The Impact of Air Renewal with Heat-Recovery Technologies on Energy Consumption for Different Types of Environments in Brazilian Buildings
Abstract
1. Introduction
2. Analysis of the Brazilian Bioclimatic Zones
3. Energy Impact of Air Renewal without Energy Recovery
- In most countries, the minimal efficiency of sensible heat recovery varies between 70% and 80%, while this minimal efficiency is uniquely necessary in some countries of North America and Europe, such as the US, Finland, and Canada;
- Thermal wheels, also called energy-recovery wheels, are extensively utilized, principally due to their elevated efficiency as heat-recovery systems and frost resistors in cold temperatures. A limitation of energy-recovery wheel use is cross-contamination, which involves pressure transfer and leaks. A purge section and a suitable fan can reduce cross-contamination;
- Flat plate exchangers, another heat-recovery ventilation system, are considered to be attractive for their reliability. Easy duct sealing avoids transfer problems. Additionally, water-vapor-permeable membranes recuperate sensible and latent heat. The moisture recovery during winter operation increases freezing limits;
- The quasi-counterflow system has been recently developed and is characterized by offering a simpler duct isolate compared with the conventional counterflow system, which increases the efficiency by around 5% compared to the traditional crossflow exchanger.
4. Technologies for Recovering Energy from Renewed Air
4.1. Desiccant Wheel Heat-Recovery Units
- the level of humidity control achieved is superior compared to that achieved using vapor compression systems;
- the system begins to show efficiency when the latent heat load exceeds the sensible heat load;
- it can eliminate polluting particles in the air;
- it uses negligible amounts of electrical energy, and due to its regenerative nature, the system allows solar and waste energy to be used throughout;
- reduces fossil fuel consumption and equivalent emissions of GHG in the HVAC process;
- improvement in indoor air quality is often attributed to the greater quantity of outside air;
- in specific scenarios, the energy cost for desiccant regeneration can be lower than that associated with dehumidifying the air by cooling it below its dew-point temperature.
4.2. Air-to-Air Enthalpy Wheel
4.3. Plate Heat-Recovery Units
5. Analysis of Technology Implementation with Energy Recovery
5.1. Review of Implemented Systems
5.2. Considerations for Various Brazilian Regions: Study Case
5.3. Assessment of Brazilian Case Considering the Köppen Classification
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- IEA. The Future of Cooling; IEA: Paris, France, 2018. [Google Scholar]
- Santos, A.F.; Gaspar, P.D.; de Souza, H.J.L. New HVAC Sustainability Index-TWI (Total Water Impact). Energies 2020, 13, 1590. [Google Scholar] [CrossRef]
- Alawadhi, M.; Phelan, P.E. Review of Residential Air Conditioning Systems Operating under High Ambient Temperatures. Energies 2022, 15, 2880. [Google Scholar] [CrossRef]
- Shah, N.; Waide, P.; Phadke, A. Cooling the Planet: Opportunities for Deployment of Superefficient Room Air Conditioners; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2013.
- Dreyfus, G.; Borgford-Parnell, N.; Christensen, J.; Fahey, D.W.; Motherway, B.; Peters, T.; Picolotti, R.; Shah, N.; Xu, Y. Assessment of Climate and Development Benefits of Efficient and Climate-Friendly Cooling; Institute for Governance & Sustainable Development and Centro Mario Molina: Washington, DC, USA, 2020. [Google Scholar]
- Campbell, I.; Kalanki, A.; Sachar, S. Solving the Global Cooling Challenge How to Counter the Climate Threat from Room Air Conditioners; Rocky Mountain Institute: Basalt, CA, USA, 2018. [Google Scholar]
- Augustus de Melo, C.; Cunha, K.B.; Santiago Suárez, G.P. MEPS for Air Conditioners in Brazil: Regulatory Developments and Future Perspectives. Renew. Sustain. Energy Rev. 2022, 163, 112504. [Google Scholar] [CrossRef]
- Vettorazzi, E.; Figueiredo, A.; Rebelo, F.; Vicente, R.; Feiertag, G.A. Beyond Passive House: Use of Evolutionary Algorithms in Architectural Design. J. Build. Eng. 2023, 76, 107058. [Google Scholar] [CrossRef]
- Yoshino, H.; Hong, T.; Nord, N. IEA EBC Annex 53: Total Energy Use in Buildings—Analysis and Evaluation Methods. Energy Build. 2017, 152, 124–136. [Google Scholar] [CrossRef]
- Empresa de Pesquisa Energética. Atlas of Energy Efficiency Brazil 2019; Empresa de Pesquisa Energética: Brasília, Brazil, 2019.
- Empresa de Pesquisa Energética. Plano Decenal de Expansão de Energia 2029; Empresa de Pesquisa Energética: Brasília, Brazil, 2020.
