Review on Advanced Storage Control Applied to Optimized Operation of Energy Systems for Buildings and Districts: Insights and Perspectives
Abstract
:1. Introduction
2. Methodology
2.1. Papers Selection Process and Inclusion in the Review
2.2. Description of the Dataset
3. Results
3.1. An Updated Classification and Taxonomy of Control for Energy Storage in Buildings
3.2. Relationships between Controls and Applications
3.3. Insights: Non-Predictive Control Strategies for Energy Storages
3.3.1. Applications without the Support of AI
3.3.2. Applications Supported by AI
3.4. Insights: Predictive Control Techniques
3.4.1. Applications without the Support of AI
3.4.2. Applications Supported by AI
4. Discussion: Emerging Trends and Perspectives
4.1. The Role of AI
- Prediction of key influencing factors of the energy storage system, such as energy storage performance, meteorological parameters, and demand loads;
- Optimization to search for best solutions of control variables for the energy storage systems to consider single or multiple objectives to maximize environmental and/or economic benefits with upper and lower capacity constraints.
4.2. How Storage Increases Building Flexibility and Resilience
4.3. From Control Theory to Practice: Future Perspectives for Experimental Application
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
AI | Artificial Intelligence |
ANN | Artificial Neural Network |
BITES | Building integrated Thermal Energy Storage |
CCHP | combined cooling, heating, and power |
EV | Electric vehicles |
GA | Genetic Algorithm |
HVAC | Heating, Ventilation and Air Conditioning |
IPCC | Intergovernmental Panel on Climate Change |
LVN | Low voltage networks |
MILP | Mixed Integer Linear Programming |
MPC | Model predictive control |
PID | Proportional–integral–derivative |
PSO | Particle Swarm Optimization |
PV | Photovoltaic |
RBC | Rule-Based Control |
TES | Thermal Energy Storage |
TOU | Time of use |
References
- Ferrara, M.; Prunotto, F.; Rolfo, A.; Fabrizio, E. Energy Demand and Supply Simultaneous Optimization to Design a Nearly Zero-Energy House. Appl. Sci. 2019, 9, 2261. [Google Scholar] [CrossRef]
- Bilardo, M.; Fabrizio, E. From Zero Energy to Zero Power Buildings: A New Framework to Define High-Energy Performance and Carbon-Neutral Buildings. Sustain. Energy Technol. Assess. 2023, 60, 103521. [Google Scholar] [CrossRef]
- Jafari, M.; Botterud, A.; Sakti, A. Decarbonizing Power Systems: A Critical Review of the Role of Energy Storage. Renew. Sustain. Energy Rev. 2022, 158, 112077. [Google Scholar] [CrossRef]
- Biglia, A.; Ferrara, M.; Fabrizio, E. On the Real Performance of Groundwater Heat Pumps: Experimental Evidence from a Residential District. Appl. Therm. Eng. 2021, 192, 116887. [Google Scholar] [CrossRef]
- Yu, Z.; Huang, G.; Haghighat, F.; Li, H.; Zhang, G. Control Strategies for Integration of Thermal Energy Storage into Buildings: State-of-the-Art Review. Energy Build. 2015, 106, 203–215. [Google Scholar] [CrossRef]
- Afram, A.; Janabi-Sharifi, F. Theory and Applications of HVAC Control Systems—A Review of Model Predictive Control (MPC). Build. Environ. 2014, 72, 343–355. [Google Scholar] [CrossRef]
