A Theoretical Analysis of Meteorological Data as a Road towards Optimizing Wind Energy Generation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Wind Power Density Versus Wind Turbine Energy
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Caban, J.; Małek, A.; Šarkan, B. Strategic Model for Charging a Fleet of Electric Vehicles with Energy from Renewable Energy Sources. Energies 2024, 17, 1264. [Google Scholar] [CrossRef]
- Derkacz, A.J.; Dudziak, A.; Stopka, O.; Stopková, M. Profitability Determinants of Transport Service and Warehouse Enterprises: A Case Study from Poland. Period. Polytech. Transp. Eng. 2023, 51, 275–286. [Google Scholar] [CrossRef]
- Lotko, W.; Smigins, R.; Tziourtzioumis, D.; Górska, M. Environmental Aspects of a Common Rail Diesel Engine Fuelled with Biodiesel/Diesel Blends. Adv. Sci. Technol. Res. J. 2022, 16, 192–201. [Google Scholar] [CrossRef]
- Kurczyński, D.; Łagowski, P.; Wcisło, G. Experimental study into the effect of the second-generation BBuE biofuel use on the diesel engine parameters and exhaust composition. Fuel 2021, 284, 118982. [Google Scholar] [CrossRef]
- Waluś, K.J.; Warguła, Ł. Experimental Research on Kinematic Features of Agricultural Tractor Movement on Asphalt Pavement. Available online: https://www.matec-conferences.org/articles/matecconf/pdf/2022/04/matecconf_mms2020_05005.pdf (accessed on 19 February 2024).
- Peng, B.; Streimikiene, D.; Agnusdei, G.P.; Balezentis, T. Is sustainable energy development ensured in the EU agriculture? Structural shifts and the energy-related greenhouse gas emission intensity. J. Clean. Prod. 2024, 445, 141325. [Google Scholar] [CrossRef]
- Ovaere, M.; Proost, S. Cost-effective reduction of fossil energy use in the European transport sector: An assessment of the Fit for 55 Package. Energy Policy 2022, 168, 113085. [Google Scholar] [CrossRef]
- GlobEnergia. Germany Produced More Than 50% of Electricity from RES in 2023! Available online: https://globenergia.pl/niemcy-wyprodukowali-ponad-50-energii-elektrycznej-z-oze-w-2023/ (accessed on 19 February 2024).
- GlobEnergia. Portugal with Record Share of RES in Electricity Generation! Available online: https://globenergia.pl/portugalia-z-rekordowym-udzialem-oze-w-generacji-pradu/ (accessed on 19 February 2024).
- GlobEnergia. Wind in Sails for Offshore Wind Farms in Poland! Available online: https://globenergia.pl/wiatr-w-zagle-dla-morskich-elektrowni-wiatrowych-w-polsce/ (accessed on 19 February 2024).
- TouchWind. Consortium Starts Demonstration Project into Positive Wake Effects of TouchWind’s Floating Wind Turbine. Available online: https://touchwind.org/news/consortium-starts-demonstration-project-into-positive-wake-effects-of-touchwinds-floating-wind-turbine/ (accessed on 19 February 2024).
- Vestas. Wind Turbine Product Portfolio. Available online: https://us.vestas.com/en-us/products (accessed on 19 February 2024).
- Tests to Begin on a Counter-Rotating Floating Offshore Wind Turbine Concept. Available online: https://maritime-executive.com/article/tests-to-begin-on-a-counter-rotating-floating-offshore-wind-turbine-concept (accessed on 19 February 2024).
- GE Renewable Energy. Haliade-X Offshore Wind Turbine. Available online: https://www.ge.com/renewableenergy/wind-energy/offshore-wind/haliade-x-offshore-turbine (accessed on 19 February 2024).
- GE Renewable Energy. Cypress Onshore Wind Turbine Platform. Available online: https://www.ge.com/renewableenergy/wind-energy/onshore-wind/cypress-platform (accessed on 19 February 2024).
- Siemens Gamesa. SG 14-222 DD: The Winds of Change Have Never Been Stronger. Available online: https://www.siemensgamesa.com/products-and-services/offshore/wind-turbine-sg-14-222-dd (accessed on 19 February 2024).