- Eli, L.G.; Krelling, A.F.; Olinger, M.S.; Melo, A.P.; Lamberts, R. Thermal Performance of Residential Building with Mixed-Mode and Passive Cooling Strategies: The Brazilian Context. Energy Build. 2021, 244, 111047. [Google Scholar] [CrossRef]
- da Silva Oliveira Morais, T.; de Hollanda Cavalcanti Tsuha, C.; Neto, L.A.B.; Singh, R.M. Effects of Seasonal Variations on the Thermal Response of Energy Piles in an Unsaturated Brazilian Tropical Soil. Energy Build. 2020, 216, 109971. [Google Scholar] [CrossRef]
- ELETROBRAS. Pésquisa de Posse é Hábitos de Uso de Equipamentos Elétricos Na Classe Residencial; ELETROBRAS: Rio de Janeiro, 2019. [Google Scholar]
- Corton, M.L.; Zimmermann, A.; Phillips, M.A. The Low Cost of Quality Improvements in the Electricity Distribution Sector of Brazil. Energy Policy 2016, 97, 485–493. [Google Scholar] [CrossRef]
- Tubelo, R.; Rodrigues, L.; Gillott, M.; Gonçalves Soares, J.C. Cost-Effective Envelope Optimisation for Social Housing in Brazil’s Moderate Climates Zones. Build. Environ. 2018, 133, 213–227. [Google Scholar] [CrossRef]
- Silva, H.C.N.; Dutra, J.C.C.; Costa, J.A.P.; Ochoa, A.A.V.; dos Santos, C.A.C.; Araújo, M.M.D. Modeling and Simulation of Cogeneration Systems for Buildings on a University Campus in Northeast Brazil—A Case Study. Energy Convers. Manag. 2019, 186, 334–348. [Google Scholar] [CrossRef]
- Ministério de Minas e Energia. Procel—Programa Nacional de Conservação de Energia Elétrica. Available online: https://www.gov.br/mme/pt-br/assuntos/secretarias/sntep/procel (accessed on 11 April 2024).
- da Silva, P.P.F.; Neto, A.H.; Sauer, I.L. Evaluation of Model Calibration Method for Simulation Performance of a Public Hospital in Brazil. Energies 2021, 14, 3791. [Google Scholar] [CrossRef]
- Pacheco, M.; Lamberts, R. Assessment of Technical and Economical Viability for Large-Scale Conversion of Single Family Residential Buildings into Zero Energy Buildings in Brazil: Climatic and Cultural Considerations. Energy Policy 2013, 63, 716–725. [Google Scholar] [CrossRef]
- Letschert, V.E.; Karali, N.; Park, Y.; Shah, N.; Jannuzzi, G.; Costa, F.; Lamberts, R.; Borges, K.; Carvalho Machado, S. The Manufacturer Economics and National Benefits of Cooling Efficiency for Air Conditioners in Brazil. ECEEE Summer Study Proc. 2019, 1563–1572. Available online: https://escholarship.org/uc/item/4c92s28m (accessed on 12 August 2024).
- Aynur, T.N. Variable Refrigerant Flow Systems: A Review. Energy Build. 2010, 42, 1106–1112. [Google Scholar] [CrossRef]
- da Silva Júnior, A.; Mendonça, K.C.; Vilain, R.; Pereira, M.L.; Mendes, N. On the Development of a Simplified Model for Thermal Comfort Control of Split Systems. Build. Environ. 2020, 179, 106931. [Google Scholar] [CrossRef]
- ABRAVA. Boletim Econômico ABRAVA; ABRAVA: São Paulo, Brazil, 2022. [Google Scholar]
- de Oliveira Silva Della Colletta, L.; Venturini, O.J.; Andrade, R.V.; Arrieta, A.R.A.; Barbosa, K.P.; Santiago, Y.C.; Sphaier, L.A. Oil Sludge Pyrolysis Kinetic Evaluation Based on TG-FTIR Coupled Techniques Aiming at Energy Recovery. J. Therm. Anal. Calorim. 2023, 148, 12795–12809. [Google Scholar] [CrossRef]
- IRENA. Renewable Power Generation Costs in 2019; IRENA: Abu Dhabi, United Arab Emirates, 2020. [Google Scholar]
- e Silva Machado, R.M.; Geraldi, M.S.; Bavaresco, M.; Olinger, M.S.; Pereira de Souza, L.; Kamimura, A.M.; Gapski, N.H.; de Castro Quevedo, T.; Garlet, L.; Melo, A.P.; et al. Metamodel to Predict Annual Cooling Thermal Load for Commercial, Services and Public Buildings: A Country-Level Approach to Support Energy Efficiency Regulation. Energy Build. 2023, 301, 113690. [Google Scholar] [CrossRef]
- Fossati, M.; Scalco, V.A.; Linczuk, V.C.C.; Lamberts, R. Building Energy Efficiency: An Overview of the Brazilian Residential Labeling Scheme. Renew. Sustain. Energy Rev. 2016, 65, 1216–1231. [Google Scholar] [CrossRef]
- Brasil Ministério de Minas e Energia. Plano Nacional de Energia 2030: Eficiência Energética. Available online: https://www.gov.br/mme/pt-br/assuntos/secretarias/sntep/publicacoes/plano-nacional-de-energia/plano-nacional-de-energia-2030#:~:text=O%20Plano%20Nacional%20de%20Energia,desse%20segmento%20nas%20pr%C3%B3ximas%20d%C3%A9cadas (accessed on 24 March 2024).
