Technical Feasibility Study of Orange Wood Residues (Citrus sinensis) for Bioenergy Generation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Analysis and Immediate Analyses
2.2. Fourier Transform Infrared (FTIR)
2.3. Calorific Value
2.4. Bulk Density and Energy Density
2.5. Thermogravimetric Analysis (TGA and DTG)
2.6. Data Analysis
3. Results and Discussions
3.1. Chemical Characterization
3.2. Immediate Analyses
3.3. Fourier Transform Infrared (FTIR)
3.4. Calorific Value
3.5. Bulk Density and Energy Density
3.6. Thermogravimetric Analysis (TGA and DTG)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United States Department of Agriculture (USDA). Citrus: World Markets and Trade. 2023. Available online: https://apps.fas.usda.gov/psdonline/circulars/citrus.pdf (accessed on 22 September 2023).
- Brazilian Institute of Geography and Statistics (IBGE). Orange Production. 2023. Available online: https://www.ibge.gov.br/explica/producao-agropecuaria/laranja/br (accessed on 22 September 2023).
- Dennis-Wall, J.C.; Burns, A.M.; Solch, R.J.; Ukhanova, M.; Dahl, W.J.; Christman, M.C.; Boileau, T.; Brauchla, M.; Shin, J.-E.; Nieves, C.; et al. A Beverage Containing Orange Pomace Improves Laxation and Modulates the Microbiome in Healthy Adults: A Randomised, Blinded, Controlled Trial. J. Funct. Foods 2019, 60, 103438. [Google Scholar] [CrossRef]
- Guzman, G.; Xiao, D.; Liska, D.; Mah, E.; Sanoshy, K.; Mantilla, L.; Replogle, R.; Boileau, T.W.; Burton-Freeman, B.M.; Edirisinghe, I. Addition of Orange Pomace Attenuates the Acute Glycemic Response to Orange Juice in Healthy Adults. J. Nutr. 2021, 151, 1436–1442. [Google Scholar] [CrossRef] [PubMed]
- Asif, M.; Khan, M.K.; Khan, M.I.; Maan, A.A.; Helmick, H.; Kokini, J.L. Effects of Citrus Pomace on Mechanical, Sensory, Phenolic, Antioxidant, and Gastrointestinal Index Properties of Corn Extrudates. Food Biosci. 2023, 55, 103012. [Google Scholar] [CrossRef]
- Carranza-Méndez, R.; Chávez-González, M.L.; Sepúlveda-Torre, L.; Govea-Salas, M.; Ramos-González, R.; Aguilar, C.N. Production of Single Cell Protein from Orange Peel Residues by Candida Utilis. Biocatal. Agric. Biotechnol. 2022, 40, 102298. [Google Scholar] [CrossRef]
- Moutousidis, D.; Karidi, K.; Athanassiadou, E.; Stylianou, E.; Giannakis, N.; Koutinas, A. Reinforcement of Urea Formaldehyde Resins with Pectins Derived from Orange Peel Residues for the Production of Wood-Based Panels. Sustain. Chem. Environ. 2023, 4, 100037. [Google Scholar] [CrossRef]
- Vamvuka, D.; Sfakiotakis, S.; Kotronakis, M. Fluidized Bed Combustion of Residues from Oranges’ Plantations and Processing. Renew. Energy 2012, 44, 231–237. [Google Scholar] [CrossRef]
- Gonzalez, Z.; Rosal, A.; Requejo, A.; Rodríguez, A. Production of Pulp and Energy Using Orange Tree Prunings. Bioresour. Technol. 2011, 102, 9330–9334. [Google Scholar] [CrossRef] [PubMed]
- García-Franco, N.; Wiesmeier, M.; Colocho, C.; Fella, F.; Martínez-Mena, M.; Almagro, M.; Martínez, E.G.; Kögel-Knabner, I. Pruning Residues Incorporation and Reduced Tillage Improve Soil Organic Matter Stabilization and Structure of Salt-Affected Soils in a Semi-Arid Citrus Tree Orchard. Soil Tillage Res. 2021, 213, 105129. [Google Scholar] [CrossRef]
- Welfle, A.J.; Almena, A.; Arshad, M.N.; Banks, S.W.; Butnar, I.; Chong, K.J.; Cooper, S.G.; Daly, H.; Garcia Freites, S.; Güleç, F.; et al. Sustainability of Bioenergy—Mapping the Risks & Benefits to Inform Future Bioenergy Systems. Biomass Bioenergy 2023, 177, 106919. [Google Scholar] [CrossRef]
- Amorim, E.P.; Pimenta, A.S.; Souza, E.C. Use of Forest Harvest Waste: State of the Art and Opportunities. Res. Soc. Dev. 2021, 10, e4410212175. [Google Scholar] [CrossRef]
- T264 cm-97; Preparation of Wood for Chemical Analysis. Technical Association of Pulp and Paper Industry (TAPPI): Atlanta, GA, USA, 1997.