- Li, D.; Zhang, Z.; Zhou, X.; Zhang, Z.; Yang, X. Cross-wind dynamic response of concrete-filled double-skin wind turbine towers: Theoretical modelling and experimental investigation. J. Vib. Control 2023, 1–13. [Google Scholar] [CrossRef]
- VENTUS Power Generator. Products & Services. Available online: https://ventus.group/products-services (accessed on 19 February 2024).
- EnVentus Platform Variants. Available online: https://www.vestas.com/en/products/enventus-platform (accessed on 19 February 2024).
- Polish Wind Power Plants. Available online: https://generatory-wiatrowe.pl/produkty/polskie-elektrownie-wiatrowe/ (accessed on 19 February 2024).
- Bošnjaković, M.; Katinić, M.; Santa, R.; Marić, D. Wind Turbine Technology Trends. Appl. Sci. 2022, 12, 8653. [Google Scholar] [CrossRef]
- Żurański, J.A.; Jaśpińska, B. Directional analysis of extreme wind speeds in Poland. J. Wind Eng. Ind. Aerodyn. 1996, 66, 13–20. [Google Scholar] [CrossRef]
- Simiu, E.; Scanlan, R.H. Wind Effects on Structures: An Introduction to Wind Engineering, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1986. [Google Scholar]
- Gumbel, E.J. Statistics of Extremes, 1st ed.; Columbia University Press: New York, NY, USA, 1958. [Google Scholar] [CrossRef]
- Chmielewski, T.; Bońkowski, A.P. Wind as a natural hazard in Poland. Nat. Hazards Earth Syst. Sci. 2023, 23, 3839–3844. [Google Scholar] [CrossRef]
- Lorenc, H. Maksymalne Prędkości Wiatru w Polsce, 1st ed.; Instytut Meteorologii i Gospodarki Wodnej: Warszawa, Polska, 2012; pp. 5–94. Available online: https://bibliotekanauki.pl/books/2049055 (accessed on 19 February 2024).
- Belu, R. Assessment and Analysis of Offshore Wind Energy Potential. Available online: https://www.intechopen.com/chapters/74556 (accessed on 19 February 2024).
- Wei, J.; Hulio, Z.H.; Rashid, H. Site specific assessment of wind characteristics and determination of wind loads effects on wind turbine components and energy generation. Int. J. Energy Sect. Manag. 2018, 12, 341–363. [Google Scholar] [CrossRef]
- Harris, R.I.; Cook, N.J. The parent wind speed distribution: Why Weibull. J. Wind Eng. Ind. Aerodyn. 2014, 131, 72–87. [Google Scholar] [CrossRef]
- Jung, C.; Schindler, D.; Laible, J.; Buchholz, A. Introducing a system of wind speed distributions for modeling properties of wind speed regimes around the world. Energy Convers. Manag. 2017, 144, 181–192. [Google Scholar] [CrossRef]
- Kowalik-Pilarska, E. Wind Speed Parameters Estimation for Poland as a Result of Mezoscale Modelling. Available online: http://www.phd4gen.pl/wp-content/uploads/2021/06/22_06_2021_EKP_UZ3.pdf (accessed on 19 February 2024).
- Banuelos-Ruedas, F.; Camacho, C.A.; Rios-Marcuello, S. Methodologies Used in the Extrapolation of Wind Speed Data at Different Heights and Its Impact in the Wind Energy Resource Assessment in a Region. In Wind Farm—Technical Regulations, Potential Estimation and Siting Assessment; Intechopen: London, UK, 2011; Available online: https://www.intechopen.com/chapters/17121 (accessed on 19 February 2024). [CrossRef]
- PN-EN 1991-1-4; Impact on Constructions. The Effects of Wind. Available online: https://wiedza.pkn.pl/documents/28503/0/Eurokody_wprowadzenie_tablica_wrzesie%C5%84_2018.pdf/f91c2e0f-9b08-4d7c-96ed-2af3a5f57602 (accessed on 19 February 2024).