- Thieblemont, H.; Haghighat, F.; Ooka, R.; Moreau, A. Predictive Control Strategies Based on Weather Forecast in Buildings with Energy Storage System: A Review of the State-of-the Art. Energy Build. 2017, 153, 485–500. [Google Scholar] [CrossRef]
- Tarragona, J.; Pisello, A.L.; Fernández, C.; de Gracia, A.; Cabeza, L.F. Systematic Review on Model Predictive Control Strategies Applied to Active Thermal Energy Storage Systems. Renew. Sustain. Energy Rev. 2021, 149, 111385. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, S.; Zhang, G. A Review on Cooling Performance Enhancement for Phase Change Materials Integrated Systems—Flexible Design and Smart Control with Machine Learning Applications. Build. Environ. 2020, 174, 106786. [Google Scholar] [CrossRef]
- Gholamzadehmir, M.; del Pero, C.; Buffa, S.; Fedrizzi, R.; Aste, N. Adaptive-Predictive Control Strategy for HVAC Systems in Smart Buildings—A Review. Sustain. Cities Soc. 2020, 63, 102480. [Google Scholar] [CrossRef]
- Reynders, G.; Amaral Lopes, R.; Marszal-Pomianowska, A.; Aelenei, D.; Martins, J.; Saelens, D. Energy Flexible Buildings: An Evaluation of Definitions and Quantification Methodologies Applied to Thermal Storage. Energy Build. 2018, 166, 372–390. [Google Scholar] [CrossRef]
- Garcia-Torres, F.; Zafra-Cabeza, A.; Silva, C.; Grieu, S.; Darure, T.; Estanqueiro, A. Model Predictive Control for Microgrid Functionalities: Review and Future Challenges. Energies 2021, 14, 1296. [Google Scholar] [CrossRef]
- Song, W.; Zhang, Z.; Chen, Z.; Wang, F.; Yang, B. Thermal Comfort and Energy Performance of Personal Comfort Systems (PCS): A Systematic Review and Meta-Analysis. Energy Build. 2022, 256, 111747. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Le, K.X.; Huang, M.J.; Shah, N.N.; Wilson, C.; Mac Artain, P.; Byrne, R.; Hewitt, N.J. Techno-Economic Assessment of Cascade Air-to-Water Heat Pump Retrofitted into Residential Buildings Using Experimentally Validated Simulations. Appl. Energy 2019, 250, 633–652. [Google Scholar] [CrossRef]
- Borrelli, M.; Merema, B.; Ascione, F.; Francesca De Masi, R.; Peter Vanoli, G.; Breesch, H. Evaluation and Optimization of the Performance of the Heating System in a NZEB Educational Building by Monitoring and Simulation. Energy Build. 2021, 231, 110616. [Google Scholar] [CrossRef]
- Cichy, M.; Beigelböck, B.; Eder, K.; Judex, F. Demand Response of Large Residential Buildings—A Case Study from “Seestadt Aspern”. In Proceedings of the IECON Proceedings (Industrial Electronics Conference), Florence, Italy, 23–26 October 2016; pp. 3936–3941. [Google Scholar] [CrossRef]
- Meng, Q.; Ren, X.; Wang, W.; Xiong, C.; Li, Y.; Xi, Y.; Yang, L. Reduction in On-off Operations of an Air Source Heat Pump with Active Thermal Storage and Demand Response: An Experimental Case Study. J. Energy Storage 2021, 36, 102401. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J.; Fan, Y.; Zhao, X.; Yan, R.; Zhao, J.; Myers, S. Experimental and Analytic Study of a Hybrid Solar/Biomass Rural Heating System. Energy 2020, 190, 116392. [Google Scholar] [CrossRef]