- T204 cm-97; Solvent Extractives of Wood and Pulp. Technical Association of Pulp and Paper Industry (TAPPI): Atlanta, GA, USA, 1997.
- T 222 om-02; Acid-Insoluble Lignin in Wood and Pulp. Technical Association of Pulp and Paper Industry (TAPPI): Atlanta, GA, USA, 2002.
- T um 250; Acid-Soluble Lignin in Wood and Pulp. Technical Association of Pulp and Paper Industry (TAPPI): Atlanta, GA, USA, 1991.
- Morais, J.P.S.; Rosa, M.F.; Marconcini, J.M. Procedures for Lignocellulosic Analysis, 1st ed.; Campina Grande, Brazil, 2010; pp. 35–42. [Google Scholar]
- ASTM D1762-84; Standard Test Method for Chemical Analysis of Wood Charcoal. Reapproved 2007; American Society for Testing and Materials: West Conshohocken, PA, USA, 2007.
- ASTM E870; Standard Test Methods for Analysis of Wood Fuels. American Society for Testing and Materials: West Conshohocken, PA, USA, 2019.
- D. I. N. EM 14918; Determination of Calorific Value. Deutsches Institut Für Normung: Berlim, Germany, 2010.
- ASTM E873-82; Standard Test Method for Bulk Density of Densified Particulate Biomass Fuels. American Society for Testing and Materials: West Conshohocken, PA, USA, 2019.
- Jesus, M.S.; Costa, L.J.; Ferreira, J.C.; Freitas, F.P.; Santos, L.C.; Rocha, M.F.V. Energy Characterization of Different Eucalyptus Species. Floresta 2017, 47, 11. [Google Scholar] [CrossRef]
- Souza, F.D.; Vale, A.T. Energy Density of Lignocellulose Biomass Briquettes and their Relation to Briqueting Parameters. Pesqui. Florest. Bras. 2017, 36, 405. [Google Scholar] [CrossRef]
- Protásio, P.; Cristina, I.; Trugilho, P.F.; Silva, V.O.; Elisa, A. Compression of plant biomass for the production of solid biofuels. Pesqui. Florest. Bras. 2011, 31, 273–283. [Google Scholar] [CrossRef]
- Edislan, F.; Maia, J.H.; Souza, L.S.; Martins, T.; Gomes, V. Physical Characterization and Determination of Embiratanha Wood Extracts Contents. Adv. For. Sci. 2019, 6, 755. [Google Scholar] [CrossRef]
- Pedrazzi, C.; Dick, R.; Coldebella, M.G.; Giesbrecht, B.M.; Rosa, R.C. Wood Chemistry. Collection Rural Sciences (27), 1st ed.; Santa Maria, Brazil, 2019; pp. 11–20. [Google Scholar]
- Routa, J.; Brännström, H.; Laitila, J. Effects of Storage on Dry Matter, Energy Content and Amount of Extractives in Norway Spruce Bark. Biomass Bioenergy 2020, 143, 105821. [Google Scholar] [CrossRef]
- Moulin, J.C.; Arantes, M.D.C.; Vidaurre, G.B.; Paes, J.B.; Carneiro, A.d.C.O. Effect of Spacing, Age and Irrigation on the Chemical Components of Eucalyptus Wood. Rev. Árvore 2015, 39, 199–208. [Google Scholar] [CrossRef]
- Vale, A.T.; Moreira, A.C.O.; Martins, I.S. Evaluation of the Energy Potential of Bamboo Vulgaris by Age. Floresta Ambiente 2017, 24, e00123314. [Google Scholar] [CrossRef]
- Porto, D.S.; Forim, M.R.; Costa, E.S.; Fernandes, J.B.; Silva, M.F.G.F. Evaluation of Lignins of Trunk and Roots from Citrus sinensis L. Osbeck: A Large Available Brazilian Biomass. J. Braz. Chem. Soc. 2021, 32, 29–39. [Google Scholar] [CrossRef]
- Sette, C.R.; Tomazello Filho, M., Jr.; Silva, F.G.d., Jr.; Laclau, J.P. Changes in the Chemical Properties of Wood with the Substitution of K by Na in Eucalyptus Plantations. Rev. Árvore 2014, 38, 569–578. [Google Scholar] [CrossRef]
- Garcia, D.P.; Caraschi, J.C.; Ventorim, G. Thermal Decomposition of Wooden Pellets by TGA. Holos 2016, 1, 327. [Google Scholar] [CrossRef]
- Pereira, A.A.; Lima, M.D.R.; Patrício, E.P.S.; Numazawa, S.; Goulart, S.L.; Protásio, T.d.P. Sustainable Forestry Waste Grouping for Bioenergy Generation. Sci. For. 2020, 48, e3157. [Google Scholar] [CrossRef]
