Multi-Terminal GaInP/GaInAs/Ge Solar Cells for Subcells Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Fabrication
2.1.1. Process Flow
2.1.2. Selective Etching
2.2. Ohmic Contacts
2.3. Reference Cells
2.4. Characterization
2.4.1. External Quantum Efficiency
2.4.2. Electroluminescence
3. Results and Discussion
3.1. I-V Measurements
3.2. EQE Measurements
3.3. Electroluminescence Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ejaz, A.; Babar, H.; Ali, H.M.; Jamil, F.; Mansoor Janjua, M.; Fattah, I.M.R.; Said, Z.; Li, C. Concentration photovoltaics as light harvesters: Outlook, recent progress, and challenges. Sustain. Energy Technol. Assess. 2021, 46, 101199. [Google Scholar]
- Baiju, A.; Yarema, M. Status and challenges of multi-junction solar cell technology. Front. Energy Res. 2022, 10, 971918. [Google Scholar] [CrossRef]
- Wiesenfarth, M.; Anton, I.; Bett, A.W. Challenges in the design of concentrator photovoltaic (CPV) modules to achieve highest efficiencies. App. Phys. Rev. 2018, 5, 041601. [Google Scholar] [CrossRef]
- Fafard, S.; Masson, D.P. Perspective on photovoltaic optical power converters. J. Appl. Phys. 2021, 130, 160901. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Siefer, G.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Hao, X. Solar cell efficiency tables (Version 61). Prog. Photovolt. Res. Appl. 2023, 31, 3–16. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Dimroth, F.; Geisz, J.F.; Ekins-Daukes, N.J. Multi-junction solar cells paving the way for super high-efficiency. J. Appl. Phys. 2021, 129, 240901. [Google Scholar] [CrossRef]
- Almansouri, I.; Ho-Baillie, A.; Bremner, S.P.; Green, M.A. Supercharging Silicon Solar Cell Performance by Means of Multijunction Concept. IEEE J. Photovolt. 2015, 5, 968–976. [Google Scholar] [CrossRef]
- Li, J.-J.; Lim, S.H.; Allen, C.R.; Ding, D.; Zhang, Y.-H. Combined Effects of Shunt and Luminescence Coupling on External Quantum Efficiency Measurements of Multijunction Solar Cells. IEEE J. Photovolt. 2011, 1, 225–230. [Google Scholar] [CrossRef]
- Meusel, M.; Baur, C.; Létay, G.; Bett, A.W.; Warta, W.; Fernandez, E. Spectral Response Measurements of Monolithic GaInP/Ga(In)As/Ge Triple-junction Solar Cells: Measurement Artifacts and Their Explanation. Prog. Photovolt. 2003, 11, 499–514. [Google Scholar] [CrossRef]
- Siefer, G.; Baur, C.; Bett, A.W. External Quantum Efficiency Measurements of Germanium Bottom Subcells: Measurement Artifacts and Correction Procedures. In Proceedings of the 2010 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, USA, 20–25 June 2010; pp. 000704–000707. [Google Scholar]
- Fafard, S.; Valdivia, C.E.; Wallace, S.G. The “Fill-Factor Bias Measurement” for Advanced Triple-Junction Solar Cell Characterization and Quality Control. In Proceedings of the 8th International Conference on Concentrating Photovoltaics System: CPV-8, Toledo, Spain, 16–18 April 2012; pp. 118–121. [Google Scholar]
- Steiner, M.A.; Wanlass, M.W.; Carapella, J.J.; Duda, A.; Ward, J.S.; Moriarty, T.E.; Emery, K.A. A Monolithic Three-terminal GaInAsP/GaInAs Tandem Solar Cell. Prog. Photovolt. 2009, 17, 587–593. [Google Scholar] [CrossRef]
- Albert, P.; Jaouad, A.; Hamon, G.; Volatier, M.; Valdivia, C.E.; Deshayes, Y.; Hinzer, K.; Béchou, L.; Aimez, V.; Darnon, M. Miniaturization of InGaP/InGaAs/Ge Solar Cells for Micro-concentrator Photovoltaics. Prog. Photovolt. 2021, 29, 990–999. [Google Scholar] [CrossRef]
- Meusel, M.; Baur, C.; Siefer, G.; Dimroth, F.; Bett, A.W.; Warta, W. Characterization of Monolithic III–V Multi-Junction Solar Cells—Challenges and Application. Sol. Energ. Mat. Sol. C 2006, 90, 3268–3275. [Google Scholar] [CrossRef]