- De Oliveira, L.S.; Shayani, R.A.; De Oliveira, M.A.G. Proposed Business Plan for Energy Efficiency in Brazil. Energy Policy 2013, 61, 523–531. [Google Scholar] [CrossRef]
- Di Santo, K.G.; Kanashiro, E.; Di Santo, S.G.; Saidel, M.A. A Review on Smart Grids and Experiences in Brazil. Renew. Sustain. Energy Rev. 2015, 52, 1072–1082. [Google Scholar] [CrossRef]
- Castillo Santiago, Y.; Nunes, B.G.; Fontana, G.S.; Busanello, D.; Santos, A.F.; Santos, S.M.; Mello, E.N.; Sphaier, L.A. Desiccant Technologies for Improving Air Quality: An Overview of the Brazilian Scenario and Comparison of Available Design Software for Manufactured Desiccant Wheels. Processes 2023, 11, 2031. [Google Scholar] [CrossRef]
- Melo, A.P.; Versage, R.S.; Sawaya, G.; Lamberts, R. A Novel Surrogate Model to Support Building Energy Labelling System: A New Approach to Assess Cooling Energy Demand in Commercial Buildings. Energy Build. 2016, 131, 233–247. [Google Scholar] [CrossRef]
- ABNT NBR 15220-3:2005; Desempenho Térmico de Edificações Parte 3: Zoneamento Bioclimático Brasileiro e Diretrizes Construtivas Para Habitações Unifamiliares de Interesse Social. ABNT: São Paulo, Brazil, 2005.
- Cakyova, K.; Figueiredo, A.; Oliveira, R.; Rebelo, F.; Vicente, R.; Fokaides, P. Simulation of Passive Ventilation Strategies towards Indoor CO2 Concentration Reduction for Passive Houses. J. Build. Eng. 2021, 43, 103108. [Google Scholar] [CrossRef]
- Krelling, A.F.; Eli, L.G.; Olinger, M.S.; Machado, R.M.E.S.; Melo, A.P.; Lamberts, R. A Thermal Performance Standard for Residential Buildings in Warm Climates: Lessons Learned in Brazil. Energy Build. 2023, 281, 112770. [Google Scholar] [CrossRef]
- Chen, D.; Chen, H.W. Using the Köppen Classification to Quantify Climate Variation and Change: An Example for 1901–2010. Environ. Dev. 2013, 6, 69–79. [Google Scholar] [CrossRef]
- Bailey, R.G. Ecoclimatic Zones of the Earth BT. In Ecosystem Geography: From Ecoregions to Sites; Bailey, R.G., Ed.; Springer: New York, NY, USA, 2009; pp. 83–92. ISBN 978-0-387-89516-1. [Google Scholar]
- Domroes, M. Climatological Characteristics of the Tropics in China: Climate Classification Schemes between German Scientists and Huang Bingwei. J. Geogr. Sci. 2003, 13, 271–285. [Google Scholar] [CrossRef]
- Buonocore, C.; De Vecchi, R.; Scalco, V.; Lamberts, R. Thermal Preference and Comfort Assessment in Air-Conditioned and Naturally-Ventilated University Classrooms under Hot and Humid Conditions in Brazil. Energy Build. 2020, 211, 109783. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Q.; Meng, Q. Airflow Utilization in Buildings in Hot and Humid Areas of China. Build. Environ. 2015, 87, 207–214. [Google Scholar] [CrossRef]
- Huang, L.; Ouyang, Q.; Zhu, Y.; Jiang, L. A Study about the Demand for Air Movement in Warm Environment. Build. Environ. 2013, 61, 27–33. [Google Scholar] [CrossRef]
- Buonocore, C.; De Vecchi, R.; Scalco, V.; Lamberts, R. Influence of Relative Air Humidity and Movement on Human Thermal Perception in Classrooms in a Hot and Humid Climate. Build. Environ. 2018, 146, 98–106. [Google Scholar] [CrossRef]
- Cheung, T.C.T.; Schiavon, S.; Gall, E.T.; Jin, M.; Nazaroff, W.W. Longitudinal Assessment of Thermal and Perceived Air Quality Acceptability in Relation to Temperature, Humidity, and CO2 Exposure in Singapore. Build. Environ. 2017, 115, 80–90. [Google Scholar] [CrossRef]
- Damiati, S.A.; Zaki, S.A.; Rijal, H.B.; Wonorahardjo, S. Field Study on Adaptive Thermal Comfort in Office Buildings in Malaysia, Indonesia, Singapore, and Japan during Hot and Humid Season. Build. Environ. 2016, 109, 208–223. [Google Scholar] [CrossRef]
- De Vecchi, R.; Candido, C.; de Dear, R.; Lamberts, R. Thermal Comfort in Office Buildings: Findings from a Field Study in Mixed-Mode and Fully-Air Conditioning Environments under Humid Subtropical Conditions. Build. Environ. 2017, 123, 672–683. [Google Scholar] [CrossRef]
- Mora, C.; Dousset, B.; Caldwell, I.R.; Powell, F.E.; Geronimo, R.C.; Bielecki, C.R.; Counsell, C.W.W.; Dietrich, B.S.; Johnston, E.T.; Louis, L.V.; et al. Global Risk of Deadly Heat. Nat. Clim. Chang. 2017, 7, 501–506. [Google Scholar] [CrossRef]
