Economic Analysis of Profitability of Using Energy Storage with Photovoltaic Installation in Conditions of Northeast Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aim and Scope of the Work
2.2. Description of the Facility and Variants
2.3. Economic Analysis
- -
- 24,000 PLN for an installation with a power of 5.06 kWp;
- -
- 42,000 PLN for an installation with a power of 9.66 kWp;
- -
- 25,000 PLN for an energy-storage facility;
- -
- 9000 PLN for disposal of PV 5.06 kWp;
- -
- 15,000 PLN for disposal of PV 9.66 kWp;
- -
- 12,000 PLN for battery disposal one time (two times during the analysis).
- P—increase in energy price per year,
- n—years,
- Kc—costs of purchasing active energy,
- Kd—distribution costs,
- Kst—fixed costs.
- KPV5.06—the cost of building a photovoltaic power plant with a capacity of 5.06 kWp,
- KUPV—the cost of disposal of pv modules
- ke—gross cost of one kilowatt hour,
- Zee—demand for electricity,
- A—autoconsumption,
- eps—energy taken from the grid,
- eos—energy fed into the grid,
- Ew—energy produced,
- Eo—energy transferred to the grid for rebates.
- kd—distribution costs of one kilowatt hour,
- ne—the amount of energy taken from the network, equal to the amount of energy purchased, and with zero energy purchases, the value is 0.
- KRCEm—the average monthly market price of electricity provided by PSE.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kurz, D.; Nawrowski, R.; Filipiak, M.; Węgrzyn, W. Analiza możliwości zarządzania i rozdziału energii elektrycznej, wyprodukowanej w prosumenckiej instalacji fotowoltaicznej, w budynku z automatyką budynkową. Przegląd Elektrotechniczny 2022, 98, 259–264. [Google Scholar] [CrossRef]
- Woszczyński, M.; Stankiewicz, K. Analiza efektywności energetycznej i założenia techniczne rozbudowy instalacji fotowoltaicznych na dachach obiektów przemysłowych. Innowacyjne i Przyjazne dla Środowiska Techniki i Technologie Przeróbki Surowców Mineralnych. Bezpieczeństwo–Jakość–Efektywność 2021, 67–82. [Google Scholar]
- Bugała, D.; Bugała, A. Odporność instalacji fotowoltaicznej na elektromagnetyczne zaburzenia udarowe. Pozn. Univ. Technol. Acad. J. Electr. Eng. 2019, 97, 75–85. [Google Scholar]
- Tytko, R.; Andruszkiewicz, K. Charakterystyka i klasyfikacja rozwiązań technologicznych w budowie ogniw fotowoltaicznych. Elektron. Konstr. Technol. Zastos. 2021, 62, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Seklecki, K.; Olesz, M. Zasady montażu instalacji fotowoltaicznych według obowiązujących przepisów i norm. Zesz. Nauk. Wydziału Elektrotechniki Autom. Politech. Gdańskiej 2021, 73, 35–40. [Google Scholar]
- Barwicki, J.; Kuboń, M.; Marczuk, A. New developments of solar energy utilization in the aspect of eu directives. Agric. Eng. 2017, 21, 15–24. [Google Scholar] [CrossRef]
- Toledo, C.; López-Vicente, R.; Abad, J.; Urbina, A. Thermal performance of PV modules as building elements: Analysis under real operating conditions of different technologies. Energy Build. 2020, 223, 110087. [Google Scholar] [CrossRef]
- Ghosh, S.; Yadav, R. Future of photovoltaic technologies: A comprehensive review. Sustain. Energy Technol. Assess. 2021, 47, 101410. [Google Scholar] [CrossRef]
- Belhachat, F.; Larbes, C. PV array reconfiguration techniques for maximum power optimization under partial shading conditions: A review. Sol. Energy 2021, 230, 558–582. [Google Scholar] [CrossRef]
- Ramli, M.Z.; Salam, Z. Performance evaluation of dc power optimizer (DCPO) for photovoltaic (PV) system during partial shading. Renew. Energy 2019, 139, 1336–1354. [Google Scholar] [CrossRef]
- Szymański, B. Instalacje Fotowoltaiczne Poradnik, 2023th ed.; Wydawca GLOBENERGIA SP. Z.O.O: Kraków, Poland, 2023; pp. 103–104. Available online: https://globenergia.pl/sklep/product/poradnik-instalacje-fotowoltaiczne-edycja-2023/ (accessed on 2 April 2024).