- Shu, G.W.; Lin, J.Y.; Jian, H.T.; Shen, J.L.; Wang, S.C.; Chou, C.L.; Chou, W.C.; Wu, C.H.; Chiu, C.H.; Kuo, H.C. Optical coupling from InGaAs subcell to InGaP subcell in InGaP/InGaAs/Ge multi-junction solar cells. Opt. Express. 2003, 21, S1. [Google Scholar] [CrossRef] [PubMed]
- Notten, P.H.L. The Etching of InP in HCl Solutions: A Chemical Mechanism. J. Electrochem. Soc. 1984, 131, 2641–2644. [Google Scholar] [CrossRef]
- Clawson, A.R. Guide to References on III V Semiconductor Chemical Etching. Mater. Sci. Eng. 2001, 31, 1–438. [Google Scholar] [CrossRef]
- Ayari, F.; Moreau, S.; de Lafontaine, M.; Turala, A.; Bidaud, T.; Hamon, G.; Volatier, M.; Aimez, V.; Jaouad, A.; Darnon, M. Multi-Terminal Three-Junction Solar Cells for Sub-Cells Characterization. In Proceedings of the 18th Conference on Concentrated PhotoVoltaics System, Miyazaki, Japan, 25–27 April 2022. [Google Scholar]
- De Lafontaine, M.; Pargon, E.; Petit-Etienne, C.; Gay, G.; Jaouad, A.; Gour, M.-J.; Volatier, M.; Fafard, S.; Aimez, V.; Darnon, M. Influence of Plasma Process on III-V/Ge Multijunction Solar Cell via Etching. Sol. Energ. Mat. Sol. C 2019, 195, 49–54. [Google Scholar] [CrossRef]
- Burdick, J.; Glatfelter, T. Spectral Response and I–V Measurements of Tandem Amorphous-Silicon Alloy Solar Cells. Sol. Cells 1986, 18, 301–314. [Google Scholar] [CrossRef]
- De Lafontaine, M.; Ayari, F.; Pargon, E.; Gay, G.; Petit-Etienne, C.; Turala, A.; Hamon, G.; Jaouad, A.; Volatier, M.; Fafard, S.; et al. Multijunction Solar Cell Mesa Isolation: Correlation between Process, Morphology and Cell Performance. Sol. Energ. Mat. Sol. C 2022, 239, 111643. [Google Scholar] [CrossRef]
- Roensch, S.; Hoheisel, R.; Dimroth, F.; Bett, A.W. Subcell I-V Characteristic Analysis of GaInP/GaInAs/Ge Solar Cells Using Electroluminescence Measurements. Appl. Phys. Lett. 2011, 98, 251113. [Google Scholar] [CrossRef]
Layer | Thickness nm | Etching Process | Etching Time (s) |
---|---|---|---|
Cap layer (GaAs) | 400 | (1) | 25 |
Top cell window/absorber/BSF (AlInP/InGaP/AlGaInP) | 870 | (2) | 40 |
Tunnel junction 1 (p++) AlGaAs | 50 | (1) | 3 |
Tunnel junction 2 (n++) | 50 | (2) | 3 |
(InGaInP) | |||
Middle cell * Window (InGaP) | (2) | ||
Middle Cell Absorber (InGaAs) | 3700 | (1) | 240 |
Middle Cell BSF (InGaP) | 150 | (2) | 7 |
Tunnel junction 2 (p++) (GaAs) | 50 | (1) | |
Tunnel junction 2 (n++) (GaAs) | 50 | (1) | 240 |
Buffer (InGaAs) | 2900 | (1) | |
Bottom cell * (Ge) | (3) | 2400 |
Subcell | J0 (mA·cm−2) | n | Rs (ohm·cm−2) | Rp (ohm·cm−2) |
---|---|---|---|---|
top | 6.7 × 10−11 | 1.9 | 1.9 × 10−5 | 103 |
middle | 1.8 × 10−8 | 1.8 | 3.9 × 10−5 | 104 |
bottom | 1 | 2.0 | 1 × 10−1 | 101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bidaud, T.; Ayari, F.; Ferreol, P.; Jouanneau, C.; Turala, A.; Moreau, S.; Volatier, M.; Aimez, V.; Fafard, S.; Jaouad, A.; et al. Multi-Terminal GaInP/GaInAs/Ge Solar Cells for Subcells Characterization. Energies 2024, 17, 2538. https://doi.org/10.3390/en17112538
Bidaud T, Ayari F, Ferreol P, Jouanneau C, Turala A, Moreau S, Volatier M, Aimez V, Fafard S, Jaouad A, et al. Multi-Terminal GaInP/GaInAs/Ge Solar Cells for Subcells Characterization. Energies. 2024; 17(11):2538. https://doi.org/10.3390/en17112538
Chicago/Turabian StyleBidaud, Thomas, Farah Ayari, Paul Ferreol, Corentin Jouanneau, Artur Turala, Solene Moreau, Maïté Volatier, Vincent Aimez, Simon Fafard, Abdelatif Jaouad, and et al. 2024. "Multi-Terminal GaInP/GaInAs/Ge Solar Cells for Subcells Characterization" Energies 17, no. 11: 2538. https://doi.org/10.3390/en17112538
APA StyleBidaud, T., Ayari, F., Ferreol, P., Jouanneau, C., Turala, A., Moreau, S., Volatier, M., Aimez, V., Fafard, S., Jaouad, A., Darnon, M., & Hamon, G. (2024). Multi-Terminal GaInP/GaInAs/Ge Solar Cells for Subcells Characterization. Energies, 17(11), 2538. https://doi.org/10.3390/en17112538