.; Wang, S.; Zhong, Y.; Dong, R.; Gao, S.; Cao, C.; Tan, D. Investigation on Combustion, Performance and Emission Characteristics of a Diesel Engine Fueled with Diesel/Alcohol/n-Butanol Blended Fuels. Fuel 2022, 320, 123975. [Google Scholar] [CrossRef]
- Duan, X.; Xu, Z.; Sun, X.; Deng, B.; Liu, J. Effects of Injection Timing and EGR on Combustion and Emissions Characteristics of the Diesel Engine Fuelled with Acetone–Butanol–Ethanol/Diesel Blend Fuels. Energy 2021, 231, 121069. [Google Scholar] [CrossRef]
- Labecki, L.; Ganippa, L.C. Effects of Injection Parameters and EGR on Combustion and Emission Characteristics of Rapeseed Oil and Its Blends in Diesel Engines. Fuel 2012, 98, 15–28. [Google Scholar] [CrossRef]
- Saravanan, S.; Rao, G.L.N. Effect of EGR on Performance and Emission Characteristics of Diesel Engine at Advanced Injection Timing. IJOGCT 2014, 7, 335. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, J.; Xie, G.; Li, J.; Xu, W.; Jiang, F.; Huang, Y.; Tan, D. Investigation on the Combustion and Emission Characteristics of Diesel Engine Fueled with Diesel/Methanol/n-Butanol Blends. Fuel 2022, 314, 123088. [Google Scholar] [CrossRef]
- Shan, X.; Qian, Y.; Zhu, L.; Lu, X. Effects of EGR Rate and Hydrogen/Carbon Monoxide Ratio on Combustion and Emission Characteristics of Biogas/Diesel Dual Fuel Combustion Engine. Fuel 2016, 181, 1050–1057. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, C.S. Combustion Performance and Emission Reduction Characteristics of Automotive DME Engine System. Prog. Energy Combust. Sci. 2013, 39, 147–168. [Google Scholar] [CrossRef]
- Wu, C.; Liang, K.; Sang, H.; Ye, Y.; Pan, M. A Low-Sample-Count, High-Precision Pareto Front Adaptive Sampling Algorithm Based on Multi-Criteria and Voronoi. Soft Comput 2023, 1–17. [Google Scholar] [CrossRef]
Model | Selected Models |
---|---|
Spray-wall interaction model | Rebound/slide model |
Evaporation model | Frossling drop evaporation model |
Emission model | Hiroyasu-NSC soot model and extended Zeldovich NOx model |
Turbulent diffusion model | O’Rourke model |
Turbulence model | RNG k-ε model |
Combustion model | SAGE model |
Spray breakup model | KH-RT model |
Type | Value | Type | Value |
---|---|---|---|
Stroke × Bore (mm) | 210 × 190 | The initial turbulent kinetic energy (m2/s2) | 18.46 |
Connecting rod (mm) | 410 | Fuel injection pressure (MPa) | 81.12 |
Rate speed (r/min) | 1000 | Inlet pressure (MPa) | 0.189 |
Number of cylinders | 4 | Initial inlet temperature (K) | 312.26 |
Effective power (kW) | 220 | Piston top temperature (K) | 626.12 |
Number of nozzles | 8 | Cylinder head surface temperature (K) | 552.18 |
Nozzle radius (mm) | 0.3 | Compression ratio (-) | 14 |
Fuel | Heating Value (MJ/kg) | Viscosity (cPs/40 °C) | Density (g/m3/15 °C) | Oxygen Content (wt%) |
---|---|---|---|---|
D100 | 42.7 | 2.75 | 0.844 | 0.3 |
B5 | 42.54 | 2.89 | 0.846 | 0.38 |
B10 | 42.38 | 3.07 | 0.848 | 0.46 |
B15 | 42.25 | 3.16 | 0.849 | 0.53 |
B100 | 39.53 | 4.45 | 0.882 | 10.7 |
Parameter | BSFC | BTE | ||
---|---|---|---|---|
F-Value | p-Value | F-Value | p-Value | |
Model | 162.68 | <0.0001 | 144.65 | <0.0001 |
x | 459.82 | <0.0001 | 412.71 | <0.0001 |
y | 630.04 | <0.0001 | 789.65 | <0.0001 |
z | 161.20 | <0.0001 | 120.23 | <0.0001 |
xy | 0.0687 | 0.7897 | 79.01 | <0.0001 |
xz | 12.98 | 0.0048 | 0.0013 | 0.9697 |
yx | 4.56 | 0.0653 | 12.02 | 0.0073 |
x2 | 2.99 | 0.1203 | 6.21 | 0.0296 |
y2 | 2.96 | 0.1173 | 18.34 | 0.0017 |
z2 | 20.89 | 0.0010 | 3.16 | 0.1073 |
R2 | 0.9928 | 0.9923 | ||
Adj-R2 | 0.9873 | 0.9854 | ||
Pred-R2 | 0.9398 | 0.9381 |
Parameter | HC | NOx | ||
---|---|---|---|---|
F-Value | p-Value | F-Value | p-Value | |
Model | 189.68 | <0.0001 | 536.40 | <0.0001 |
x | 284.46 | <0.0001 | 2224.93 | <0.0001 |
y | 1252.22 | <0.0001 | 1715.82 | <0.0001 |
z | 24.89 | 0.0005 | 689.08 | <0.0001 |
xy | 2.12 | 0.1812 | 152.72 | <0.0001 |
xz | 17.20 | 0.0020 | 13.10 | 0.0047 |
yx | 11.81 | 0.0064 | 42.54 | <0.0001 |
x2 | 14.82 | 0.0032 | 12.41 | 0.0055 |
y2 | 0.0364 | 0.8525 | 5.54 | 0.0404 |
z2 | 4.55 | 0.0587 | 8.96 | 0.0135 |
R2 | 0.9842 | 0.9978 | ||
Adj-R2 | 0.9789 | 0.9962 | ||
Pred-R2 | 0.9623 | 0.9651 |
Biodiesel% | Load% | EGR% | Parameter | BSFC (g/kW·h) | BTE (%) | HC (ppm) | NOx (ppm) |
---|---|---|---|---|---|---|---|
Actual | 280.47 | 38.29 | 405.45 | 284.53 | |||
6.9 | 100 | 7.7 | Predicted | 282.62 | 38.15 | 410.37 | 274.38 |
Error(%) | −0.761 | 0.370 | −1.199 | 3.699 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Zhang, Z.; Lu, K.; Ye, Y.; Gao, S. Effects Analysis of FAME on the Engine Characteristics of Different Polymerized Biofuels in Compression Ignition Engine. Energies 2024, 17, 2255. https://doi.org/10.3390/en17102255
Zhao H, Zhang Z, Lu K, Ye Y, Gao S. Effects Analysis of FAME on the Engine Characteristics of Different Polymerized Biofuels in Compression Ignition Engine. Energies. 2024; 17(10):2255. https://doi.org/10.3390/en17102255
Chicago/Turabian StyleZhao, Hongting, Zhiqing Zhang, Kai Lu, Yanshuai Ye, and Sheng Gao. 2024. "Effects Analysis of FAME on the Engine Characteristics of Different Polymerized Biofuels in Compression Ignition Engine" Energies 17, no. 10: 2255. https://doi.org/10.3390/en17102255
APA StyleZhao, H., Zhang, Z., Lu, K., Ye, Y., & Gao, S. (2024). Effects Analysis of FAME on the Engine Characteristics of Different Polymerized Biofuels in Compression Ignition Engine. Energies, 17(10), 2255. https://doi.org/10.3390/en17102255