Application of Recycled Filling to Improve the Purification Performance of Confectionery Wastewater in a Vertical Anaerobic Labyrinth Flow Bioreactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vertical Anaerobic Labyrinth Flow Bioreactor (VAL-FB)
2.2. Low-Cost Recycled Filling (LCRF)
2.3. Materials
2.3.1. Confectionery Wastewater
2.3.2. Anaerobic Sludge
2.4. Organisational and Technological Research Design
2.5. Analytical Methods
- -
- Chemical oxygen demand (COD), total nitrogen (TN), ammonia nitrogen (N–NH4), total phosphorus (TP), orthophosphate (P–PO4)—cuvette tests, using a DR 2800 spectrophotometer with a mineralizer (HACH Lange, Düsseldorf, Germany);
- -
- Total solids (TS), mineral solids (MS), volatile solids (VS)—gravimetric method, using part E EPA Standard Method 2540;
- -
- Suspended solids—gravimetric method, using Method 8271;
- -
- Biological oxygen demand (BOD5)—specific method according to PN-EN ISO 5815-1:2019-12 [46];
- -
- Total organic carbon (TOC)—TOC 1200 analyzer (Thermo Scientific, Waltham, MA, USA);
- -
- Lipids (ether extract)—gravimetric method for determining the total content of organic substances extractable with ether (PN-C 04573-01:1986) [47];
- -
- pH—pH meter (VWR, Radnor, PA, USA);
- -
- FOS/TAC ratio—titration method (Tritlab AT 1000, Hach, Düsseldorf, Germany);
- -
- Biogas yield—Aalborg mass flow meter equipped with an instantaneous flow display and a counter (Aalborg, Orangeburg, NY, USA);
- -
- Biogas composition—gas-tight syringe (injection volume 20 mL) and gas chromatograph (GC, Agilent Technologies, Santa Clara, CA, USA) equipped with a thermal conductivity detector (TCD). Additionally, biogas was analyzed using a GMF 430 analyzer (Gas Data, Coventry, UK). Methane (CH4), and carbon dioxide (CO2) contents were measured.
2.6. Statistical Analysis
3. Results and Discussion
3.1. Organic Compounds Removal
3.2. Biogas and CH4 Production
3.3. Biogenic Compounds Removal
3.4. pH and FOS/TAC Variability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vaclavik, V.A.; Christian, E.W.; Campbell, T. Sugars, Sweeteners, and Confections. In Essentials of Food Science; Food Science Text Series; Springer: Cham, Switzerland, 2021; pp. 281–299. [Google Scholar] [CrossRef]
- Nasr, F.A.; Abdelfattah, I.; El-Shafaia, S.A. Cost Effective Management of Confectionery Industrial Wastewater. Egypt. J. Chem. 2022, 65, 391–399. [Google Scholar] [CrossRef]
- Balcıoğlu, G.; Yilmaz, G.; Gönder, Z.B. Evaluation of Anaerobic Membrane Bioreactor (AnMBR) Treating Confectionery Wastewater at Long-Term Operation under Different Organic Loading Rates: Performance and Membrane Fouling. Chem. Eng. J. 2021, 404, 126261. [Google Scholar] [CrossRef]
- Kannah, R.Y.; Banu, J.R.; Joe, J.M.; Yeom, I.T.; Do, K.U. Profitable Sludge Management via Novel Combined Ozone Disperser Pretreatment Coupled with Membrane Bioreactor for Treating Confectionary Wastewater. J. Clean. Prod. 2019, 239, 118102. [Google Scholar] [CrossRef]
- Patsialou, S.; Politou, E.; Nousis, S.; Liakopoulou, P.; Vayenas, D.V.; Tekerlekopoulou, A.G. Hybrid Treatment of Confectionery Wastewater Using a Biofilter and a Cyanobacteria-Based System with Simultaneous Valuable Metabolic Compounds Production. Algal Res. 2024, 79, 103483. [Google Scholar] [CrossRef]
- Nayyar, D.; Nawaz, T.; Noore, S.; Singh, A.P. Food Processing Wastewater Treatment: Current Practices and Future Challenges. In Energy, Environment, and Sustainability; Springer: Singapore, 2021; pp. 177–208. [Google Scholar] [CrossRef]