- Qiang, Z.; Zhao, Y. The Research on Operating Characteristic of Gas Engine Heat Pump System with Energy Storage (ESGEHP) System. Energy Procedia 2017, 142, 1213–1221. [Google Scholar] [CrossRef]
- Wang, Y.; Quan, Z.; Zhao, Y.; Wang, L.; Jing, H. Operation Mode Performance and Optimization of a Novel Coupled Air and Ground Source Heat Pump System with Energy Storage: Case Study of a Hotel Building. Renew. Energy 2022, 201, 889–903. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, P.; Chen, Z.; Wang, H.; Sha, H.; Ji, Y.; Zhang, Y.; Dou, Q.; Wang, S. Experimental Investigation of Demand Response Potential of Buildings: Combined Passive Thermal Mass and Active Storage. Appl. Energy 2020, 280, 115956. [Google Scholar] [CrossRef]
- Romaní, J.; Belusko, M.; Alemu, A.; Cabeza, L.F.; de Gracia, A.; Bruno, F. Control Concepts of a Radiant Wall Working as Thermal Energy Storage for Peak Load Shifting of a Heat Pump Coupled to a PV Array. Renew. Energy 2018, 118, 489–501. [Google Scholar] [CrossRef]
- Guo, J.; Zheng, W.; Tian, Z.; Wang, Y.; Wang, Y.; Jiang, Y. The Short-Term Demand Response Potential and Thermal Characteristics of a Ventilated Floor Heating System in a Nearly Zero Energy Building. J. Energy Storage 2022, 45, 103643. [Google Scholar] [CrossRef]
- Chapaloglou, S.; Nesiadis, A.; Atsonios, K.; Nikolopoulos, N.; Grammelis, P.; Carrera, A.; Camara, O. Microgrid Energy Management Strategies Assessment through Coupled Thermal-Electric Considerations. Energy Convers. Manag. 2021, 228, 113711. [Google Scholar] [CrossRef]
- Coccia, G.; Arteconi, A.; D’Agaro, P.; Polonara, F.; Cortella, G. Demand Side Management Analysis of a Commercial Water Loop Heat Pump System. Model. Meas. Control C 2018, 79, 111–118. [Google Scholar] [CrossRef]
- Park, H.-Y.; Lee, J.-W.; Park, S.-W.; Son, S.-Y. The Monitoring and Management of an Operating Environment to Enhance the Safety of a Container-Type Energy Storage System. Sensors 2023, 23, 4715. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Guo, R.; Heiselberg, P.K. Performance and Control Strategy Development of a PCM Enhanced Ventilated Window System by a Combined Experimental and Numerical Study. Renew. Energy 2020, 155, 134–152. [Google Scholar] [CrossRef]
- Stathopoulos, N.; El Mankibi, M.; Issoglio, R.; Michel, P.; Haghighat, F. Air–PCM Heat Exchanger for Peak Load Management: Experimental and Simulation. Sol. Energy 2016, 132, 453–466. [Google Scholar] [CrossRef]
- Li, M.Y.; Li, B.; Liu, C.; Su, S.; Xiao, H.; Zhu, C. Design and Experimental Investigation of a Phase Change Energy Storage Air-Type Solar Heat Pump Heating System. Appl. Therm. Eng. 2020, 179, 115506. [Google Scholar] [CrossRef]
- Bogatu, D.-I.; Kazanci, O.B.; Olesen, B.W. An Experimental Study of the Active Cooling Performance of a Novel Radiant Ceiling Panel Containing Phase Change Material (PCM). Energy Build. 2021, 243, 110981. [Google Scholar] [CrossRef]
- Gallardo, A.; Berardi, U. Design and Control of Radiant Ceiling Panels Incorporating Phase Change Materials for Cooling Applications. Appl. Energy 2021, 304, 117736. [Google Scholar] [CrossRef]