- Zaque, L.A.M.; Mendoza, Z.M.S.H.; Borges, P.H.M.; Ferreira, M.D.; Morais, P.H.M. Extractive Contents in Brazilian Mahogany Wood. Braz. Appl. Sci. Rev. 2021, 5, 1871–1880. [Google Scholar] [CrossRef]
- Grotto, C.G.L.; Costa, A.M.F.; Colares, C.J.G.; Pereira, D.H. Characterization of Sugar Cane Bag Biomass with Energy Views. ForScience 2021, 9, e00928. [Google Scholar] [CrossRef]
- Dionizio, A.F.; Teixeira, A.; Oliveira, G.; Chaves, B.M. Adding Value to Agro-Industrial Waste for Energy Purposes. Rev. Ciências Agrárias 2019, 42, 528–538. [Google Scholar] [CrossRef]
- Irawati, D.; Higeta, S.; Wedatama, S.; Ishiguri, F.; Yokota, S. Characterization of Branch Waste of Several Tropical Fruit Tree Species as Considerations for Bioenergy Resources. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Yogyakarta, Indonesia, 16–17 October 2019; Volume 449, p. 012019. [Google Scholar] [CrossRef]
- Ferreira, K.A.C.; Mendoza, Z.M.S.H.; Ribeiro, E.S.; Batista, B.M.F.; Silva, J.C. Analysis of Accidental Compounds in Tectona grandis Wood L. F. Biodiversidade 2015, 14, 105–116. [Google Scholar]
- Saccol, A.F.O.; Welter, C.A.; Rosa, R.C.; Coldebella, R.; Longhi, S.J.; Farias, J.A.; Pedrazzi, C. Analysis of Accidental Compounds in Tectona grandis Wood. Matéria 2020, 25, e12634. [Google Scholar] [CrossRef]
- Poletto, M.; Zattera, A.J.; Santana, R.M.C. Thermal Decomposition of Wood: Kinetics and Degradation Mechanisms. Bioresour. Technol. 2012, 126, 7–12. [Google Scholar] [CrossRef]
- Canal, W.D.; Carvalho, A.M.M.L.; Oliveira, A.C.; De Magalhães, M.A.; Cândido, W.L.; Fialho, L.d.F. Thermal Behavior, Emission of Condensable and Non-Condensable Gases in the Carbonization Process of Wood. Pesqui. Florest. Bras. 2016, 36, 261–267. [Google Scholar] [CrossRef]
- Juizo, C.G.F.; Zen, L.R.; Klitzke, W.; França, M.C.; Cremonez, V.G.; Klitzke, R.J. Technological Properties of Thermal Treated Eucalyptus Wood. Nativa 2018, 6, 537–542. [Google Scholar] [CrossRef]
- De Souza, H.J.P.L.; Arantes, M.D.C.; Vidaurre, G.B.; Andrade, C.R.; Carneiro, A.C.O.; De Souza, D.P.L.; Protásio, T.P. Pelletization of Eucalyptus Wood and Coffee Growing Wastes: Strategies for Biomass Valorization and Sustainable Bioenergy Production. Renew. Energy 2020, 149, 128–140. [Google Scholar] [CrossRef]
- Santos, A.M.; Melo, A.A.; Queiroz, A.; Guimarães, L.; Consolaro, H.N.; Sarmento, A.P. Recovery of Wood Wastes for Bioenergy Generation. Rev. Process. Químicos 2020, 13, 51–56. [Google Scholar] [CrossRef]
- Brumano, G.C.B.; Barbosa, B.M.; Colodette, J.L.; Fernandes, S.A. Study of structures present in lignin soluble in lignocellulose materials by pyrolysis associated with gas chromatography and mass spectrometry. In Proceedings of the 49th International Pulp and Paper Congress, São Paulo, Brazil, 25–27 October 2016. [Google Scholar]
- Cao, Z.; Zhang, S.; Huang, X.; Liu, H.; Sun, M.; Lyu, J. Correlations between the Compressive Strength of the Hydrochar Pellets and the Chemical Components: Evolution and Densification Mechanism. J. Anal. Appl. Pyrolysis 2020, 152, 104956. [Google Scholar] [CrossRef]
- Ndumbo, M.; De Conti, A.C.; Brienzo, M. New Process of Producing Briquettes with Greater Durability Using 593 Sugarcane Fractions and Additives; Briquets and Their Use. BR 102021003264-2 A2, 30 August 2022. [Google Scholar]
- Silveira, J.H.; Dorneles, R.H.T.; Sebbem, V.H.A.; Gasparin, F.P.; Ries, L.A.S. Characterization of residual biomass from saline eucalyptus harvest for thermal conversion processes. In Natural Resources: Forest Biomass Energy, 1st ed.; Oliveira, R.J., Ed.; Editora Científica Digital: São Paulo, Brazil, 2021; Volume 2, pp. 12–31. [Google Scholar] [CrossRef]