- Zajda, M.; Aleksander-Kwaterczak, U. Wastewater Treatment Methods for Effluents from the Confectionery Industry—An Overview. J. Ecol. Eng. 2019, 20, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Esparza-Soto, M.; Alcaraz-Ibarra, S.; Lucero-Chávez, M.; Mier-Quiroga, M.; Fall, C. Influence of Low Operating Temperature on Biomass Yield during Anaerobic Treatment of Chocolate Confectionery Wastewater in a Pilot-Scale UASB Reactor. J. Water Process Eng. 2022, 48, 102918. [Google Scholar] [CrossRef]
- Karamichailidou, D.; Alexandridis, A.; Anagnostopoulos, G.; Syriopoulos, G.; Sekkas, O. Modeling Biogas Production from Anaerobic Wastewater Treatment Plants Using Radial Basis Function Networks and Differential Evolution. Comput. Chem. Eng. 2022, 157, 107629. [Google Scholar] [CrossRef]
- Nivedha Ramanathan, R.M.; Balasubramanian, N.; Chithra, K. Biogas from Confectionery Wastewater with the Application of Ultrasound Pre-Treatment. Energy Sources Part A Recover. Util. Environ. Eff. 2022, 44, 2309–2320. [Google Scholar] [CrossRef]
- Mpofu, A.B.; Kaira, W.M.; Oyekola, O.O.; Welz, P.J. Anaerobic Co-Digestion of Tannery Effluents: Process Optimisation for Resource Recovery, Recycling and Reuse in a Circular Bioeconomy. Process Saf. Environ. Prot. 2022, 158, 547–559. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Kumar, J.; Vu, M.T.; Mohammed, J.A.H.; Pathak, N.; Commault, A.S.; Sutherland, D.; Zdarta, J.; Tyagi, V.K.; Nghiem, L.D. Biomethane Production from Anaerobic Co-Digestion at Wastewater Treatment Plants: A Critical Review on Development and Innovations in Biogas Upgrading Techniques. Sci. Total Environ. 2021, 765, 142753. [Google Scholar] [CrossRef]
- Eslami, H.; Hashemi, H.; Fallahzadeh, R.A.; Khosravi, R.; Fard, R.F.; Ebrahimi, A.A. Effect of Organic Loading Rates on Biogas Production and Anaerobic Biodegradation of Composting Leachate in the Anaerobic Series Bioreactors. Ecol. Eng. 2018, 110, 165–171. [Google Scholar] [CrossRef]
- Mahmoud, I.; Gao, W.J.; Liao, B.Q.; Cumin, J.; Dagnew, M.; Hong, Y. Development of a High-Rate Submerged Anaerobic Membrane Bioreactor. Environ. Technol. 2018, 39, 640–650. [Google Scholar] [CrossRef]
- Mariraj Mohan, S.; Swathi, T. A Review on Upflow Anaerobic Sludge Blanket Reactor: Factors Affecting Performance, Modification of Configuration and Its Derivatives. Water Environ. Res. 2022, 94, e1665. [Google Scholar] [CrossRef] [PubMed]
- Patil, P.G.; Kulkarni, G.S.; Kore, S.V.; Tech, M.; Kore, S.V.S. Aerobic Sequencing Batch Reactor for Wastewater Treatment: A Review. Int. J. Eng. Res. Technol. 2013, 2, 534–550. [Google Scholar]
- Helness, H.; ØDegaard, H. Biological Phosphorus Removal in a Sequencing Batch Moving Bed Biofilm Reactor. Water Sci. Technol. 1999, 40, 161–168. [Google Scholar] [CrossRef]
- Obileke, K.C.; Nwokolo, N.; Makaka, G.; Mukumba, P.; Onyeaka, H. Anaerobic Digestion: Technology for Biogas Production as a Source of Renewable Energy—A Review. Energy Environ. 2020, 32, 191–225. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Yin, Y.; Zeng, F.; Cui, Z. Smart Energy Savings for Aeration Control in Wastewater Treatment. Energy Rep. 2022, 8, 1711–1721. [Google Scholar] [CrossRef]
- Rocha-Meneses, L.; Zannerni, R.; Inayat, A.; Abdallah, M.; Shanableh, A.; Ghenai, C.; Kamil, M.; Kikas, T. Current Progress in Anaerobic Digestion Reactors and Parameters Optimization. Biomass Convers. Biorefin. 2022, 1, 1–24. [Google Scholar] [CrossRef]