- Bourdakis, E.; Olesen, B.W.; Grossule, F. Night Time Cooling by Ventilation or Night Sky Radiation Combined with In-Room Radiant Cooling Panels Including Phase Change Materials. In Proceedings of the 36th AIVC Conference “Effective Ventilation in High Performance Buildings”, Madrid, Spain, 23–24 September 2015. [Google Scholar]
- Gallardo, A.; Berardi, U. Evaluation of the Energy Flexibility Potential of Radiant Ceiling Panels with Thermal Energy Storage. Energy 2022, 254, 124447. [Google Scholar] [CrossRef]
- Bengoetxea, A.; Fernandez, M.; Perez-Iribarren, E.; Gonzalez-Pino, I.; Las-Heras-Casas, J.; Erkoreka, A. Control Strategy Optimization of a Stirling Based Residential Hybrid System through Multi-Objective Optimization. Energy Convers. Manag. 2020, 208, 112549. [Google Scholar] [CrossRef]
- Belmonte, J.F.; Díaz-Heras, M.; Almendros-Ibáñez, J.A.; Cabeza, L.F. Simulated Performance of a Solar-Assisted Heat Pump System Including a Phase-Change Storage Tank for Residential Heating Applications: A Case Study in Madrid, Spain. J. Energy Storage 2022, 47, 103615. [Google Scholar] [CrossRef]
- Narayanan, M.; Mengedoht, G.; Commerell, W. Importance of Buildings and Their Influence in Control System: A Simulation Case Study with Different Building Standards from Germany. Int. J. Energy Environ. Eng. 2018, 9, 413–433. [Google Scholar] [CrossRef]
- Drgoňa, J.; Arroyo, J.; Cupeiro Figueroa, I.; Blum, D.; Arendt, K.; Kim, D.; Ollé, E.P.; Oravec, J.; Wetter, M.; Vrabie, D.L.; et al. All You Need to Know about Model Predictive Control for Buildings. Annu. Rev. Control 2020, 50, 190–232. [Google Scholar] [CrossRef]
- Karimi-Mamaghan, M.; Mohammadi, M.; Meyer, P.; Karimi-Mamaghan, A.M.; Talbi, E.-G. Machine Learning at the Service of Meta-Heuristics for Solving Combinatorial Optimization Problems: A State-of-the-Art. Eur. J. Oper. Res. 2022, 296, 393–422. [Google Scholar] [CrossRef]
- Li, F.; Sun, B.; Zhang, C.; Liu, C. A Hybrid Optimization-Based Scheduling Strategy for Combined Cooling, Heating, and Power System with Thermal Energy Storage. Energy 2019, 188, 115948. [Google Scholar] [CrossRef]
- Zhang, L.; Kuang, J.; Sun, B.; Li, F.; Zhang, C. A Two-Stage Operation Optimization Method of Integrated Energy Systems with Demand Response and Energy Storage. Energy 2020, 208, 118423. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, C.; Li, H.; Zhao, Y. A Multi Agent-Based Optimal Control Method for Combined Cooling and Power Systems with Thermal Energy Storage. Build. Simul. 2021, 14, 1709–1723. [Google Scholar] [CrossRef]
- Li, L.-L.; Zheng, S.-J.; Tseng, M.-L.; Liu, Y.-W. Performance Assessment of Combined Cooling, Heating and Power System Operation Strategy Based on Multi-Objective Seagull Optimization Algorithm. Energy Convers. Manag. 2021, 244, 114443. [Google Scholar] [CrossRef]
- Barthwal, M.; Dhar, A.; Powar, S. The Techno-Economic and Environmental Analysis of Genetic Algorithm (GA) Optimized Cold Thermal Energy Storage (CTES) for Air-Conditioning Applications. Appl. Energy 2021, 283, 116253. [Google Scholar] [CrossRef]
- Tascioni, R.; Arteconi, A.; Del Zotto, L.; Cioccolanti, L. Fuzzy Logic Energy Management Strategy of a Multiple Latent Heat Thermal Storage in a Small-Scale Concentrated Solar Power Plant. Energies 2020, 13, 2733. [Google Scholar] [CrossRef]