- Betz, A. Wind-Energie und Ihre Ausnutzung durch Windmühlen; Vandenhoeck und Ruprecht: Göttingen, Germany, 1926. [Google Scholar]
- Ragheb, M.; Ragheb, A.M. Wind Turbines Theory—The Betz Equation and Optimal Rotor Tip Speed Ratio. Available online: https://cdn.intechopen.com/pdfs/16242/InTechWind_turbines_theory_the_betz_equation_and_optimal_rotor_tip_speed_ratio.pdf (accessed on 19 February 2024).
- Santiago, G.; Hernandez, W.; Costa De Araujo, A.C.; Rosa, M.; González, M. Application of Product Development Process (PDP) in the Construction of Vertical Axis Wind Turbine with Movable Blades. Available online: https://www.academia.edu/42937714/Application_of_product_development_process_PDP_in_the_construction_of_vertical_axis_wind_turbine_with_movable_blades (accessed on 19 February 2024).
- Wind Turbine Control Methods. Available online: https://www.ni.com/en/solutions/energy/condition-monitoring/wind-turbine-control-methods.html (accessed on 31 May 2024).
- Flores, D.R.L.; Gómez, J.A.P.; Herrera, R.; Alvarado, M.S. Tracking Control of the Maximum Power Point (MPPT) in A Small Wind Turbine (SWT) for Isolated Residential Applications. Wseas Trans. Circuits Syst. 2013, 8, 253–261. [Google Scholar]
- Muñoz-Palomeque, E.; Sierra-García, J.E.; Santos, M. Wind turbine maximum power point tracking control based on unsupervised neural networks. J. Comput. Des. Eng. 2023, 10, 108–121. [Google Scholar] [CrossRef]
- Mihet-Popa, L.; Groza, V. Dynamic modeling, simulation and control strategies for 2 MW wind generating systems. Int. Rev. Model. Simul. 2010, 3, 1410–1418. [Google Scholar]
- Heier, S. Grid Integration of Wind Energy: Onshore and Offshore Conversion Systems, 1st ed.; John Wiley and Sons: New York, NY, USA, 1998. [Google Scholar]
- Koźmiński, C.; Michalska, B. Characterization of wind speed and calms in Poland. Acta Agrophysica 2002, 78, 111–132. Available online: https://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-article-18ec9a36-3a7d-4f1d-8490-7a7ed28bfc05 (accessed on 19 February 2024).
- Hansen, L.H.; Helle, L.; Blaabjerg, F.; Ritchie, E.; Munk-Nielsen, S.; Binder, H.; Sorensen, P.; Bak-Jensen, B. Conceptual Survey of Generators and Power Electronics for Wind Turbines; Riso-r-1205(EN); Riso National Laboratory: Roskilde, Denmark, 2001. Available online: https://www.osti.gov/etdeweb/biblio/20262554 (accessed on 19 February 2024).
- Zöldy, M.; Baranyi, P.; Török, Á. Trends in Cognitive Mobility in 2022. Acta Polytech. Hung. 2024, 21, 189–202. [Google Scholar] [CrossRef]
- Strijhak, S.V.; Gergel, V.P.; Ivanov, A.V.; Gadal, S.Z. On the Problem of Choosing the Optimal Parameters for the Wind Farm in the Arctic Town of Tiksi. In Mathematical Modeling and Supercomputer Technologies; MMST 2020. Communications in Computer and Information Science, 1413; Springer: Cham, Switzerland, 2021; Available online: https://amu.hal.science/hal-03274909 (accessed on 19 February 2024). [CrossRef]