- Zieliński, M.; Kazimierowicz, J.; Dębowski, M. Advantages and Limitations of Anaerobic Wastewater Treatment—Technological Basics, Development Directions, and Technological Innovations. Energies 2022, 16, 83. [Google Scholar] [CrossRef]
- Liang, T.; Elmaadawy, K.; Liu, B.; Hu, J.; Hou, H.; Yang, J. Anaerobic Fermentation of Waste Activated Sludge for Volatile Fatty Acid Production: Recent Updates of Pretreatment Methods and the Potential Effect of Humic and Nutrients Substances. Process Saf. Environ. Prot. 2021, 145, 321–339. [Google Scholar] [CrossRef]
- Ryu, H.D.; Lim, D.Y.; Kim, S.J.; Baek, U.I.; Chung, E.G.; Kim, K.; Lee, J.K. Struvite Precipitation for Sustainable Recovery of Nitrogen and Phosphorus from Anaerobic Digestion Effluents of Swine Manure. Sustainability 2020, 12, 8574. [Google Scholar] [CrossRef]
- Wu, D.; Li, L.; Peng, Y.; Yang, P.; Peng, X.; Sun, Y.; Wang, X. State Indicators of Anaerobic Digestion: A Critical Review on Process Monitoring and Diagnosis. Renew. Sustain. Energy Rev. 2021, 148, 111260. [Google Scholar] [CrossRef]
- Niu, C.; Pan, Y.; Lu, X.; Wang, S.; Zhang, Z.; Zheng, C.; Tan, Y.; Zhen, G.; Zhao, Y.; Li, Y.Y. Mesophilic Anaerobic Digestion of Thermally Hydrolyzed Sludge in Anaerobic Membrane Bioreactor: Long-Term Performance, Microbial Community Dynamics and Membrane Fouling Mitigation. J. Memb. Sci. 2020, 612, 118264. [Google Scholar] [CrossRef]
- Mooiman, C.; Bouwknegt, J.; Dekker, W.J.C.; Wiersma, S.J.; Ortiz-Merino, R.A.; De Hulster, E.; Pronk, J.T. Critical Parameters and Procedures for Anaerobic Cultivation of Yeasts in Bioreactors and Anaerobic Chambers. FEMS Yeast Res. 2021, 21, 35. [Google Scholar] [CrossRef] [PubMed]
- de Vleeschauwer, F.; Caluwé, M.; Dobbeleers, T.; Stes, H.; Dockx, L.; Kiekens, F.; Copot, C.; Dries, J. A Dynamically Controlled Anaerobic/Aerobic Granular Sludge Reactor Efficiently Treats Brewery/Bottling Wastewater. Water Sci. Technol. 2021, 84, 3515–3527. [Google Scholar] [CrossRef] [PubMed]
- Kathawala, T.M.; Gayathri, K.V.; Senthil Kumar, P. A Performance Comparison of Anaerobic and an Integrated Anaerobic-Aerobic Biological Reactor System for the Effective Treatment of Textile Wastewater. Int. J. Chem. Eng. 2021, 2021, 8894332. [Google Scholar] [CrossRef]
- Wang, X.; Dürr, V.; Guenne, A.; Mazéas, L.; Chapleur, O. Generic Role of Zeolite in Enhancing Anaerobic Digestion and Mitigating Diverse Inhibitions: Insights from Degradation Performance and Microbial Characteristics. J. Environ. Manag. 2024, 356, 120676. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Lu, Y.; Zheng, L.; Wang, Z.; Dai, X. Perspective on Enhancing the Anaerobic Digestion of Waste Activated Sludge. J. Hazard. Mater. 2020, 389, 121847. [Google Scholar] [CrossRef] [PubMed]
- Dębowski, M.; Zieliński, M.; Kazimierowicz, J. Anaerobic Reactor Filling for Phosphorus Removal by Metal Dissolution Method. Materials 2022, 15, 2263. [Google Scholar] [CrossRef]
- Dębowski, M.; Zieliński, M. Technological Effectiveness of Sugar-Industry Effluent Methane Fermentation in a Fluidized Active Filling Reactor (FAF-R). Energies 2020, 13, 6626. [Google Scholar] [CrossRef]
- di Biase, A.; Devlin, T.R.; Kowalski, M.S.; Oleszkiewicz, J.A. Performance and Design Considerations for an Anaerobic Moving Bed Biofilm Reactor Treating Brewery Wastewater: Impact of Surface Area Loading Rate and Temperature. J. Environ. Manag. 2018, 216, 392–398. [Google Scholar] [CrossRef]