- Khajeh, H.; Laaksonen, H.; Simões, M.G. A Fuzzy Logic Control of a Smart Home with Energy Storage Providing Active and Reactive Power Flexibility Services. Electr. Power Syst. Res. 2023, 216, 109067. [Google Scholar] [CrossRef]
- Gao, Q.; Zhang, X.; Yang, M.; Chen, X.; Zhou, H.; Yang, Q. Fuzzy Decision-Based Optimal Energy Dispatch for Integrated Energy Systems with Energy Storage. Front. Energy Res. 2021, 9, 809024. [Google Scholar] [CrossRef]
- Hunter-Rinderle, R.; Fong, M.Y.; Yang, B.; Xian, H.; Sioshansi, R. Using In-Home Energy Storage to Improve the Resilience of Residential Electricity Supply. IEEE Open Access J. Power Energy 2023, 10, 539–549. [Google Scholar] [CrossRef]
- Zheng, X.; Zhou, S.; Jin, T. A New Machine Learning-Based Approach for Cross-Region Coupled Wind-Storage Integrated Systems Identification Considering Electricity Demand Response and Data Integration: A New Provincial Perspective of China. Energy 2023, 283, 129141. [Google Scholar] [CrossRef]
- Salpakari, J.; Lund, P. Optimal and Rule-Based Control Strategies for Energy Flexibility in Buildings with PV. Appl. Energy 2016, 161, 425–436. [Google Scholar] [CrossRef]
- Tang, R.; Wang, S. Model Predictive Control for Thermal Energy Storage and Thermal Comfort Optimization of Building Demand Response in Smart Grids. Appl. Energy 2019, 242, 873–882. [Google Scholar] [CrossRef]
- Descamps, M.; Lamaison, N.; Vallée, M.; Bavière, R. Operational Control of a Multi-Energy District Heating System: Comparison of Model-Predictive Control and Rule-Based Control. In Proceedings of the ECOS 2019—Proceedings of the 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Wrocław, Poland, 23–28 June 2019; pp. 2079–2089. [Google Scholar]
- Martinez Cesena, E.A.; Mancarella, P. Energy Systems Integration in Smart Districts: Robust Optimisation of Multi-Energy Flows in Integrated Electricity, Heat and Gas Networks. IEEE Trans. Smart Grid 2019, 10, 1122–1131. [Google Scholar] [CrossRef]
- Fratean, A.; Dobra, P. Control Strategies for Decreasing Energy Costs and Increasing Self-Consumption in Nearly Zero-Energy Buildings. Sustain. Cities Soc. 2018, 39, 459–475. [Google Scholar] [CrossRef]
- Duman, A.C.; Erden, H.S.; Gönül, Ö.; Güler, Ö. A Home Energy Management System with an Integrated Smart Thermostat for Demand Response in Smart Grids. Sustain. Cities Soc. 2021, 65, 102639. [Google Scholar] [CrossRef]
- Jazaeri, J.; Alpcan, T.; Gordon, R.L. A Joint Electrical and Thermodynamic Approach to HVAC Load Control. IEEE Trans. Smart Grid 2020, 11, 15–25. [Google Scholar] [CrossRef]
- Azuatalam, D.; Mhanna, S.; Chapman, A.; Verbic, G. Optimal HVAC Scheduling Using Phase-Change Material as a Demand Response Resource. In Proceedings of the 2017 IEEE Innovative Smart Grid Technologies—Asia: Smart Grid for Smart Community, ISGT-Asia 2017, Auckland, New Zealand, 4–7 December 2017; pp. 1–5. [Google Scholar]
- Wei, Z.; Calautit, J.K. Field Experiment Testing of a Low-Cost Model Predictive Controller (MPC) for Building Heating Systems and Analysis of Phase Change Material (PCM) Integration. Appl. Energy 2024, 360, 122750. [Google Scholar] [CrossRef]