- Papalexiou, S.M.; AghaKouchak, A.; Trenberth, K.E.; Foufoula-Georgiou, E. Global, Regional, and Megacity Trends in the Highest Temperature of the Year: Diagnostics and Evidence for Accelerating Trends. Earths Future 2018, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Gasparrini, A.; Guo, Y.; Hashizume, M.; Lavigne, E.; Zanobetti, A.; Schwartz, J.; Tobias, A.; Tong, S.; Rocklöv, J.; Forsberg, B.; et al. Mortality Risk Attributable to High and Low Ambient Temperature: A Multicountry Observational Study. Lancet 2015, 386, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Mazdiyasni, O.; AghaKouchak, A.; Davis, S.J.; Madadgar, S.; Mehran, A.; Ragno, E.; Sadegh, M.; Sengupta, A.; Ghosh, S.; Dhanya, C.T.; et al. Increasing Probability of Mortality during Indian Heat Waves. Sci. Adv. 2017, 3, e1700066. [Google Scholar] [CrossRef] [PubMed]
- Gasparrini, A.; Guo, Y.; Sera, F.; Vicedo-Cabrera, A.M.; Huber, V.; Tong, S.; de Sousa Zanotti Stagliorio Coelho, M.; Nascimento Saldiva, P.H.; Lavigne, E.; Matus Correa, P.; et al. Projections of Temperature-Related Excess Mortality under Climate Change Scenarios. Lancet Planet. Health 2017, 1, e360–e367. [Google Scholar] [CrossRef]
- Wilson, A.; Reich, B.J.; Nolte, C.G.; Spero, T.L.; Hubbell, B.; Rappold, A.G. Climate Change Impacts on Projections of Excess Mortality at 2030 Using Spatially Varying Ozone–Temperature Risk Surfaces. J. Expo. Sci. Environ. Epidemiol. 2017, 27, 118–124. [Google Scholar] [CrossRef]
- FORBES. Extreme Heat Killed over 70,000 in Europe Last Year, Study Finds. This Year Is on Track to Be Even Worse. Available online: https://www.forbes.com/sites/roberthart/2023/11/21/extreme-heat-killed-over-70000-in-europe-last-year-study-finds-this-year-is-on-track-to-be-even-worse/?sh=31301bc57929 (accessed on 27 March 2024).
- Monteiro dos Santos, D.; Libonati, R.; Garcia, B.N.; Geirinhas, J.L.; Salvi, B.B.; Lima e Silva, E.; Rodrigues, J.A.; Peres, L.F.; Russo, A.; Gracie, R.; et al. Twenty-First-Century Demographic and Social Inequalities of Heat-Related Deaths in Brazilian Urban Areas. PLoS ONE 2024, 19, e0295766. [Google Scholar] [CrossRef] [PubMed]
- Guyot, G.; Sherman, M.H.; Walker, I.S. Smart Ventilation Energy and Indoor Air Quality Performance in Residential Buildings: A Review. Energy Build. 2018, 165, 416–430. [Google Scholar] [CrossRef]
- Gładyszewska-Fiedoruk, K. Correlations of Air Humidity and Carbon Dioxide Concentration in the Kindergarten. Energy Build. 2013, 62, 45–50. [Google Scholar] [CrossRef]
- Asif, A.; Zeeshan, M.; Jahanzaib, M. Indoor Temperature, Relative Humidity and CO2 Levels Assessment in Academic Buildings with Different Heating, Ventilation and Air-Conditioning Systems. Build. Environ. 2018, 133, 83–90. [Google Scholar] [CrossRef]
- Derome, D.; Kubilay, A.; Defraeye, T.; Blocken, B.; Carmeliet, J. Ten Questions Concerning Modeling of Wind-Driven Rain in the Built Environment. Build. Environ. 2017, 114, 495–506. [Google Scholar] [CrossRef]
- Castillo Santiago, Y.; Pérez, J.F.; Sphaier, L.A. Reaction-Front and Char Characterization from a Palm Kernel Shell—Oil Sludge Mixture under Oxygen Lean Regimes in a Fixed-Bed Gasifier. Fuel 2023, 333, 126402. [Google Scholar] [CrossRef]
- Singh, P.; Yadav, D.; Pandian, E.S. Link between Air Pollution and Global Climate Change. In Global Climate Change; Singh, S., Singh, P., Rangabhashiyam, S., Srivastava, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 79–108. ISBN 978-0-12-822928-6. [Google Scholar]
- Harrison, R.M.; Allan, J.; Carruthers, D.; Heal, M.R.; Lewis, A.C.; Marner, B.; Murrells, T.; Williams, A. Non-Exhaust Vehicle Emissions of Particulate Matter and VOC from Road Traffic: A Review. Atmos. Environ. 2021, 262, 118592. [Google Scholar] [CrossRef]
- Ministério do Meio Ambiente RESOLUÇÃO No 491, DE 19 DE NOVEMBRO DE 2018. Brasil, 2018; pp. 155–155. Available online: https://www.in.gov.br/web/guest/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/51058895/do1-2018-11-21-resolucao-n-491-de-19-de-novembro-de-2018-51058603 (accessed on 12 August 2024).
- Secretaria de Estado de Meio Ambiente e Recursos Hídricos RESOLUÇÃO SEMA No 54, DE 22-12-2006. Brazil, 2006; pp. 1–87. Available online: https://venus.maringa.pr.gov.br/residuos/arquivo.php?id=112 (accessed on 12 August 2024).