- Bressani-Ribeiro, T.; Chernicharo, C.A.L.; Lobato, L.C.S.; Neves, P.N.P. Design of UASB Reactors for Sewage Treatment. In Anaerobic Reactors for Sewage Treatment: Design, Construction and Operation; IWA Publishing: London, UK, 2019; pp. 56–111. [Google Scholar] [CrossRef]
- Vítězová, M.; Kohoutová, A.; Vítěz, T.; Hanišáková, N.; Kushkevych, I. Methanogenic Microorganisms in Industrial Wastewater Anaerobic Treatment. Processes 2020, 8, 1546. [Google Scholar] [CrossRef]
- Gutu, L.; Basitere, M.; Harding, T.; Ikumi, D.; Njoya, M.; Gaszynski, C. Multi-Integrated Systems for Treatment of Abattoir Wastewater: A Review. Water 2021, 13, 2462. [Google Scholar] [CrossRef]
- Iribarnegaray, M.A.; Rodriguez-Alvarez, M.S.; Moraña, L.B.; Tejerina, W.A.; Seghezzo, L. Management Challenges for a More Decentralized Treatment and Reuse of Domestic Wastewater in Metropolitan Areas. J. Water Sanit. Hyg. Dev. 2018, 8, 113–122. [Google Scholar] [CrossRef]
- Dutta, A.; Davies, C.; Ikumi, D.S. Performance of Upflow Anaerobic Sludge Blanket (UASB) Reactor and Other Anaerobic Reactor Configurations for Wastewater Treatment: A Comparative Review and Critical Updates. J. Water Supply Res. Technol. 2018, 67, 858–884. [Google Scholar] [CrossRef]
- Dias, D.F.C.; Passos, R.G.; Rodrigues, V.A.J.; de Matos, M.P.; Santos, C.R.S.; von Sperling, M. Performance Evaluation of a Natural Treatment System for Small Communities, Composed of a UASB Reactor, Maturation Ponds (Baffled and Unbaffled) and a Granular Rock Filter in Series. Environ. Technol. 2018, 39, 490–502. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.M.; Soares, A.; Jefferson, B.; Wang, H.Y.; Zhang, L.J.; Jiang, S.F.; McAdam, E.J. Establishing the Mechanisms Underpinning Solids Breakthrough in UASB Configured Anaerobic Membrane Bioreactors to Mitigate Fouling. Water Res. 2020, 176, 115754. [Google Scholar] [CrossRef]
- Monballiu, A.; Desmidt, E.; Ghyselbrecht, K.; Meesschaert, B. Phosphate Recovery as Hydroxyapatite from Nitrified UASB Effluent at Neutral PH in a CSTR. J. Environ. Chem. Eng. 2018, 6, 4413–4422. [Google Scholar] [CrossRef]
- Aqaneghad, M.; Moussavi, G.; Ghanbari, R. Anaerobic Baffled Reactor and Hybrid Anaerobic Baffled Reactor Performances Evaluation in Municipal Wastewater Treatment. Iran. J. Health Saf. Environ. 2018, 5, 1027–1034. [Google Scholar]
- Menzel, T.; Neubauer, P.; Junne, S. Role of Microbial Hydrolysis in Anaerobic Digestion. Energies 2020, 13, 5555. [Google Scholar] [CrossRef]
- Zieliński, M.; Dębowski, M.; Kazimierowicz, J. Performance of an Innovative Low-Cost Recycled Filling (LCRF) in Anaerobic Treatment of Dairy Effluent—A Pilot-Scale Study. Materials 2022, 15, 7815. [Google Scholar] [CrossRef] [PubMed]
- Dębowski, M.; Kisielewska, M.; Kazimierowicz, J.; Zieliński, M. Methane Production from Confectionery Wastewater Treated in the Anaerobic Labyrinth-Flow Bioreactor. Energies 2023, 16, 571. [Google Scholar] [CrossRef]
- PN-EN ISO 5815-1:2019-12; Determination of Biochemical Oxygen Demand after n Days (BODn). Th. 1. Dilution and Inoculation Method with the Addition of Allylthiourea. Health, Environment and Medicine Sector. Technical Body of Water Quality—Chemical Research—Organic Substances: Warsaw, Poland, 2019.
- PN-C-04573-01:1986; Determination of the Total Content of Organic Substances Extractable with Petroleum Ether by Weight Method. Polish Standardization Committee: Warsaw, Poland, 1986.