- Ouammi, A. Optimal Power Scheduling for a Cooperative Network of Smart Residential Buildings. IEEE Trans. Sustain. Energy 2016, 7, 1317–1326. [Google Scholar] [CrossRef]
- Tang, R.; Wang, S.; Wang, H. Optimal Power Demand Management for Cluster-Level Commercial Buildings Using the Game Theoretic Method. Energy Procedia 2019, 159, 186–191. [Google Scholar] [CrossRef]
- Touretzky, C.R.; Baldea, M. A Hierarchical Scheduling and Control Strategy for Thermal Energy Storage Systems. Energy Build. 2016, 110, 94–107. [Google Scholar] [CrossRef]
- Ferro, G.; Laureri, F.; Minciardi, R.; Robba, M. Optimal Integration of Interconnected Buildings in a Smart Grid: A Bi-Level Approach. In Proceedings of the Proceedings—2017 UKSim-AMSS 19th International Conference on Modelling and Simulation, UKSim 2017, Cambridge, UK, 5–7 April 2017; pp. 155–160. [Google Scholar]
- Sharifi, M.; Mahmoud, R.; Himpe, E.; Laverge, J. A Heuristic Algorithm for Optimal Load Splitting in Hybrid Thermally Activated Building Systems. J. Build. Eng. 2022, 50, 104160. [Google Scholar] [CrossRef]
- Bürger, A.; Bull, D.; Sawant, P.; Bohlayer, M.; Klotz, A.; Beschütz, D.; Altmann-Dieses, A.; Braun, M.; Diehl, M. Experimental Operation of a Solar-Driven Climate System with Thermal Energy Storages Using Mixed-Integer Nonlinear Model Predictive Control. Optim. Control Appl. Methods 2021, 42, 1293–1319. [Google Scholar] [CrossRef]
- Kuboth, S.; Heberle, F.; Weith, T.; Welzl, M.; König-Haagen, A.; Brüggemann, D. Experimental Short-Term Investigation of Model Predictive Heat Pump Control in Residential Buildings. Energy Build. 2019, 204, 109444. [Google Scholar] [CrossRef]
- Meinrenken, C.J.; Mehmani, A. Concurrent Optimization of Thermal and Electric Storage in Commercial Buildings to Reduce Operating Cost and Demand Peaks under Time-of-Use Tariffs. Appl. Energy 2019, 254, 113630. [Google Scholar] [CrossRef]
- Ostadijafari, M.; Dubey, A.; Yu, N. Linearized Price-Responsive HVAC Controller for Optimal Scheduling of Smart Building Loads. IEEE Trans. Smart Grid 2020, 11, 3131–3145. [Google Scholar] [CrossRef]
- De Oliveira, V.; Jäschke, J.; Skogestad, S. Optimal Operation of Energy Storage in Buildings: Use of the Hot Water System. J. Energy Storage 2016, 5, 102–112. [Google Scholar] [CrossRef]
- Sawant, P.; Bürger, A.; Doan, M.D.; Felsmann, C.; Pfafferott, J. Development and Experimental Evaluation of Grey-Box Models of a Microscale Polygeneration System for Application in Optimal Control. Energy Build. 2020, 215, 109725. [Google Scholar] [CrossRef]
- Li, L.; Ju, Y.; Wang, Z. Quantifying the Impact of Building Load Forecasts on Optimizing Energy Storage Systems. Energy Build. 2024, 307, 113913. [Google Scholar] [CrossRef]
- Martirano, L.; Habib, E.; Parise, G.; Greco, G.; Manganelli, M.; Massarella, F.; Parise, L. Smart Micro Grids for Nearly Zero Energy Buildings. In Proceedings of the IEEE Industry Application Society, 52nd Annual Meeting: IAS 2016, Portland, OR, USA, 2–6 October 2016. [Google Scholar]
- Parejo, A.; Sanchez-Squella, A.; Barraza, R.; Yanine, F.; Barrueto-Guzman, A.; Leon, C. Design and Simulation of an Energy Homeostaticity System for Electric and Thermal Power Management in a Building with Smart Microgrid. Energies 2019, 12, 1806. [Google Scholar] [CrossRef]