- Carmona, I.N.; Sampaio, J.d.S.; Luz, P.A.S.A.d.; Andrade, F.W.C. Tannin Quantification and Chemical-Energetic Characterization of Biomass Residues of Bertholletia spp. and Lecythis’ spp. Fruits. Matéria 2021, 26, e13070. [Google Scholar] [CrossRef]
- Carvalho, N.; Barros, J.; Silva, D.; Nakashima, G.; Yamaji, F. Physical and Chemical Characterization of Biomass Used as Solid Fuel in a Boiler. Química Nova 2021, 44, 35–40. [Google Scholar] [CrossRef]
- Orellana, B.B.M.A.; do Vale, A.T.; Orellana, J.B.P.; Chaves, B.S.A.; de Oliveira Moreira, A.C. Characterization of Agroindustrial Wastes of the Federal District Region for Energy Purposes. Energ. Na Agric. 2020, 35, 46–61. [Google Scholar] [CrossRef]
- Rowell, R.M. Moisture Properties. In Handbook of Wood Chemistry and Wood Composites, 2nd ed.; Rowell, R.M., Ed.; CRC Press: Boca Raton, FL, USA, 2013; pp. 75–97. ISBN 978-1-4398-5381-8. [Google Scholar]
- Neves, T.A.; Protásio, T.P.; Trugilho, P.F.; Vale, M.L.A.; Souza, L.C.; Vieira, C.M.V. Eucalyptus Clone Wood Quality in Different Ages for Bioenergy Production. Rev. Ciências Agrárias 2013, 56, 139–148. [Google Scholar] [CrossRef]
- Ribeiro, R.M.; Bahia, M.A.M.; Caetano, M.Z.G.; Sousa, P.H.C.V.; Fernandes, R.L.O.; Franco, M.P.; Sette Júnior, C.R. Eucalyptus Clone Wood Quality in Different Ages for Bioenergy Production. Rev. Virtual Química 2022, 14, 465–477. [Google Scholar] [CrossRef]
- Silva, D.A.; Nakashima, G.T.; Barros, J.L.; Da Roz, A.L.; Yamaji, F.M. Biomass Characterization for Briqueting. Floresta 2015, 45, 713. [Google Scholar] [CrossRef]
- Fortaleza, A.P.; Filho, J.J.P.N.; Ceretta, R.P.S.; Barros, D.S.; Silva, S.S. Biomass of forest species for the production of plant coal. Ciência Florest. 2019, 29, 1436–1451. [Google Scholar] [CrossRef]
- Denadai, M.S.; Mendes, C.R.L.G.; Bueno, O.C.; Silva, M.A.; Guerra, S.P.S.; Seiko, M. Impact of Humidity of Sweetened Sugar Cane Straw on Shipping Cost. In Proceedings of the 10th International Bioenergy Congress, São Paulo, Brazil, 15–16 July 2015. [Google Scholar]
- Watzlawick, L.F.; Wionzek, F.B.; Silva, S.V.K.; Benin, C.C. Biomass production and energy properties of Eucalyptus benthamii maiden et cambage. In Resources Woodworking Industrial Engineering: Technology, Research and Trends, 1st ed.; Gonçalves, F.G., Ed.; Editora Científica Digital: São Paulo, Brazil, 2020; pp. 267–285. [Google Scholar] [CrossRef]
- Oliveira, P.R.S.; Trugilho, P.F.; de Oliveira, T.J.P. Briquettes of Acai Seeds: Characterization of the Biomass and Influence of the Parameters of Production Temperature and Pressure in the Physical-Mechanical and Energy Quality. Environ. Sci. Pollut. Res. 2021, 29, 8549–8558. [Google Scholar] [CrossRef]
- Teixeira, C.M.; Martins, M.P.; Yamamoto, H.; Chrisostomo, W.; Yamaji, F.M. Chemical Characterization of Eucalyptus sp. Short-Rotation Forest Waste for Bioenergy Production. Rev. Virtual Química 2016, 8, 1693–1701. [Google Scholar] [CrossRef]
- Pedrosa, A.L.; Pedroza, M.M.; Cardoso, C.P.; Negre, S.M.S. Characterization of the plant andropogon gayanus kunth aimed at the production of biofuels in the northern region of Brazil. In Proceedings of the 7th Scientific Initiation and Extension Journey, Palmas, Brazil, 19–21 October 2016. [Google Scholar]
- Araújo, A.C.C.; Costa, L.J.; Braga, P.P.C.; Neto, R.M.G.; Rocha, M.F.V.; Trugilho, P.F. Energy Properties of Cenostigma macrophyllum Wood and Vegetable Coal: Subsidies for Sustainable Use. Pesqui. Florest. Bras. 2018, 38, e201701546. [Google Scholar] [CrossRef]