- Barrera, E.L.; Spanjers, H.; Romero, O.; Rosa, E.; Dewulf, J. A Successful Strategy for Start-upof a Laboratory-Scale UASB Reactor Treating Sulfate-Rich Sugar Cane Vinasse. J. Chem. Technol. Biotechnol. 2020, 95, 205–212. [Google Scholar] [CrossRef]
- Hampannavar, U.S.; Shivayogimath, C.B. Anaerobic Treatment of Sugar Industry Wastewater by Upflow Anaerobic Sludge Blanket Reactor at Ambient Temperature. Int. J. Environ. Sci. 2010, 1, 631–639. [Google Scholar]
- Beal, L.J.; Raman, D.R. Sequential Two-Stage Anaerobic Treatment of Confectionery Wastewater. J. Agric. Eng. Res. 2000, 76, 211–217. [Google Scholar] [CrossRef]
- Grahovac, J.; Rončević, Z. Environmental Impacts of the Confectionary Industry. In Environmental Impact of Agro-Food Industry and Food Consumption; Academic Press: Cambridge, MA, USA, 2021; pp. 189–216. [Google Scholar] [CrossRef]
- Alcaraz-Ibarra, S.; Mier-Quiroga, M.A.; Esparza-Soto, M.; Lucero-Chávez, M.; Fall, C. Treatment of Chocolate-Processing Industry Wastewater in a Low-Temperature Pilot-Scale UASB: Reactor Performance and in-Situ Biogas Use for Bioenergy Recovery. Biomass Bioenergy 2020, 142, 105786. [Google Scholar] [CrossRef]
- Stazi, V.; Tomei, M.C. Enhancing Anaerobic Treatment of Domestic Wastewater: State of the Art, Innovative Technologies and Future Perspectives. Sci. Total Environ. 2018, 635, 78–91. [Google Scholar] [CrossRef]
- Doelle, K.; Dölle, K.; Hughes, T.; Kurzmann, D.E. From Fossil Fuels to Renewable Biogas Production from Biomass Based Feedstock-A Review of Anaerobic Digester Systems. Artic. J. Energy Res. Rev. 2020, 5, 1–37. [Google Scholar] [CrossRef]
- Aziz, A.; Basheer, F.; Sengar, A.; Irfanullah; Khan, S.U.; Farooqi, I.H. Biological Wastewater Treatment (Anaerobic-Aerobic) Technologies for Safe Discharge of Treated Slaughterhouse and Meat Processing Wastewater. Sci. Total Environ. 2019, 686, 681–708. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, Z.; Zheng, Y.; Sun, X.; Yu, S.; Zhao, X.; Yang, A.; Wu, C.; Wang, Z. Biological Nutrient Removal in the Anaerobic Side-Stream Reactor Coupled Membrane Bioreactors for Sludge Reduction. Bioresour. Technol. 2020, 295, 122241. [Google Scholar] [CrossRef]
- Lohani, S.P.; Khanal, S.N.; Bakke, R. A Simple Anaerobic and Filtration Combined System for Domestic Wastewater Treatment. Water-Energy Nexus 2020, 3, 41–45. [Google Scholar] [CrossRef]
- Farhadian, M.; Borghei, M.; Umrania, V.V. Treatment of Beet Sugar Wastewater by UAFB Bioprocess. Bioresour. Technol. 2007, 98, 3080–3083. [Google Scholar] [CrossRef] [PubMed]
- Tanksali, A.S. Treatment of Sugar Industry Wastewater by Upflow Anaerobic Sludge Blanket Reactor. Int. J. ChemTech Res. 2013, 5, 1246–1253. [Google Scholar]
- Dareioti, M.A.; Vavouraki, A.I.; Tsigkou, K.; Kornaros, M. Assessment of Single- vs. Two-Stage Process for the Anaerobic Digestion of Liquid Cow Manure and Cheese Whey. Energies 2021, 14, 5423. [Google Scholar] [CrossRef]
- Lima, V.d.O.; de Barros, V.G.; Duda, R.M.; de Oliveira, R.A. Anaerobic Digestion of Vinasse and Water Treatment Plant Sludge Increases Methane Production and Stability of UASB Reactors. J. Environ. Manag. 2023, 327, 116451. [Google Scholar] [CrossRef] [PubMed]