- Cox, S.J.; Kim, D.; Cho, H.; Mago, P. Real Time Optimal Control of District Cooling System with Thermal Energy Storage Using Neural Networks. Appl. Energy 2019, 238, 466–480. [Google Scholar] [CrossRef]
- Reynolds, J.; Ahmad, M.W.; Rezgui, Y.; Hippolyte, J.-L. Operational Supply and Demand Optimisation of a Multi-Vector District Energy System Using Artificial Neural Networks and a Genetic Algorithm. Appl. Energy 2019, 235, 699–713. [Google Scholar] [CrossRef]
- Finck, C.; Li, R.; Zeiler, W. Optimal Control of Demand Flexibility under Real-Time Pricing for Heating Systems in Buildings: A Real-Life Demonstration. Appl. Energy 2020, 263, 114671. [Google Scholar] [CrossRef]
- Lee, D.; Ooka, R.; Matsuda, Y.; Ikeda, S.; Choi, W. Experimental Analysis of Artificial Intelligence-Based Model Predictive Control for Thermal Energy Storage under Different Cooling Load Conditions. Sustain. Cities Soc. 2022, 79, 103700. [Google Scholar] [CrossRef]
- Goldsworthy, M.; Moore, T.; Peristy, M.; Grimeland, M. Cloud-Based Model-Predictive-Control of a Battery Storage System at a Commercial Site. Appl. Energy 2022, 327, 120038. [Google Scholar] [CrossRef]
- Meng, Q.; Xi, Y.; Ren, X.; Li, H.; Jiang, L.; Yang, L. Thermal Energy Storage Air-Conditioning Demand Response Control Using Elman Neural Network Prediction Model. Sustain. Cities Soc. 2022, 76, 103480. [Google Scholar] [CrossRef]
- Xu, Y.; Gao, W.; Li, Y.; Xiao, F. Operational Optimization for the Grid-Connected Residential Photovoltaic-Battery System Using Model-Based Reinforcement Learning. J. Build. Eng. 2023, 73, 106774. [Google Scholar] [CrossRef]
- Henze, G.P.; Krarti, M.; Brandemuehl, M.J. Guidelines for Improved Performance of Ice Storage Systems. Energy Build. 2003, 35, 111–127. [Google Scholar] [CrossRef]
- Yekini Suberu, M.; Wazir Mustafa, M.; Bashir, N. Energy Storage Systems for Renewable Energy Power Sector Integration and Mitigation of Intermittency. Renew. Sustain. Energy Rev. 2014, 35, 499–514. [Google Scholar] [CrossRef]
- Nasiri, F.; Ooka, R.; Haghighat, F.; Shirzadi, N.; Dotoli, M.; Carli, R.; Scarabaggio, P.; Behzadi, A.; Rahnama, S.; Afshari, A.; et al. Data Analytics and Information Technologies for Smart Energy Storage Systems: A State-of-the-Art Review. Sustain. Cities Soc. 2022, 84, 104004. [Google Scholar] [CrossRef]
- Rehman, H.U.; Korvola, T.; Abdurafikov, R.; Laakko, T.; Hasan, A.; Reda, F. Data Analysis of a Monitored Building Using Machine Learning and Optimization of Integrated Photovoltaic Panel, Battery and Electric Vehicles in a Central European Climatic Condition. Energy Convers. Manag. 2020, 221, 113206. [Google Scholar] [CrossRef]
- Svetozarevic, B.; Baumann, C.; Muntwiler, S.; Di Natale, L.; Zeilinger, M.N.; Heer, P. Data-Driven Control of Room Temperature and Bidirectional EV Charging Using Deep Reinforcement Learning: Simulations and Experiments. Appl. Energy 2022, 307, 118127. [Google Scholar] [CrossRef]