- Liu, J.; Chen, X.; Cao, S.; Yang, H. Overview on hybrid solar photovoltaic-electrical energy storage technologies for power supply to buildings. Energy Convers. Manag. 2019, 187, 103–121. [Google Scholar] [CrossRef]
- Mulleriyawage, U.G.K.; Shen, W.X. Optimally sizing of battery energy storage capacity by operational optimization of residential PV-Battery systems: An Australian household case study. Renew. Energy 2020, 160, 852–864. [Google Scholar] [CrossRef]
- Kebede, A.A.; Coosemans, T.; Messagie, M.; Jemal, T.; Behabtu, H.A.; Van Mierlo, J.; Berecibar, M. Techno-economic analysis of lithium-ion, and lead-acid batteries in stationary energy storage application. J. Energy Storage 2021, 40, 102748. [Google Scholar] [CrossRef]
- Albertus, P.; Manser, J.S.; Litzelman, S. Long-duration electricity storage applications, economics, and technologies. Joule 2020, 4, 21–32. [Google Scholar] [CrossRef]
- Panda, N.; Cueva-Sola, A.B.; Dzulqornain, A.M.; Thenepalli, T.; Lee, J.Y.; Yoon, H.S.; Jyothi, R.K. Review on lithium ion battery recycling: Challenges, and possibilities. Geosystem Eng. 2023, 26, 101–118. [Google Scholar] [CrossRef]
- Costa, C.M.; Barbosa, J.C.; Gonçalves, R.; Castro, H.; Del Campo, F.J.; Lanceros-Méndez, S. Recycling, and environmental issues of lithium-ion batteries: Advances, challenges, and opportunities. Energy Storage Mater. 2021, 37, 433–465. [Google Scholar] [CrossRef]
- Kwaśniewski, D.; Akdeniz, C.; Durmaz, F.; Kömekçi, F. Economic analysis of the photovoltaic installation use possibilities in farms. Agric. Eng. 2020, 24, 47–60. [Google Scholar] [CrossRef]
- Jarosiński, M.; Godlewski, W.; Sierakowski, M. Opłacalność instalacji PV z bateryjnymi magazynami energii a proponowane zmiany w rozliczaniu prosumentów. Rynek Instal. 2021, 9, 38–44. [Google Scholar]
- Lis, S.; Szul, T.; Krilek, J.; Melicherčík, J.; Kuvik, T. Ocena efektywności ekonomicznej zastosowania magazynu energii w instalacji fotowoltaicznej pracującej w ramach programu Prosument. Przegląd Elektrotechniczny 2022, 98, 94–97. [Google Scholar] [CrossRef]
- Polish Ministry of Climate, and Environment. Available online: https://www.gov.pl/web/klimat/prosument (accessed on 14 April 2024).
- Nowakowska, P.; Malciak, M. Zmiany w funkcjonowaniu i zasadach rozliczania fotowoltaiki. Nowa Energ. 2021, 5–6, 48–51. [Google Scholar]
- Polish Ministry of Climate, and Environment. Available online: https://www.gov.pl/web/klimat/nowy-system-rozliczania-tzw-net-billing (accessed on 14 April 2024).