- Zieliński, M.; Dębowski, M.; Krzemieniewski, M.; Brudniak, A.; Kisielewska, M. Possibility of Improving Technological Effectiveness of Dairy Wastewater Treatment through Application of Active Fillings and Microwave Radiation. J. Water Chem. Technol. 2016, 38, 342–348. [Google Scholar] [CrossRef]
- Dębowski, M.; Zieliński, M.; Kisielewska, M.; Krzemieniewski, M.; Makowska, M.; Grądkowski, M.; Tor-Świątek, A. Simulated Dairy Wastewater Treatment in a Pilot Plant Scale Magneto-Active Hybrid Anaerobic Biofilm Reactor (MA-HABR). Braz. Soc. Chem. Eng. 2018, 35, 553–562. [Google Scholar] [CrossRef]
- Patel, P.; Desai, M.; Madamwar, D. Biomethanation of Cheese Whey Using Anaerobic Upflow Fixed Film Reactor. J. Ferment. Bioeng. 1995, 79, 398–399. [Google Scholar] [CrossRef]
- Yaakob, M.A.; Mohamed, R.M.S.R.; Al-Gheethi, A.; Ravishankar, G.A.; Ambati, R.R. Influence of Nitrogen and Phosphorus on Microalgal Growth, Biomass, Lipid, and Fatty Acid Production: An Overview. Cells 2021, 10, 393. [Google Scholar] [CrossRef]
- Czatzkowska, M.; Harnisz, M.; Korzeniewska, E.; Koniuszewska, I. Inhibitors of the Methane Fermentation Process with Particular Emphasis on the Microbiological Aspect: A Review. Energy Sci. Eng. 2020, 8, 1880–1897. [Google Scholar] [CrossRef]
- Schütze, E.; Gypser, S.; Freese, D. Kinetics of Phosphorus Release from Vivianite, Hydroxyapatite, and Bone Char Influenced by Organic and Inorganic Compounds. Soil. Syst. 2020, 4, 15. [Google Scholar] [CrossRef]
- Wysocka, I.; Krzemieniewski, M. The Effects of Total Phosphorus and Orthophosphates Removal with the Method of Metals Solubilisation on Steel, Aluminum, and Mixed Media. Pol. J. Nat. Sci. 2007, 22, 307–316. [Google Scholar] [CrossRef]
- Rodrigues, R.; Gaboreau, S.; Gance, J.; Ignatiadis, I.; Betelu, S. Reinforced Concrete Structures: A Review of Corrosion Mechanisms and Advances in Electrical Methods for Corrosion Monitoring. Constr. Build. Mater. 2021, 269, 121240. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, Y.; Gao, Y.; Han, X.; Yang, M. Removal of Hard COD from Biological Effluent of Coking Wastewater Using Synchronized Oxidation-Adsorption Technology: Performance, Mechanism, and Full-Scale Application. Water Res. 2020, 173, 115517. [Google Scholar] [CrossRef] [PubMed]
- Khandaker, N.R.; Afreen, I.; Diba, D.S.; Huq, F.B.; Akter, T. Treatment of Textile Wastewater Using Calcium Hypochlorite Oxidation Followed by Waste Iron Rust Aided Rapid Filtration for Color and COD Removal for Application in Resources Challenged Bangladesh. Groundw. Sustain. Dev. 2020, 10, 100342. [Google Scholar] [CrossRef]
- Shahmahdi, N.; Dehghanzadeh, R.; Aslani, H.; Bakht Shokouhi, S. Performance Evaluation of Waste Iron Shavings (Fe0) for Catalytic Ozonation in Removal of Sulfamethoxazole from Municipal Wastewater Treatment Plant Effluent in a Batch Mode Pilot Plant. Chem. Eng. J. 2020, 383, 123093. [Google Scholar] [CrossRef]
- Wysocka, I.; Ładuch, W. Orthophosphates Removal from Synthetic Sewage with Low PH Using the Electrocoagulation and the Metal Digestion Method. Annu. Set. Environ. Prot. 2012, 14, 790–799. [Google Scholar]
- Zielińska, M.; Zieliński, M.; Dębowski, M. Organic Compounds and Phosphorus Removal from Dairy Wastewater by Biofilm on Iron-Containing Supports. J. Environ. Eng. 2017, 144, 04017087. [Google Scholar] [CrossRef]