- Field, C.B.; Barros, V.; Stocker, T.F.; Dahe, Q.; Dokken, D.J.; Ebi, K.L.; Mastrandrea, M.D.; Mach, K.J.; Plattner, G.-K.; Allen, S.K.; et al. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Inter-governmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Zhang, C.; Kazanci, O.B.; Levinson, R.; Heiselberg, P.; Olesen, B.W.; Chiesa, G.; Sodagar, B.; Ai, Z.; Selkowitz, S.; Zinzi, M.; et al. Resilient Cooling Strategies—A Critical Review and Qualitative Assessment. Energy Build. 2021, 251, 111312. [Google Scholar] [CrossRef]
- Kuczyński, T.; Staszczuk, A. Experimental Study of the Influence of Thermal Mass on Thermal Comfort and Cooling Energy Demand in Residential Buildings. Energy 2020, 195, 116984. [Google Scholar] [CrossRef]
- Kazanci, O.B.; Shinoda, J.; Olesen, B.W. Revisiting Radiant Cooling Systems from a Resiliency Perspective. In Proceedings of the CLIMA 2022 Conference, Rotterdam, The Netherlands, 22–25 May 2022. [Google Scholar] [CrossRef]
- Amada, K.; Kim, J.; Inaba, M.; Akimoto, M.; Kashihara, S.; Tanabe, S. ichi Feasibility of Staying at Home in a Net-Zero Energy House during Summer Power Outages. Energy Build. 2022, 273, 112352. [Google Scholar] [CrossRef]
- Shinoda, J.; Bogatu, D.-I.; Olesen, B.W.; Kazanci, O.B. A Qualitative Evaluation of the Resiliency of Personalized Environmental Control Systems (PECS). In Proceedings of the 42nd AIVC-10th TightVent & 8th Venticool Conference, Rotterdam, The Netherlands, 5–6 October 2022. [Google Scholar]
- Bilardo, M.; Fraisse, G.; Pailha, M.; Fabrizio, E. Design and Experimental Analysis of an Integral Collector Storage (ICS) Prototype for DHW Production. Appl. Energy 2020, 259, 114104. [Google Scholar] [CrossRef]
- Bilardo, M.; Kämpf, J.H.; Fabrizio, E. From Zero Energy to Zero Power Buildings: A New Paradigm for a Sustainable Transition of the Building Stock. Sustain. Cities Soc. 2024, 101, 105136. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrara, M.; Bilardo, M.; Bogatu, D.-I.; Lee, D.; Khatibi, M.; Rahnama, S.; Shinoda, J.; Sun, Y.; Sun, Y.; Afshari, A.; et al. Review on Advanced Storage Control Applied to Optimized Operation of Energy Systems for Buildings and Districts: Insights and Perspectives. Energies 2024, 17, 3371. https://doi.org/10.3390/en17143371
Ferrara M, Bilardo M, Bogatu D-I, Lee D, Khatibi M, Rahnama S, Shinoda J, Sun Y, Sun Y, Afshari A, et al. Review on Advanced Storage Control Applied to Optimized Operation of Energy Systems for Buildings and Districts: Insights and Perspectives. Energies. 2024; 17(14):3371. https://doi.org/10.3390/en17143371
Chicago/Turabian StyleFerrara, Maria, Matteo Bilardo, Dragos-Ioan Bogatu, Doyun Lee, Mahmood Khatibi, Samira Rahnama, Jun Shinoda, Ying Sun, Yongjun Sun, Alireza Afshari, and et al. 2024. "Review on Advanced Storage Control Applied to Optimized Operation of Energy Systems for Buildings and Districts: Insights and Perspectives" Energies 17, no. 14: 3371. https://doi.org/10.3390/en17143371
APA StyleFerrara, M., Bilardo, M., Bogatu, D. -I., Lee, D., Khatibi, M., Rahnama, S., Shinoda, J., Sun, Y., Sun, Y., Afshari, A., Haghighat, F., Kazanci, O. B., Ooka, R., & Fabrizio, E. (2024). Review on Advanced Storage Control Applied to Optimized Operation of Energy Systems for Buildings and Districts: Insights and Perspectives. Energies, 17(14), 3371. https://doi.org/10.3390/en17143371