- Khezri, R.; Mahmoudi, A.; Aki, H. Optimal planning of solar photovoltaic, and battery storage systems for grid-connected residential sector: Review, challenges, and new perspectives. Renew. Sustain. Energy Rev. 2022, 153, 111763. [Google Scholar] [CrossRef]
- Javeed, I.; Khezri, R.; Mahmoudi, A.; Yazdani, A.; Shafiullah, G.M. Optimal sizing of rooftop PV, and battery storage for grid-connected houses considering flat, and time-of-use electricity rates. Energies 2021, 14, 3520. [Google Scholar] [CrossRef]
- Bhoi, S.K.; Nayak, M.R. Optimal scheduling of battery storage with grid tied PV systems for trade-off between consumer energy cost, and storage health. Microprocess. Microsyst. 2020, 79, 103274. [Google Scholar] [CrossRef]
- Kapoor, A.; Sharma, A. Optimal charge/discharge scheduling of battery storage interconnected with residential PV system. IEEE Syst. J. 2019, 14, 3825–3835. [Google Scholar] [CrossRef]
- Babu, V.V.; Roselyn, J.P.; Sundaravadivel, P. Multi-objective genetic algorithm based energy management system considering optimal utilization of grid, and degradation of battery storage in microgrid. Energy Rep. 2023, 9, 5992–6005. [Google Scholar] [CrossRef]
- Sigalo, M.B.; Pillai, A.C.; Das, S.; Abusara, M. An energy management system for the control of battery storage in a grid-connected microgrid using mixed integer linear programming. Energies 2021, 14, 6212. [Google Scholar] [CrossRef]
- Sharma, V.; Aziz, S.M.; Haque, M.H.; Kauschke, T. Energy economy of households with photovoltaic system, and battery storage under time of use tariff with demand charge. IEEE Access 2022, 10, 33069–33082. [Google Scholar] [CrossRef]
- Balal, A.; Giesselmann, M. Demand side management, and economic analysis using battery storage system (bss), and solar energy. In Proceedings of the 2021 IEEE 4th International Conference on Power, and Energy Applications (ICPEA), Busan, Republic of Korea, 9–11 October 2021; pp. 141–146. [Google Scholar]
- Alarrouqi, R.A.; Ellabban, O.; Al-Fagih, L. An assessment of different load demands on photovoltaic plus battery storage system profitability: A case study of Australia. In Proceedings of the 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), Delft, The Netherlands, 17–19 June 2020; pp. 1497–1502. [Google Scholar]
- Krishnan, G.; Chandrakala, K.V. Techno-Economic Analysis for the Profitability of Residential PV-Battery System. In Proceedings of the 2022 4th International Conference on Energy, Power, and Environment (ICEPE), Shillong, India, 29 April–1 May 2022; pp. 1–5. [Google Scholar]
- Fioriti, D.; Pellegrino, L.; Lutzemberger, G.; Micolano, E.; Poli, D. Optimal sizing of residential battery systems with multi-year dynamics, and a novel rainflow-based model of storage degradation: An extensive Italian case study. Electr. Power Syst. Res. 2022, 203, 107675. [Google Scholar] [CrossRef]
- Barré, A.; Deguilhem, B.; Grolleau, S.; Gérard, M.; Suard, F.; Riu, D. A review on lithium-ion battery ageing mechanisms, and estimations for automotive applications. J. Power Sources 2013, 241, 680–689. [Google Scholar] [CrossRef]
- Bermudez, V. Electricity storage supporting PV competitiveness in a reliable and sustainable electric network. J. Renew. Sustain. Energy 2017, 9, 012301. [Google Scholar] [CrossRef]
- Pomorski, M.; Nemś, A.; Kolasiński, P.; Malecha, Z.; Chorowski, M. Analiza wpływu magazynowania energii elektrycznej na opłacalność prosumenckiej mikroinstalacji fotowoltaicznej. Instal 2022, 9, 26–32. [Google Scholar] [CrossRef]
- Borek, K.; Romaniuk, W. Possibilities of obtaining renewable energy in dairy farming. Agric. Eng. 2020, 24, 9–20. [Google Scholar] [CrossRef]
- Brodziński, Z.; Brodzińska, K.; Szadziun, M. Photovoltaic farms—Economic efficiency of investments in north-east Poland. Energies 2021, 14, 2087. [Google Scholar] [CrossRef]
- Olczak, P.; Żelazna, A.; Stecuła, K.; Matuszewska, D.; Lelek, Ł. Environmental, and economic analyses of different size photovoltaic installation in Poland. Energy Sustain. Dev. 2022, 70, 160–169. [Google Scholar] [CrossRef]
- Kurz, D.; Nowak, A. Analysis of the impact of the level of self-consumption of electricity from a prosumer photovoltaic installation on its profitability under different energy billing scenarios in Poland. Energies 2023, 16, 946. [Google Scholar] [CrossRef]
- Xiao, Y.; Zou, C.; Dong, M.; Chi, H.; Yan, Y.; Jiang, S. Feasibility study: Economic and technical analysis of optimal configuration and operation of a hybrid CSP/PV/wind power cogeneration system with energy storage. Renew. Energy 2024, 225, 120273. [Google Scholar] [CrossRef]