- Krüger, E.L.; Minella, F.O.; Rasia, F. Impact of Urban Geometry on Outdoor Thermal Comfort and Air Quality from Field Measurements in Curitiba, Brazil. Build. Environ. 2011, 46, 621–634. [Google Scholar] [CrossRef]
- Guo, S.; Yan, D.; Hu, S.; Zhang, Y. Modelling Building Energy Consumption in China under Different Future Scenarios. Energy 2021, 214, 119063. [Google Scholar] [CrossRef]
- de Oliveira, C.C.; Rupp, R.F.; Ghisi, E. Influence of Environmental Variables on Thermal Comfort and Air Quality Perception in Office Buildings in the Humid Subtropical Climate Zone of Brazil. Energy Build. 2021, 243, 110982. [Google Scholar] [CrossRef]
- Ahmad, A.S.; Hassan, M.Y.; Abdullah, M.P.; Rahman, H.A.; Hussin, F.; Abdullah, H.; Saidur, R. A Review on Applications of ANN and SVM for Building Electrical Energy Consumption Forecasting. Renew. Sustain. Energy Rev. 2014, 33, 102–109. [Google Scholar] [CrossRef]
- Lin, B.; Liu, H. CO2 Emissions of China’s Commercial and Residential Buildings: Evidence and Reduction Policy. Build. Environ. 2015, 92, 418–431. [Google Scholar] [CrossRef]
- Zender–Świercz, E. A Review of Heat Recovery in Ventilation. Energies 2021, 14, 1759. [Google Scholar] [CrossRef]
- Carlsson, M.; Touchie, M.; Richman, R. Investigating the Potential Impact of a Compartmentalization and Ventilation System Retrofit Strategy on Energy Use in High-Rise Residential Buildings. Energy Build. 2019, 199, 20–28. [Google Scholar] [CrossRef]
- Van Tran, V.; Park, D.; Lee, Y.C. Indoor Air Pollution, Related Human Diseases, and Recent Trends in the Control and Improvement of Indoor Air Quality. Int. J. Environ. Res. Public Health 2020, 17, 2927. [Google Scholar] [CrossRef] [PubMed]
- Izadyar, N.; Miller, W.; Rismanchi, B.; Garcia-Hansen, V. Impacts of Façade Openings’ Geometry on Natural Ventilation and Occupants’ Perception: A Review. Build. Environ. 2020, 170, 106613. [Google Scholar] [CrossRef]
- Kavanaugh, S. Engineered Systems; Troy, MI, USA, 2020; p. 3. Available online: https://www.esmagazine.com/articles/100699-probing-the-effectiveness-of-ansi-asrae-ies-standard-901 (accessed on 29 March 2024).
- Dodoo, A.; Gustavsson, L.; Sathre, R. Primary Energy Implications of Ventilation Heat Recovery in Residential Buildings. Energy Build. 2011, 43, 1566–1572. [Google Scholar] [CrossRef]
- Mardiana-Idayu, A.; Riffat, S.B. Review on Heat Recovery Technologies for Building Applications. Renew. Sustain. Energy Rev. 2012, 16, 1241–1255. [Google Scholar] [CrossRef]
- Bai, H.Y.; Liu, P.; Justo Alonso, M.; Mathisen, H.M. A Review of Heat Recovery Technologies and Their Frost Control for Residential Building Ventilation in Cold Climate Regions. Renew. Sustain. Energy Rev. 2022, 162, 112417. [Google Scholar] [CrossRef]
- Rafati Nasr, M.; Kassai, M.; Ge, G.; Simonson, C.J. Evaluation of Defrosting Methods for Air-to-Air Heat/Energy Exchangers on Energy Consumption of Ventilation. Appl. Energy 2015, 151, 32–40. [Google Scholar] [CrossRef]
- Wang, L.; Curcija, D.; Breshears, J. The Energy Saving Potentials of Zone-Level Membrane-Based Enthalpy Recovery Ventilators for VAV Systems in Commercial Buildings. Energy Build. 2015, 109, 47–52. [Google Scholar] [CrossRef]
- Zhou, W.; Moncaster, A.; O’Neill, E.; Reiner, D.M.; Wang, X.; Guthrie, P. Modelling Future Trends of Annual Embodied Energy of Urban Residential Building Stock in China. Energy Policy 2022, 165, 112932. [Google Scholar] [CrossRef]
- Yang, P.; Li, L.; Wang, J.; Huang, G.; Peng, J. Testing for Energy Recovery Ventilators and Energy Saving Analysis with Air-Conditioning Systems. Procedia Eng. 2015, 121, 438–445. [Google Scholar] [CrossRef]
- Ilie, A.; Dumitrescu, R.; Girip, A.; Cublesan, V. Study on Technical and Economical Solutions for Improving Air-Conditioning Efficiency in Building Sector. Energy Procedia 2017, 112, 537–544. [Google Scholar] [CrossRef]
- Wehbi, Z.; Taher, R.; Faraj, J.; Ramadan, M.; Castelain, C.; Khaled, M. A Short Review of Recent Studies on Wastewater Heat Recovery Systems: Types and Applications. Energy Rep. 2022, 8, 896–907. [Google Scholar] [CrossRef]
- Frijns, J.; Hofman, J.; Nederlof, M. The Potential of (Waste)Water as Energy Carrier. Energy Convers. Manag. 2013, 65, 357–363. [Google Scholar] [CrossRef]
- Pomianowski, M.Z.; Johra, H.; Marszal-Pomianowska, A.; Zhang, C. Sustainable and Energy-Efficient Domestic Hot Water Systems: A Review. Renew. Sustain. Energy Rev. 2020, 128, 109900. [Google Scholar] [CrossRef]