- Santos, C.P.S.; Costa, S.E.L.; Rodrigues, I.; Gomes, F.; Dos Santos, R.C.; De Castro, V.R. Thermal decomposition of wood of two species of caatinga: Caesalpinia pyramidalis e Aspidosperma pyrifolium. In Proceedings of the 3rd International Congress of Agricultural Sciences, João Pessoa, Brazil, 8–13 December 2018. [Google Scholar]
- Brun, E.J.; Bersch, A.P.; Periera, F.A.; Silva, D.A.; Barba, Y.R.D.; Dorini Junior, J.R. Characterization of three genetic materials of Eucalyptus Sp. Rev. Floresta 2018, 48, 87–92. [Google Scholar] [CrossRef]
- Tomeleri, J.O.P.; Valentim, L.B.; Silva, J.P.; Yamaji, F.M.; Pádua, F.A. Chemical and Energetic Characterization of Pinhão Manso Residual Epicarp (Jatropha curcas L.) and Briquette Produced. Rev. Virtual Química 2017, 9, 942–952. [Google Scholar] [CrossRef]
- Maia, B.; Souza, O.; Marangoni, C.; Hotza, D.; Oliveira, A.; Sellin, N. Production and Characterization of Fuel Briquettes from Banana Leaves Waste. Chem. Eng. Trans. 2014, 37, 439–444. [Google Scholar] [CrossRef]
- Rodrigues, D.S.; Alexandrino, I.C.A.; Souza, M.C.; Toneli, J.T.C.L.; Antônio, G.C. Immediate analysis of agricultural biomasses: A comparative study. In Proceedings of the 6th Technical Scientific Congress of Engineering and Agronomy (CONTECC), Palmas, Brazil, 17–19 September 2019. [Google Scholar]
- Soares, V.C.; Bianchi, M.L.; Trugilho, P.F.; Pereira, A.J.; Höfler, J. Correlations Between the Properties of Wood and Eucalyptus Hybrids Vegetable Coal. Rev. Arvore 2014, 38, 543–549. [Google Scholar] [CrossRef]
- Foletto, E.L.; Hoffmann, R.; Hoffmann, R.S.; Portugal, U.L., Jr.; Jahn, S.L. Applicability of The Ashes of The Rice Shell. Química Nova 2005, 28, 1055–1060. [Google Scholar] [CrossRef]
- Centenaro, S.H.; Silva, J.A.G.; Paulino, R.S. Use of Biomass Ash Generated in the Malt Agro Industry for Argamass Production. Rev. Int. Ciências 2021, 11, 158–176. [Google Scholar] [CrossRef]
- Assis, L.F. Biomass Ash Characterization and Application Potential as Pozolanic Material or Alkaline Activator; “Júlio de Mesquita Filho”; Paulista State University: São Paulo, Brazil, 2023; pp. 37–39. [Google Scholar]
- Kieling, A.G.; Brehm, F.A.; Kulakowski, M.P.; Moraes, C.A.M. Influence of The Burning Process on The Characteristics of Rice Shell Ash. Braz. J. Anim. Environ. Res. 2020, 3, 2106–2116. [Google Scholar] [CrossRef]
- Brand, M.A.; Cunha, A.; Carvalho, A.F.; Brehmer, D.R.; Küster, L.C. Analysis of the quality of wood and charcoal produced from the species Miconia cinnamomifolia (De Candolle) Naudin (Jacatirão-açu) in family farming, in Biguaçu. Sci. Florest. 2013, 41, 401–410. [Google Scholar]
- Protásio, T.d.P.; Neves, T.A.; dos Reis, A.A.; Trugilho, P.F. Effect of Age and Clone on Eucalyptus spp Wood Quality for Bioenergy Production. Ciência Florest. 2014, 24, 465–477. [Google Scholar] [CrossRef]
- Barreiros, R.M.; Ribeiro, G.P.; Dias, K.B.; Gouvêa, C.S.; Reis, A.M.F.; Silva, G.C. Energy potential of wood of three species of eucalyptus. In Natural Resources: Forest Biomass Energy, 1st ed.; Oliveira, R.J., Moreira, R.C., Eds.; Editora Científica Digita: São Paulo, Brazil, 2021; pp. 146–164. [Google Scholar] [CrossRef]
- Vivian, M.A.; Silva, A.M.O.; Modes, K.S.; Dobner Júnior, M.; Silva Júnior, F.G. Features of the wood Cunninghamia lanceolata (Chinese fir). Sci. For. 2021, 49, e3581. [Google Scholar] [CrossRef]
- Sjöström, E. Wood Chemistry: Fundamentals and Applications, 2nd ed.; Academic Press: Cambridge, MA, USA, 1993; pp. 107–113. [Google Scholar] [CrossRef]
- Pavia, D.L.; Lampman, G.M.; Kriz, G.S.; Vyvyan, J.R. Introduction to Spectroscopy, 4th ed.; Cengage Learning: Belmont, CA, USA, 2010; p. 716, ISBN-13:9788522107087.