- Kisielewska, M.; Dȩbowski, M.; Zieliński, M.; Krzemieniewski, M. Enhancement of Dairy Wastewater Treatment in a Combined Anaerobic Baffled and Biofilm Reactor with Magneto-Active Packing Media. J. Ecol. Eng. 2018, 19, 165–171. [Google Scholar] [CrossRef]
- You, G.; Wang, C.; Hou, J.; Wang, P.; Xu, Y.; Miao, L.; Liu, J. Effects of Zero Valent Iron on Nitrate Removal in Anaerobic Bioreactor with Various Carbon-to-Nitrate Ratios: Bio-Electrochemical Properties, Energy Regulation Strategies and Biological Response Mechanisms. Chem. Eng. J. 2021, 419, 129646. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Biogas Production and Applications in the Sustainable Energy Transition. J. Energy 2022, 2022, 8750221. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Mofijur, M.; Tarannum, K.; Chowdhury, A.T.; Rafa, N.; Nuzhat, S.; Kumar, P.S.; Vo, D.V.N.; Lichtfouse, E.; Mahlia, T.M.I. Biogas Upgrading, Economy and Utilization: A Review. Environ. Chem. Lett. 2021, 19, 4137–4164. [Google Scholar] [CrossRef]
- Parker, W.; Celmer-Repin, D.; Bicudo, J.; Law, P. Assessment of the Use of Mainstream Iron Addition for Phosphorous Control on H2S Content of Biogas from Anaerobic Digestion of Sludges. Water Environ. Res. 2020, 92, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jing, Y.; Quan, X.; Liu, Y.; Onu, P. A Built-in Zero Valent Iron Anaerobic Reactor to Enhance Treatment of Azo Dye Wastewater. Water Sci. Technol. 2011, 63, 741–746. [Google Scholar] [CrossRef]
- Nkuna, R.; Roopnarain, A.; Rashama, C.; Adeleke, R. Insights into Organic Loading Rates of Anaerobic Digestion for Biogas Production: A Review. Crit. Rev. Biotechnol. 2022, 42, 487–507. [Google Scholar] [CrossRef]
Parameter | Unit | Mean ± std. dev. |
---|---|---|
Chemical oxygen demand (COD) | mgO2/L | 12,740 ± 2130 |
Biological oxygen demand (BOD5) | mgO2/L | 7270 ± 1010 |
Total organic carbon (TOC) | mg/L | 4990 ± 390 |
Total nitrogen (TN) | mgN/L | 210 ± 35 |
Ammonia nitrogen (N-NH4) | mgN-NH4/L | 159 ± 27 |
Total phosphorus (TP) | mgP/L | 24 ± 6 |
Orthophosphate (P-PO4) | mgP-PO4/L | 18 ± 5 |
Lipids | mg/L | 410 ± 72 |
Suspended solids | mgTS/L | 940 ± 207 |
pH | - | 6.92 ± 0.12 |
Parameter | Unit | Anaerobic Granular Sludge | Anaerobic Biofilm |
---|---|---|---|
Water content | % | 96.9 ± 0.2 | 98.5 ± 0.3 |
Total solids (TS) | g/L | 45.3 ± 2.1 | 29.6 ± 1.8 |
Volatile solids (VS) | g/L | 29.2 ± 1.1 | 21.3 ± 0.9 |
Mineral solids (MS) | g/L | 16.1 ± 1.1 | 8.3 ± 0.5 |
COD | gO2/L | 34.2 ± 2.9 | 40.3 ± 5.8 |
TOC | g/L | 10.4 ± 1.7 | 11.5 ± 2.1 |
TN | g/L | 0.9 ± 0.2 | 1.3 ± 0.1 |
TP | g/L | 0.4 ± 0.1 | 0.5 ± 0.1 |
pH | - | 7.3 ± 1.1 | 12.1 ± 1.3 |
Stage | OLR (g COD/L·d) | Active Volume (L) | COD Concentration (g O2/L) | Watewater Flow Rate (L/day) | Dosing Pump Flow Rate (L/h) | Introduced Loading of COD (g O2/day) | HRT (h) |
---|---|---|---|---|---|---|---|
1 | 5 | 110 | 12.74 ± 2.1 | 43 | 4.3 | 547.8± 85.1 | 61.4 |
2 | 6 | 52 | 5.2 | 662.5 ± 102.9 | 50.8 | ||
3 | 7 | 60 | 6.0 | 764.4 ± 111.4 | 44.0 | ||
4 | 8 | 69 | 6.9 | 879.1 ± 123.1 | 38.3 | ||
5 | 9 | 78 | 7.8 | 993.7 ± 137.9 | 33.8 |
Series | COD | CH4 Production | |||||||
---|---|---|---|---|---|---|---|---|---|