- Zhao, G.; Clarke, J.; Searle, J.; Lewis, R.; Baker, J. Economic analysis of integrating photovoltaics and battery energy storage system in an office building. Energy Build. 2023, 284, 112885. [Google Scholar] [CrossRef]
- Chen, Q.; Kuang, Z.; Liu, X.; Zhang, T. Optimal sizing and techno-economic analysis of the hybrid PV-battery-cooling storage system for commercial buildings in China. Appl. Energy 2024, 355, 122231. [Google Scholar] [CrossRef]
- Balachandran, S.; Ponnusamy, K. Feasibility of integrated solar photovoltaic pico-pumped storage self-sustained system for multi-storey building in India. Energy Storage 2024, 6, e601. [Google Scholar] [CrossRef]
- Ali, O.M.; Alomar, O.R. Technical and economic feasibility analysis of a PV grid-connected system installed on a university campus in Iraq. Environ. Sci. Pollut. Res. 2023, 30, 15145–15157. [Google Scholar] [CrossRef]
- Fagerström, J.; Das, S.; Klyve, Ø.S.; Olkkonen, V.; Marstein, E.S. Profitability of battery storage in hybrid hydropower–solar photovoltaic plants. J. Energy Storage 2024, 77, 109827. [Google Scholar] [CrossRef]
- Angenendt, G.; Zurmühlen, S.; Mir-Montazeri, R.; Magnor, D.; Sauer, D.U. Enhancing battery lifetime in PV battery home storage system using forecast based operating strategies. Energy Procedia 2016, 99, 80–88. [Google Scholar] [CrossRef]
- Farinet, D.; Maurer, M.; Vacca, L.; Spataru, S.V.; Stroe, D.I. Battery lifetime analysis for residential PV-battery system used to optimize the self consumption-a Danish scenario. In Proceedings of the 2019 IEEE Energy Conversion Congress, and Exposition (ECCE), Baltimore, MD, USA, 29 September–3 October 2019; pp. 6693–6698. [Google Scholar]
- Tora, M.; Karbowniczek, M.; Tora, B. Fotowoltaika w Polsce: Stan aktualny i perspektywy. Zesz. Nauk. Inst. Gospod. Surowcami Miner. Energią PAN 2022, 110, 111–118. [Google Scholar]
- Chowdhury, M.S.; Rahman, K.S.; Chowdhury, T.; Nuthammachot, N.; Techato, K.; Akhtaruzzaman, M.; Tiong, S.K.; Sopian, K.; Amin, N. An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strategy Rev. 2020, 27, 100431. [Google Scholar] [CrossRef]
Variant | Description |
---|---|
I | Home installation without photovoltaic installation; all electricity drawn from the power plant’s connection |
II | Home installation with a photovoltaic installation with a capacity of 5.06 kWp in a net-metering system |
III | Home installation with a photovoltaic installation with a capacity of 5.06 kWp, and electric energy storage with a capacity of 10 kWh in a net-metering system |
IV | Home installation with a photovoltaic installation with a capacity of 9.66 kWp in a net-metering system |
V | Home installation with a photovoltaic installation with a capacity of 9.66 kWp, and an energy storage facility with a capacity of 10 kWh in a net-metering system |
VI | Home installation with a photovoltaic installation with a capacity of 5.06 kWp in the net-billing system |
VII | Home installation with a photovoltaic installation with a capacity of 5.06 kWp, and electric energy storage with a capacity of 10 kWh in the net-billing system |
VIII | Home installation with a photovoltaic installation with a capacity of 9.66 kWp in the net-billing system |
IX | Home installation with a photovoltaic installation with a capacity of 9.66 kWp, and an energy-storage facility with a capacity of 10 kWh in the net-billing system |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neugebauer, M.; d’Obyrn, J.; Sołowiej, P. Economic Analysis of Profitability of Using Energy Storage with Photovoltaic Installation in Conditions of Northeast Poland. Energies 2024, 17, 3075. https://doi.org/10.3390/en17133075
Neugebauer M, d’Obyrn J, Sołowiej P. Economic Analysis of Profitability of Using Energy Storage with Photovoltaic Installation in Conditions of Northeast Poland. Energies. 2024; 17(13):3075. https://doi.org/10.3390/en17133075
Chicago/Turabian StyleNeugebauer, Maciej, Jakub d’Obyrn, and Piotr Sołowiej. 2024. "Economic Analysis of Profitability of Using Energy Storage with Photovoltaic Installation in Conditions of Northeast Poland" Energies 17, no. 13: 3075. https://doi.org/10.3390/en17133075
APA StyleNeugebauer, M., d’Obyrn, J., & Sołowiej, P. (2024). Economic Analysis of Profitability of Using Energy Storage with Photovoltaic Installation in Conditions of Northeast Poland. Energies, 17(13), 3075. https://doi.org/10.3390/en17133075