- Haqiqi, E.E. Analisis FTIR (Fourier Transform InfraRed) Adsorbents Coloring Substances from Chicken Egg Shell Residues Combined Biomass Seals Pad. In Proceedings of the National Seminar on Chemistry: Exploration of Natural Materials as Science Innovation for Progress, Jatinangor, Indonésia, 9–10 November 2018. [Google Scholar]
- Xu, F.; Zhang, X.; Zhang, F.; Jiang, L.; Zhao, Z.; Li, H. TG-FTIR for Kinetic Evaluation and Evolved Gas Analysis of Cellulose with Different Structures. Fuel 2020, 268, 117365. [Google Scholar] [CrossRef]
- Silva, A.L.L.; Araujo, M.G.S.; Bastos, M.L.A.; Bernardo, T.H.L.; Oliveira, J.F.S.; Silva-Junior, E.F.; Santos-Junior, P.F.S.; Araujo, M.V.; Alexandre-Moreira, M.S.; Araújo-Júnior, J.X.; et al. Evaluation of Antibacterial, Cytotoxic and Antioxidant Activity of Plant Species Opuntia cochenillifera (L.) Mill. Rev. Bras. Plantas Med. 2016, 18, 307–315. [Google Scholar] [CrossRef]
- Candelier, K.; Dibdiakova, J.; Volle, G.; Rousset, P. Study on Chemical Oxidation of Heat Treated Lignocellulosic Biomass under Oxygen Exposure by STA-DSC-FTIR Analysis. Thermochim. Acta 2016, 644, 33–42. [Google Scholar] [CrossRef]
- Lopes, W.A.; Fascio, M. Scheme for Interpreting Organic Substance Spectrals in the Infrared Region. Química Nova 2004, 27, 670–673. [Google Scholar] [CrossRef]
- Cadermatori, P.H.G.; Missio, A.L.; Mattos, B.D.; Gatto, D.A. Effect of Thermal Treatments on Technological Properties of Wood from Two Eucalyptus Species. Agrar. Sci. 2015, 87, 471–481. [Google Scholar] [CrossRef]
- Evans, P.D. Weathering of Wood and Wood Composites. In Handbook of Wood Chemistry and Wood Composites, 2nd ed.; Rowell, R.M., Ed.; CRC Press: Boca Raton, FL, USA, 2013; pp. 163–165. ISBN 978-1-4398-5381-8. [Google Scholar]
- Tang, J.P.; Lam, H.L.; Aziz, M.K.A.; Morad, N.A. Enhanced Biomass Characteristics Index in Palm Biomass Calorific Value Estimation. Appl. Therm. Eng. 2016, 105, 941–949. [Google Scholar] [CrossRef]
- Galvani, F.; Okamura, L.A.; Salis, S.M. Energy Potential of the Biomasses of Canjiqueira E Do Cambará. 2021. Available online: http://www.infoteca.cnptia.embrapa.br (accessed on 10 September 2022).