Terrain Class | Terrain | alpha |
---|---|---|
0 | Sea and coastal area exposed to the open sea | 0.11 |
I | Lakes or area with negligible vegetation and without obstacles | 0.13 |
II | Area with a low vegetation, such as grass and isolated obstacles (trees, buildings) with separations of at least 20 obstacle heights | 0.17 |
III | Area with regular cover of vegetation or buildings or with isolated obstacles with separation of max. 20 obstacle heights (e.g., villages, suburbia, permanent forest) | 0.19 |
Station | Longitude (E) | Latitude (N) | Hstation ASL | Hanemometer AGL | c | k | Vaverage | Vmax gust | WPD |
---|---|---|---|---|---|---|---|---|---|
- | [°] | [°] | [m] | [m] | [m/s] | [-] | [m/s] | [m/s] | [W/m2] |
Kołobrzeg-Dźwirzyno | 15.389 | 54.158 | 4 | 11 | 8.53 | 1.779 | 7.59 | 29 | 591.35 |
Łeba | 17.535 | 54.754 | 1 | 22.7 | 7.713 | 1.798 | 6.859 | 29 | 431.69 |
Ustka | 16.854 | 54.588 | 3 | 22.7 | 7.758 | 1.877 | 6.887 | 28 | 415.50 |
Zamość | 23.206 | 50.698 | 223 | 11 | 6.931 | 1.831 | 6.159 | 50 | 298.33 |
Rzeszów-Jasionka | 22.042 | 50.111 | 206 | 10 | 6.585 | 1.814 | 5.854 | 27 | 258.62 |
Kraków-Balice | 19.802 | 50.080 | 236 | 10 | 6.405 | 1.767 | 5.702 | 21 | 245.81 |
Elbląg-Milejewo | 19.544 | 54.223 | 189 | 10 | 6.737 | 2.053 | 5.968 | 20 | 242.44 |
Poznań-Ławica | 16.836 | 52.417 | 88 | 10 | 6.628 | 1.977 | 5.875 | 21 | 241.54 |
Kalisz | 18.082 | 51.782 | 137 | 10 | 6.543 | 1.969 | 5.801 | 19 | 232.08 |
Świnoujście | 14.242 | 53.923 | 4 | 20 | 6.175 | 1.836 | 5.486 | 26 | 215.06 |
Kętrzyn | 21.369 | 54.068 | 107 | 10 | 6.075 | 1.773 | 5.407 | 21 | 212.05 |
Bielsko-Biała | 19.001 | 49.808 | 396 | 14.2 | 5.928 | 1.704 | 5.288 | 25 | 201.16 |
Racibórz | 18.192 | 50.062 | 206 | 10 | 5.808 | 1.706 | 5.181 | 23 | 193.12 |
Włodawa | 23.529 | 51.553 | 177 | 12 | 6.194 | 2.027 | 5.488 | 23 | 190.54 |
Kłodzko | 16.614 | 50.437 | 356 | 10 | 5.344 | 1.482 | 4.831 | 23 | 187.33 |
Łódź-Lublinek | 19.400 | 51.723 | 174 | 10 | 5.665 | 1.697 | 5.055 | 22 | 181.33 |
Hala Gąsienicowa | 20.006 | 49.244 | 1523 | 10.4 | 5.593 | 1.53 | 5.038 | 32 | 179.28 |
Gdańsk-Świbno | 18.934 | 54.334 | 7 | 20.2 | 6.028 | 2.036 | 5.341 | 24 | 178.24 |
Sulejów | 19.864 | 51.353 | 188 | 11 | 5.671 | 1.733 | 5.054 | 22 | 176.44 |
Koszalin | 16.156 | 54.204 | 33 | 10.5 | 5.807 | 1.924 | 5.151 | 23 | 168.75 |
Legnica | 16.208 | 51.193 | 123 | 11 | 5.494 | 1.728 | 4.896 | 24 | 161.68 |
Wrocław-Strachowice | 16.900 | 51.103 | 120 | 11 | 5.512 | 1.751 | 4.909 | 20 | 160.26 |
Hel | 18.812 | 54.604 | 1 | 29.5 | 5.917 | 2.244 | 5.24 | 27 | 154.15 |
Warszawa-Okęcie | 20.961 | 52.163 | 106 | 10 | 5.678 | 1.97 | 5.03 | 18 | 152.12 |
Chojnice | 17.533 | 53.715 | 164 | 15 | 5.579 | 2.008 | 4.94 | 22 | 140.72 |