- Murr, R.; Khaled, M.; Faraj, J.; Harika, E.; Abdulhay, B. Multi Drain Heat Recovery System—Thermal Modeling, Parametric Analysis, and Case Study. Energy Build. 2020, 228, 110447. [Google Scholar] [CrossRef]
- Wong, L.T.; Mui, K.W.; Guan, Y. Shower Water Heat Recovery in High-Rise Residential Buildings of Hong Kong. Appl. Energy 2010, 87, 703–709. [Google Scholar] [CrossRef]
- McNabola, A.; Shields, K. Efficient Drain Water Heat Recovery in Horizontal Domestic Shower Drains. Energy Build. 2013, 59, 44–49. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, Z.; Yao, Y.; Jiang, Y.; Lei, B. Experimental Performance Evaluation of a Novel Heat Pump Water Heater Assisted with Shower Drain Water. Appl. Energy 2015, 154, 842–850. [Google Scholar] [CrossRef]
- Rismanchi, B.; Zambrano, J.M.; Saxby, B.; Tuck, R.; Stenning, M. Control Strategies in Multi-Zone Air Conditioning Systems. Energies 2019, 12, 347. [Google Scholar] [CrossRef]
- Rasouli, M.; Ge, G.; Simonson, C.J.; Besant, R.W. Uncertainties in Energy and Economic Performance of HVAC Systems and Energy Recovery Ventilators Due to Uncertainties in Building and HVAC Parameters. Appl. Therm. Eng. 2013, 50, 732–742. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, W. Development of an Optimal Start Control Strategy for a Variable Refrigerant Flow (VRF) System. Energies 2021, 14, 271. [Google Scholar] [CrossRef]
- Akbari, K.; Oman, R. Impacts of Heat Recovery Ventilators on Energy Savings and Indoor Radon Level. Manag. Environ. Qual. Int. J. 2013, 24, 682–694. [Google Scholar] [CrossRef]
- Sphaier, L.A.; Worek, W.M. Parametric Analysis of Heat and Mass Transfer Regenerators Using a Generalized Effectiveness-NTU Method. Int. J. Heat Mass Transf. 2009, 52, 2265–2272. [Google Scholar] [CrossRef]
- Sphaier, L.A.; Worek, W.M. Numerical Solution of Periodic Heat and Mass Transfer with Adsorption in Regenerators: Analysis and Optimization. Numer. Heat Transf. Part A Appl. 2008, 53, 1133–1155. [Google Scholar] [CrossRef]
- Hegana, V.P.; Kulkarni, P. Enthalpy Wheel Application for Heat Recovery in Heat Exchanger. Int. J. Adv. Res. Sci. Eng. IJARSE 2015, 8354, 43–53. [Google Scholar]
- Nóbrega, C.E.L.; Sphaier, L.A. Desiccant-Assisted Humidity Control for Air Refrigeration Cycles. Int. J. Refrig. 2013, 36, 1183–1190. [Google Scholar] [CrossRef]
- Nóbrega, C.E.L.; Sphaier, L.A. Modeling and Simulation of a Desiccant–Brayton Cascade Refrigeration Cycle. Energy Build. 2012, 55, 575–584. [Google Scholar] [CrossRef]
- Sphaier, L.A.; Nóbrega, C.E.L. Parametric Analysis of Components Effectiveness on Desiccant Cooling System Performance. Energy 2012, 38, 157–166. [Google Scholar] [CrossRef]
- Machado, J.V.P.; Pinheiro, I.F.; Sphaier, L.A.; Nóbrega, C.E.L.; Quintans, P.C.; Quintanilha, F.O. Desiccant-Assisted Multistage Air Compression Systems: Performance Improvement and Humidity Control. Appl. Therm. Eng. 2024, 243, 122572. [Google Scholar] [CrossRef]
- Valencia Ochoa, G.; Castillo Santiago, Y.; Duarte Forero, J.; Restrepo, J.B.; Albis Arrieta, A.R. A Comprehensive Comparative Analysis of Energetic and Exergetic Performance of Different Solar-Based Organic Rankine Cycles. Energies 2023, 16, 2724. [Google Scholar] [CrossRef]
- Aridi, R.; Faraj, J.; Ali, S.; Gad El-Rab, M.; Lemenand, T.; Khaled, M. Energy Recovery in Air Conditioning Systems: Comprehensive Review, Classifications, Critical Analysis, and Potential Recommendations. Energies 2021, 14, 5869. [Google Scholar] [CrossRef]
- Vakiloroaya, V.; Samali, B.; Fakhar, A.; Pishghadam, K. A Review of Different Strategies for HVAC Energy Saving. Energy Convers. Manag. 2014, 77, 738–754. [Google Scholar] [CrossRef]
- Yu, Y.; Miao, R.; Miller, L.; Yang, H.; Olson, G. Recent Development and Application of Geothermal Heat Pump Systems in Cold-Climate Regions of the US: A Further Investigation. Engineering 2017, 9, 625–648. [Google Scholar] [CrossRef]
- Clark, J.E.; Mills, A.F.; Buchberg, H. Design and Testing of Thin Adiabatic Desiccant Beds for Solar Air Conditioning Applications. J. Sol. Energy Eng. 1981, 103, 89–91. [Google Scholar] [CrossRef]
- Lavan, Z.; Gidaspow, D.; Onischak, M.; Chaturvedi, S.; Mathiprakasam, B.; Perkari, S. Development of a Solar Desiccant Dehumidifier; Solar Energy International Progress: Pergamon, Turkey, 1980; Volume 2, pp. 898–931. Available online: https://www.sciencedirect.com/science/article/abs/pii/B9781483284378500648 (accessed on 12 August 2024).