OLR (g COD/L·d) | Influent (g O2/L) | Effluent (g O2/L) | Removal (%) | Influent Load (g COD/d) | Load Removal (g COD/d) | (mL CH4/g CODin.) | (mL CH4/g CODrem.) | (L CH4/d) | |
1 | 5 | 12.74 ± 2.1 | 2.32 ± 0.09 | 81.8 ± 2.0 | 548 ± 85.1 | 448 ± 62.5 | 244 ± 8.5 | 298 ± 13 | 134 ± 4.6 |
2 | 6 | 2.41 ± 0.13 | 81.1 ± 2.7 | 662 ± 103 | 537 ± 72.1 | 230 ± 7.6 | 285 ± 11 | 153 ± 5.2 | |
3 | 7 | 2.49 ± 0.31 | 80.5 ± 6.2 | 764 ± 111 | 615 ± 95.5 | 197 ± 6.8 | 245 ± 9.4 | 151 ± 5.5 | |
4 | 8 | 3.04 ± 0.32 | 76.1 ± 5.3 | 879 ± 123 | 669 ± 105 | 188 ± 6.5 | 246 ± 8.2 | 165 ± 6.3 | |
5 | 9 | 3.97 ± 0.42 | 68.8 ± 5.3 | 994 ± 138 | 684 ± 109 | 168 ± 7.8 | 243 ± 9.1 | 166 ± 6.2 | |
Series | BOD5 | CH4 Production | |||||||
Influent (g O2/L) | Effluent (g O2/L) | Removal (%) | Influent Load (g BOD5/d) | Load Removal (g BOD5/d) | (mL CH4/g BOD5in.) | (mL CH4/g BOD5rem.) | (L CH4/d) | ||
1 | 5 | 7.27 ± 1.01 | 0.49 ± 0.01 | 93.2 ± 1.2 | 313 ± 43.4 | 291 ± 25.8 | 427 ± 28 | 458 ± 30 | 134 ± 4.6 |
2 | 6 | 0.51 ± 0.03 | 93.0 ± 3.1 | 378 ± 52.5 | 352 ± 41.7 | 404 ± 24 | 434 ± 29 | 153 ± 5.2 | |
3 | 7 | 0.50 ± 0.02 | 93.1 ± 1.6 | 436 ± 60.6 | 406 ± 58.5 | 346 ± 21 | 372 ± 22 | 151 ± 5.5 | |
4 | 8 | 0.70 ± 0.03 | 90.4 ± 2.0 | 502 ± 69.7 | 454 ± 69.7 | 329 ± 20 | 363 ± 21 | 165 ± 6.3 | |
5 | 9 | 0.72 ± 0.03 | 90.1 ± 2.2 | 567 ± 78.8 | 511 ± 71.6 | 294 ± 12 | 326 ± 18 | 166 ± 6.2 | |
Series | TOC | CH4 Production | |||||||
Influent (g/L | Effluent (g/L) | Removal (%) | Influent Load (g TOC/d) | Load Removal (g TOC/d) | (mL CH4/g TOCin.) | (mL CH4/g TOCrem.) | (L CH4/d) | ||
1 | 5 | 4.99 ± 0.39 | 0.81 ± 0.08 | 83.8 ± 4.8 | 215 ± 16.7 | 180 ± 13.5 | 623 ± 35 | 743 ± 37 | 134 ± 4.6 |
2 | 6 | 0.77 ± 0.1 | 84.6 ± 6.6 | 259 ± 20.3 | 220 ± 18.6 | 588 ± 29 | 696 ± 36 | 153 ± 5.2 | |
3 | 7 | 0.84 ± 0.06 | 83.2 ± 3.5 | 299 ± 23.4 | 249 ± 20.9 | 504 ± 27 | 606 ± 31 | 151 ± 5.5 | |
4 | 8 | 0.91 ± 0.07 | 81.8 ± 3.7 | 344 ± 26.9 | 282 ± 22.5 | 479 ± 26 | 586 ± 28 | 165 ± 6.3 | |
5 | 9 | 1.02 ± 0.09 | 79.6 ± 4.6 | 389 ± 30.4 | 310 ± 25.4 | 428 ± 25 | 538 ± 27 | 166 ± 6.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dębowski, M.; Kazimierowicz, J.; Ignaciuk, A.; Mlonek, S.; Zieliński, M. Application of Recycled Filling to Improve the Purification Performance of Confectionery Wastewater in a Vertical Anaerobic Labyrinth Flow Bioreactor. Energies 2024, 17, 2551. https://doi.org/10.3390/en17112551
Dębowski M, Kazimierowicz J, Ignaciuk A, Mlonek S, Zieliński M. Application of Recycled Filling to Improve the Purification Performance of Confectionery Wastewater in a Vertical Anaerobic Labyrinth Flow Bioreactor. Energies. 2024; 17(11):2551. https://doi.org/10.3390/en17112551
Chicago/Turabian StyleDębowski, Marcin, Joanna Kazimierowicz, Aneta Ignaciuk, Sandra Mlonek, and Marcin Zieliński. 2024. "Application of Recycled Filling to Improve the Purification Performance of Confectionery Wastewater in a Vertical Anaerobic Labyrinth Flow Bioreactor" Energies 17, no. 11: 2551. https://doi.org/10.3390/en17112551
APA StyleDębowski, M., Kazimierowicz, J., Ignaciuk, A., Mlonek, S., & Zieliński, M. (2024). Application of Recycled Filling to Improve the Purification Performance of Confectionery Wastewater in a Vertical Anaerobic Labyrinth Flow Bioreactor. Energies, 17(11), 2551. https://doi.org/10.3390/en17112551