- Reis Portilho, G.; Resende de Castro, V.; de Cássia Oliveira Carneiro, A.; Cola Zanuncio, J.; José Vinha Zanuncio, A.; Gabriella Surdi, P.; Gominho, J.; de Oliveira Araújo, S. Potential of Briquette Produced with Torrefied Agroforestry Biomass to Generate Energy. Forests 2020, 11, 1272. [Google Scholar] [CrossRef]
- Habitzreiter, T.L.; Adami, P.F.; Brun, E.J.; Batista, V.V.; Ferreira, M.L.; Giacomel, C.L. Caloric Power and Economic Analysis of Total or Partial Use of Eucalyptus Biomass. Sci. Agrar. Parana. 2020, 18, 282. [Google Scholar] [CrossRef]
- Lima, M.J. Determination of Reaction Kinetics and Operating Conditions of Coffee Bark Pyrolysis in Fixed Bed; Federal University of Espírito Santo: Vitória, Spain, 2018; pp. 43–44. [Google Scholar]
- Haykiri-Acma, H.; Baykan, A.; Yaman, S.; Kucukbayrak, S. Effects of Fragmentation and Particle Size on the Fuel Properties of Hazelnut Shells. Fuel 2013, 112, 326–330. [Google Scholar] [CrossRef]
- Casara, V.P.; Bohn, L.R.; Dresch, A.P.; Mibielli, G.M.; Bender, J.P. Physico-chemical characterization of Maize biomass. In Proceedings of the 12th Brazilian Congress of Chemical Engineering in Scientific Initiation (COBEQ-IC), São Carlos, Brazil, 16–19 July 2017. [Google Scholar] [CrossRef]
- Dresch, A.P.; Bender, J.P.; Führ, J.F.; Vargas, A.C.G.; Mibielli, G.M. Physico-chemical characterization of millet biomass (Pennisetum glaucum). In Proceedings of the 13th Brazilian Congress of Chemical Engineering in Scientific Initiation (COBEQ-IC), Uberlândia, Brazil, 21–24 July 2019. [Google Scholar]
- Tumuluru, J.S. Effect of Pellet Die Diameter on Density and Durability of Pellets Made from High Moisture Woody and Herbaceous Biomass. Carbon Resour. Convers. 2018, 1, 44–54. [Google Scholar] [CrossRef]
- Gadelha, A.M.T.; Rodrigues, D.S.; Alexandrino, I.C.A.; Toneli, J.T.C.L.; Antônio, G.C. Biomasses with energy potential for briqueting: Comparative density. In Proceedings of the 7th Technical-Scientific Congress of Engineering and Agronomy (CONTECC), Online, 16–17 September 2021. [Google Scholar]
- Jacinto, R.C.; Brand, M.A.; Cunha, A.B.; Souza, D.L.; Silva, M.V. Use of Waste from the Pinhão Production Chain for the Production of Pellets for Energy Generation. Floresta 2017, 47, 353–363. [Google Scholar] [CrossRef]
- Moraes, S. Biomass and Densing Technologies for Energy Application. Rev. IPT Tecnol. Inovação 2021, 5, 353–363. [Google Scholar]
- Campbell, W.A.; Coller, A.; Evitts, R.W. Comparing Severity of Continuous Torrefaction for Five Biomass with a Wide Range of Bulk Density and Particle Size. Renew. Energy 2019, 141, 964–972. [Google Scholar] [CrossRef]
- Agar, D.A.; Rudolfsson, M.; Kalén, G.; Campargue, M.; Silva Perez, D.; Larsson, S.H. A Systematic Study of Ring-Die Pellet Production from Forest and Agricultural Biomass. Fuel Process. Technol. 2018, 180, 47–55. [Google Scholar] [CrossRef]
- Mudryk, K.; Jewiarz, M.; Wróbel, M.; Niemiec, M.; Dyjakon, A. Evaluation of Urban Tree Leaf Biomass-Potential, Physico-Mechanical and Chemical Parameters of Raw Material and Solid Biofuel. Energies 2021, 14, 818. [Google Scholar] [CrossRef]
- Wiedenhoeft, A.C. Structure and Function of Wood. In Handbook of Wood Chemistry and Wood Composites, 2nd ed.; Rowell, R.M., Ed.; CRC Press: Boca Raton, FL, USA, 2013; pp. 9–30. ISBN 978-1-4398-5381-8. [Google Scholar]
- Macedo, L.A.; Commandré, J.M.; Rousset, P.; Valette, J.; Pétrissans, M. Influence of Potassium Carbonate Addition on the Condensable Species Released during Wood Torrefaction. Fuel Process. Technol. 2018, 169, 248–257. [Google Scholar] [CrossRef]
- González Martínez, M.; Anca Couce, A.; Dupont, C.; da Silva Perez, D.; Thiéry, S.; Meyer, X.; Gourdon, C. Torrefaction of Cellulose, Hemicelluloses and Lignin Extracted from Woody and Agricultural Biomass in TGA-GC/MS: Linking Production Profiles of Volatile Species to Biomass Type and Macromolecular Composition. Ind. Crops Prod. 2022, 176, 114350. [Google Scholar] [CrossRef]