- Gunderson, M.E.; Hwang, K.C.; Railing, S.M. Development of a Solar Desiccant Dehumidifier. Volume 1. Summary. Volume 2. Detailed Technical Information. Technical Progress Report; AiResearch Mfg. Co.: Los Angeles, CA, USA, 1978. [Google Scholar]
- Pesaran, A.A.; Mills, A.F. Moisture Transport in Silica Gel Packed Beds—I. Theoretical Study. Int. J. Heat Mass Transf. 1987, 30, 1037–1049. [Google Scholar] [CrossRef]
- Pesaran, A.A.; Mills, A.F. Moisture Transport in Silica Gel Packed Beds—II. Experimental Study. Int. J. Heat Mass Transf. 1987, 30, 1051–1060. [Google Scholar] [CrossRef]
- Biswas, P.; Kim, S.; Mills, A.F. A Compact Low-Pressure Drop Desiccant Bed for Solar Air Conditioning Applications: Analysis and Design. J. Sol. Energy Eng. 1984, 106, 153–158. [Google Scholar] [CrossRef]
- Air-Conditioning Engineers. 2020 ASHRAE Handbook: Heating, Ventilating, and Air-Conditioning Systems and Equipment; ASHRAE Handbook Committe, Ed.; ASHRAE: Atlanta, GA, USA, 2020; ISBN 9781947192539. [Google Scholar]
- Zhou, X.; Goldsworthy, M.; Sproul, A. Performance Investigation of an Internally Cooled Desiccant Wheel. Appl. Energy 2018, 224, 382–397. [Google Scholar] [CrossRef]
- Shamim, J.A.; Hsu, W.-L.; Paul, S.; Yu, L.; Daiguji, H. A Review of Solid Desiccant Dehumidifiers: Current Status and near-Term Development Goals in the Context of Net Zero Energy Buildings. Renew. Sustain. Energy Rev. 2021, 137, 110456. [Google Scholar] [CrossRef]
- Mohammed, R.H.; Ahmadi, M.; Ma, H.; Bigham, S. Desiccants Enabling Energy-Efficient Buildings: A Review. Renew. Sustain. Energy Rev. 2023, 183, 113418. [Google Scholar] [CrossRef]
- Sultan, M.; El-Sharkawy, I.I.; Miyazaki, T.; Saha, B.B.; Koyama, S. An Overview of Solid Desiccant Dehumidification and Air Conditioning Systems. Renew. Sustain. Energy Rev. 2015, 46, 16–29. [Google Scholar] [CrossRef]
- Radov, M. The Enthalpy Wheel. 2008. Available online: https://vsgc.odu.edu/wp-content/uploads/sites/3/2018/03/2009Environmental_thirdplace.pdf (accessed on 1 April 2024).
- de Antonellis, S.; Intini, M.; Joppolo, C.M.; Leone, C. Design Optimization of Heat Wheels for Energy Recovery in HVAC Systems. Energies 2014, 7, 7348–7367. [Google Scholar] [CrossRef]
- Mandegari, M.A.; Farzad, S.; Angrisani, G.; Pahlavanzadeh, H. Study of Purge Angle Effects on the Desiccant Wheel Performance. Energy Convers. Manag. 2017, 137, 12–20. [Google Scholar] [CrossRef]
- La, D.; Dai, Y.J.; Li, Y.; Wang, R.Z.; Ge, T.S. Technical Development of Rotary Desiccant Dehumidification and Air Conditioning: A Review. Renew. Sustain. Energy Rev. 2010, 14, 130–147. [Google Scholar] [CrossRef]
- Lawrance, W.; Schreck, T. Rotary Heat Exchangers Save Energy and Prevent a Need for Recirculation Which Contributes to the Decrease the Risk of COVID-19 Transfer. REHVA J. 2020, 5, 65–68. [Google Scholar]
- Men, Y.; Liu, X.; Zhang, T. Experimental and Numerical Analysis on Heat and Moisture Recovery Performance of Enthalpy Wheel with Condensation. Energy Convers. Manag. 2021, 246, 114683. [Google Scholar] [CrossRef]
- Nasif, M.S. Air-to-Air Fixed Plate Energy Recovery Heat Exchangers for Building’s HVAC Systems; Springer: Singapore, 2019; ISBN 9789811329685. [Google Scholar]
- Camargo, J.R.; Ebinuma, C.D.; Silveira, J.L. Experimental Performance of a Direct Evaporative Cooler Operating during Summer in a Brazilian City. Int. J. Refrig. 2005, 28, 1124–1132. [Google Scholar] [CrossRef]
- Melo, F.J.A. Desenvolvimento de um Sistema de Climatização Híbrido: Dessecante e por Compressão de Vapor. Ph.D. Thesis, Universidade Federal da Paraíba, João Pessoa, Brazil, 2019. [Google Scholar]
- Singh, R.P.; Das, R.K. Progressive Development and Challenges Faced by Solar Rotary Desiccant-Based Air-Conditioning Systems: A Review. Processes 2021, 9, 1785. [Google Scholar] [CrossRef]
- BRITA Solar Heating and Cooling of Buildings Guidelines; BRITA: Palermo, Italy, 2007.