Mława | 20.361 | 53.104 | 147 | 10.7 | 5.362 | 1.85 | 4.76 | 20 | 137.45 |
Leszno | 16.535 | 51.836 | 91 | 16 | 5.246 | 1.823 | 4.66 | 23 | 131.72 |
Krosno | 21.769 | 49.707 | 330 | 10 | 5.23 | 1.976 | 4.64 | 19 | 115.80 |
Słubice | 14.619 | 52.349 | 53 | 10 | 5.232 | 2.112 | 4.63 | 23 | 111.53 |
Lublin-Radawiec | 22.394 | 51.217 | 238 | 10.2 | 5.01 | 1.862 | 4.45 | 79 | 110.15 |
Mikołajki | 21.589 | 53.789 | 127 | 18.4 | 5.174 | 2.121 | 4.58 | 23 | 106.91 |
Suwałki | 22.949 | 54.131 | 184 | 15 | 5.081 | 2.041 | 4.50 | 19 | 104.70 |
Szczecin | 14.623 | 53.395 | 1 | 24.1 | 4.906 | 1.995 | 4.35 | 24 | 98.00 |
Katowice-Muchowiec | 19.033 | 50.241 | 278 | 10 | 4.639 | 1.71 | 4.14 | 18 | 97.30 |
Jelenia Góra | 15.789 | 50.900 | 342 | 16 | 4.264 | 1.526 | 3.84 | 21 | 90.37 |
Gorzów Wielkopolski | 15.277 | 52.741 | 71 | 10 | 4.857 | 2.197 | 4.30 | 21 | 85.94 |
Lesko | 22.342 | 49.466 | 420 | 10 | 4.575 | 1.815 | 4.07 | 20 | 84.88 |
Siedlce | 22.245 | 52.181 | 152 | 11.8 | 4.608 | 1.955 | 4.09 | 18 | 81.77 |
Opole | 17.969 | 50.627 | 163 | 10 | 4.416 | 1.834 | 3.92 | 18 | 77.28 |
Terespol | 23.621 | 52.078 | 133 | 11.8 | 4.629 | 2.101 | 4.10 | 17 | 77.08 |
Zielona Góra | 15.524 | 51.930 | 192 | 11 | 4.762 | 2.314 | 4.22 | 21 | 76.56 |
Toruń | 18.595 | 53.042 | 69 | 10 | 4.626 | 2.153 | 4.10 | 19 | 75.68 |
Olsztyn | 20.423 | 53.771 | 133 | 16.4 | 4.514 | 2.089 | 4.00 | 21 | 71.94 |
Kielce-Suków | 20.692 | 50.810 | 260 | 10 | 4.244 | 1.824 | 3.77 | 18 | 68.50 |
Wieluń | 18.558 | 51.211 | 199 | 10 | 4.367 | 2.035 | 3.87 | 16 | 66.20 |
Kozienice | 21.543 | 51.565 | 123 | 11 | 4.197 | 1.925 | 3.72 | 18 | 63.01 |
Piła | 16.748 | 53.131 | 72 | 10 | 4.093 | 1.997 | 3.63 | 18 | 56.48 |
Białystok | 23.162 | 53.107 | 148 | 15 | 3.728 | 2.165 | 3.30 | 16 | 39.14 |
Zakopane | 19.960 | 49.294 | 852 | 15.1 | 3.554 | 3.298 | 3.19 | 24 | 24.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orynycz, O.; Ruchała, P.; Tucki, K.; Wasiak, A.; Zöldy, M. A Theoretical Analysis of Meteorological Data as a Road towards Optimizing Wind Energy Generation. Energies 2024, 17, 2765. https://doi.org/10.3390/en17112765
Orynycz O, Ruchała P, Tucki K, Wasiak A, Zöldy M. A Theoretical Analysis of Meteorological Data as a Road towards Optimizing Wind Energy Generation. Energies. 2024; 17(11):2765. https://doi.org/10.3390/en17112765
Chicago/Turabian StyleOrynycz, Olga, Paweł Ruchała, Karol Tucki, Andrzej Wasiak, and Máté Zöldy. 2024. "A Theoretical Analysis of Meteorological Data as a Road towards Optimizing Wind Energy Generation" Energies 17, no. 11: 2765. https://doi.org/10.3390/en17112765
APA StyleOrynycz, O., Ruchała, P., Tucki, K., Wasiak, A., & Zöldy, M. (2024). A Theoretical Analysis of Meteorological Data as a Road towards Optimizing Wind Energy Generation. Energies, 17(11), 2765. https://doi.org/10.3390/en17112765