- Corradi, L.A.; Carvalho, A.M.; Trugilho, P.F.; Melo, I.M.; Oliveira, A.C. Study of Thermal Degradation of Eucalyptus Wood Through Thermogravimetry and Calorimetry. Rev. Arvore 2013, 37, 567–576. [Google Scholar] [CrossRef]
- Zanetti, A.; Benevides, L.C.; Xavier, T.P.; Lira, T.P. Assessment of drying kinetics in thermogravimetric analysis of orange bagasse. In Proceedings of the 12th Brazilian Congress of Chemical Engineering in Scientific Initiation (COBEQ-IC), São Carlos, Brazil, 16–19 July 2017. [Google Scholar]
- Romero, M.J.A.; Duca, D.; Maceratesi, V.; Di Stefano, S.; De Francesco, C.; Toscano, G. Preliminary Study on the Thermal Behavior and Chemical-Physical Characteristics of Woody Biomass as Solid Biofuels. Processes 2023, 11, 154. [Google Scholar] [CrossRef]
- Adamová, T.; Hradecký, J.; Pánek, M. Volatile Organic Compounds (VOCs) from Wood and Wood-Based Panels: Methods for Evaluation, Potential Health Risks, and Mitigation. Polymers 2020, 12, 2289. [Google Scholar] [CrossRef] [PubMed]
- Machado, G.O.; Vogel, F.; Silva, M.M. Influence of the Final Carbonization Temperature on the Physical, Chemical and Energy Characteristics of Cinnamon Coal (Melia azedarach L.) Influence of Temperature Carbonization in Physical, Chemical and Energy of Charcoal from Cinamomo. Ambiência 2014, 10, 83–96. [Google Scholar] [CrossRef]
- Figueroa, M.J.M.; Moraes, P.D. Wood Behaviour at High Temperatures. Ambiente Construído 2009, 9, 157–174. [Google Scholar] [CrossRef]
- Andrade, C.; Mayer, S.L.S.; Ferraz, F.A.; Marchesan, R.; Rossi, L.; Silva, D.A. Energy Properties of Hovenia dulcis Thunberg Wood and Coal. Ciência Madeira Braz. J. Wood Sci. 2019, 10, 166–175. [Google Scholar]
- Carneiro, A.C.O.; Santos, R.C.; Castro, R.V.O.; Castro, A.F.N.M.; Pimenta, A.S.; Pinto, E.M.; Alves, I.C.N. Thermal Decomposition Study of Eight Species of Wood from the Seridó Region, Rio Grande do Norte. Rev. Árvore 2013, 37, 1153–1163. [Google Scholar] [CrossRef]
- Schulz, H.R.; Acosta, A.P.; Barbosa, K.T.; Gatto, D.A. Chemical, Mechanical, Thermal and Optical Properties of Thermal Treated Wood of Pinus elliottii Planted in Brazil. Quebracho Rev. Cienc. For. 2021, 29, 122–131. [Google Scholar]
- Magalhães, A.S.; Silva, T.M.M.; Castro, V.G. Production and characterization of Briquettes from Solid Waste and Semi-Manual Pressing. Adv. For. Sci. 2019, 6, 705. [Google Scholar] [CrossRef]
- Alcântara, G.; Cuccia, V. Methods for treatment of NORM waste from the oil and gas industry. In Proceedings of the 10th Nuclear Atlantic Conference (INAC 2021), Virtual, 29 November–2 December 2021; ISBN 978-65-594-1256-3. [Google Scholar]
Energy Density (GJ.m−3) | Bulk Density (kg.m−3) | Composition |
---|---|---|
6.16(0.07)a | 339(0)a | 100T |
5.85(0.11)b | 343(0)a | 90T10B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, L.C.; Guimarães, D.; Dias Júnior, A.F.; Oliveira, M.P. Technical Feasibility Study of Orange Wood Residues (Citrus sinensis) for Bioenergy Generation. Energies 2024, 17, 3056. https://doi.org/10.3390/en17123056
Dias LC, Guimarães D, Dias Júnior AF, Oliveira MP. Technical Feasibility Study of Orange Wood Residues (Citrus sinensis) for Bioenergy Generation. Energies. 2024; 17(12):3056. https://doi.org/10.3390/en17123056
Chicago/Turabian StyleDias, Luciano C., Damaris Guimarães, Ananias F. Dias Júnior, and Michel P. Oliveira. 2024. "Technical Feasibility Study of Orange Wood Residues (Citrus sinensis) for Bioenergy Generation" Energies 17, no. 12: 3056. https://doi.org/10.3390/en17123056
APA StyleDias, L. C., Guimarães, D., Dias Júnior, A. F., & Oliveira, M. P. (2024). Technical Feasibility Study of Orange Wood Residues (Citrus sinensis) for Bioenergy Generation. Energies, 17(12), 3056. https://doi.org/10.3390/en17123056