- Murphy, P. IEA Solar Heating & Cooling Programme 2004; Morse Associates, Inc.: Washington, DC, USA, 2005. [Google Scholar]
- Ge, T.S.; Dai, Y.J.; Wang, R.Z.; Li, Y. Experimental Investigation on a One-Rotor Two-Stage Rotary Desiccant Cooling System. Energy 2008, 33, 1807–1815. [Google Scholar] [CrossRef]
- Niemann, P.; Schmitz, G. Air Conditioning System with Enthalpy Recovery for Space Heating and Air Humidification: An Experimental and Numerical Investigation. Energy 2020, 213, 118789. [Google Scholar] [CrossRef]
- EPA. Laboratories for the 21st Century: An Introduction to Low-Energy Design; EPA: Washington DC, USA, 2008. [Google Scholar]
- Masson, S.V.; Qu, M.; Archer, D.H. Performance Modeling of a Solar Thermal System for Cooling and Heating in Carnegie Mellon University’s Intelligent Workplace. Energy Sustain. 2007, 47977, 671–680. [Google Scholar]
- ABNT NBR 16401-3/2008; Parte 3: Qualidade Do Ar Interior. ABNT: Rio de Janeiro, Brazil, 2008.
Major Group | Sub-Types |
---|---|
A: Humid climate | AF: Tropical rainforest AM: Tropical jungle AW: Tropical humid and dry grassland (AS is utilized if the dry season occurs during higher sunlight and days more long) |
B: Dry Climate | BWh, BWk: Desert BSh, BSk: Savanna |
C: Mild temperate | CSC, CSD, CSE: Mediterranean sea CFA, CWA: Humid subtropical CFB, CFE, CWC, CWE: Ocean |
D: Snow ambient | DFE, DWA, DFF, DWB, DSE, DSF: Humid DFG, DWC, DFH, DWD, DSG, DSG: Sub-arctic |
E: Polar ambient | ET: Tundra EI: Icecap |
Environment | Amount of People | Airflow Rate (m3/h) | Heat per Person (kcal/h/Person) | |
---|---|---|---|---|
Sensible | Latent | |||
Medical Room | 3 | 81 | 70 | 45 |
Office | 36 | 1054 | 75 | 55 |
Hotel Room | 2 | 54 | 70 | 45 |
Restaurant | 124 | 2655 | 70 | 45 |
Theater | 108 | 1836 | 70 | 45 |
Classroom | 37 | 1048 | 70 | 45 |
Equipment | Energy Saving | Localization | Ref. |
---|---|---|---|
Heat-recovery unit using a multi-drain | 410.9 kWh/month | Lebanon | [85] |
Horizontal heat exchanger | 406 MWh/year | Hong Kong | [86] |
Drain water heat-recovery system | 808 GWh/year | Irland complete | [87] |
Preheating heat-recovery stove | 3.3 MWh/month | Saskatoon, Canada | [77] |
ERV | 181.3 kWh/month | Minneapolis, US | [78] |
Enthalpy wheel | 82 MWh/year | Belen, Brazil | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo Santiago, Y.; Busanello, D.; Santos, A.F.; Venturini, O.J.; Sphaier, L.A. The Impact of Air Renewal with Heat-Recovery Technologies on Energy Consumption for Different Types of Environments in Brazilian Buildings. Energies 2024, 17, 4065. https://doi.org/10.3390/en17164065
Castillo Santiago Y, Busanello D, Santos AF, Venturini OJ, Sphaier LA. The Impact of Air Renewal with Heat-Recovery Technologies on Energy Consumption for Different Types of Environments in Brazilian Buildings. Energies. 2024; 17(16):4065. https://doi.org/10.3390/en17164065
Chicago/Turabian StyleCastillo Santiago, York, Daiane Busanello, Alexandre F. Santos, Osvaldo J. Venturini, and Leandro A. Sphaier. 2024. "The Impact of Air Renewal with Heat-Recovery Technologies on Energy Consumption for Different Types of Environments in Brazilian Buildings" Energies 17, no. 16: 4065. https://doi.org/10.3390/en17164065
APA StyleCastillo Santiago, Y., Busanello, D., Santos, A. F., Venturini, O. J., & Sphaier, L. A. (2024). The Impact of Air Renewal with Heat-Recovery Technologies on Energy Consumption for Different Types of Environments in Brazilian Buildings. Energies, 17(16), 4065. https://doi.org/10.3390/en17164065