Toward a Digital Twin of a Solid Oxide Fuel Cell Microcogenerator: Data-Driven Modelling
Abstract
:1. Introduction
2. SOFC Digital Twin Methodology
2.1. SOFC Digital Twin Scope and Architecture
2.2. SOFC Deep and Machine Learning Models
2.2.1. ML Algorithms
2.2.2. DL Algorithms
2.3. Validation Methods
- Mean absolute error (MAE)
- Mean absolute percentage error (MAPE)
- Mean squared error (MSE)
- Root mean square error (RMSE)
- R2 Score
- Weighted score (WS)
- n is the total number of observations or data points.
- represents the actual observed values in the dataset.
- represents the predicted values corresponding to .
- is the mean of the observed values (.
3. Discussion and Results
3.1. Experimental Setup and Data Analysis
3.2. Model Validation
4. Conclusions
- The experimental setting of the study considered the measurement data acquisition during 3935 h of SOFC operation, with parameters like electric power output, gas flow rates, and system efficiency, whose correlation revealed strong dependencies used to conceptualise the models’ features.
- Validation results, including the MAE, MAPE, and RMSE, revealed that XGBoost, GBoost, and RF algorithms were accurate and fast enough for real-time efficiency prediction within a DT framework.
- RF Regressor was found to be the best regression, with R2 almost equal to 0.99 and an RMSE equal to 0.31 using the entire dataset. Such high accuracy of the model potentially supports the integration of SOFCs into energy management systems, improving operational efficiency.
- Additionally, the potential of having a DT was demonstrated by observing how the most accurate model evolved over time based on the data collected, transitioning from XGBoost to GBoost, and finally to RF.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- International Energy Agency. CO2 Emissions in 2023. 2024. Available online: https://www.iea.org/reports/co2-emissions-in-2023 (accessed on 10 August 2024).
- Rabuni, M.F.; Li, T.; Othman, M.H.D.; Adnan, F.H.; Li, K. Progress in Solid Oxide Fuel Cells with Hydrocarbon Fuels. Energies 2023, 16, 6404. [Google Scholar] [CrossRef]
- Rahmani, M.; Maharluie, H.N. Study of Syngas-Powered Fuel Cell, Simulation, Modeling, and Optimization. In Advances in Synthesis Gas: Methods, Technologies and Applications; Elsevier: Amsterdam, The Netherlands, 2023; pp. 493–531. [Google Scholar]
- Ming, W.; Sun, P.; Zhang, Z.; Qiu, W.; Du, J.; Li, X.; Zhang, Y.; Zhang, G.; Liu, K.; Wang, Y.; et al. A Systematic Review of Machine Learning Methods Applied to Fuel Cells in Performance Evaluation, Durability Prediction, and Application Monitoring. Int. J. Hydrogen Energy 2023, 48, 5197–5228. [Google Scholar] [CrossRef]
- Bozorgmehri, S.; Hamedi, M. Modeling and Optimization of Anode-Supported Solid Oxide Fuel Cells on Cell Parameters via Artificial Neural Network and Genetic Algorithm. Fuel Cells 2012, 12, 11–23. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, X.; Xu, Y.; Cheng, Y.; Li, X. A Novel Adaptive Neural Network-Based Thermoelectric Parameter Prediction Method for Enhancing Solid Oxide Fuel Cell System Efficiency. Sustainability 2023, 15, 14402. [Google Scholar] [CrossRef]
- Guo, Z.; Ye, Z.; Ni, P.; Cao, C.; Wei, X.; Zhao, J.; He, X. Intelligent Digital Twin Modelling for Hybrid PV-SOFC Power Generation System. Energies 2023, 16, 2806. [Google Scholar] [CrossRef]
- Yang, J.; Li, X.; Jiang, J.H.; Jian, L.; Zhao, L.; Jiang, J.G.; Wu, X.G.; Xu, L.H. Parameter Optimization for Tubular Solid Oxide Fuel Cell Stack Based on the Dynamic Model and an Improved Genetic Algorithm. Int. J. Hydrogen Energy 2011, 36, 6160–6174. [Google Scholar] [CrossRef]
- Gong, W.; Cai, Z.; Yang, J.; Li, X.; Jian, L. Parameter Identification of an SOFC Model with an Efficient, Adaptive Differential Evolution Algorithm. Int. J. Hydrogen Energy 2014, 39, 5083–5096. [Google Scholar] [CrossRef]
- Jiang, B.; Wang, N.; Wang, L. Parameter Identification for Solid Oxide Fuel Cells Using Cooperative Barebone Particle Swarm Optimization with Hybrid Learning. Int. J. Hydrogen Energy 2014, 39, 532–542. [Google Scholar] [CrossRef]
- Wei, Y.; Stanford, R.J. Parameter Identification of Solid Oxide Fuel Cell by Chaotic Binary Shark Smell Optimization Method. Energy 2019, 188, 115770. [Google Scholar] [CrossRef]
- Yang, B.; Chen, Y.; Guo, Z.; Wang, J.; Zeng, C.; Li, D.; Shu, H.; Shan, J.; Fu, T.; Zhang, X. Levenberg-Marquardt Backpropagation Algorithm for Parameter Identification of Solid Oxide Fuel Cells. Int. J. Energy Res. 2021, 45, 17903–17923. [Google Scholar] [CrossRef]
- Yang, B.; Guo, Z.; Yang, Y.; Chen, Y.; Zhang, R.; Su, K.; Shu, H.; Yu, T.; Zhang, X. Extreme Learning Machine Based Meta-Heuristic Algorithms for Parameter Extraction of Solid Oxide Fuel Cells. Appl. Energy 2021, 303, 117630. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Y.-P.; She, C.; Xu, P.; Bagal, H.A. Optimal Parameter Identification of SOFC Model Using Modified Gray Wolf Optimization Algorithm. Energy 2022, 240, 122800. [Google Scholar] [CrossRef]
- Hwang, H.; Choi, S.M.; Oh, J.; Bae, S.-M.; Lee, J.-H.; Ahn, J.-P.; Lee, J.-O.; An, K.-S.; Yoon, Y.; Hwang, J.-H. Integrated Application of Semantic Segmentation-Assisted Deep Learning to Quantitative Multi-Phased Microstructural Analysis in Composite Materials: Case Study of Cathode Composite Materials of Solid Oxide Fuel Cells. J. Power Sources 2020, 471, 228458. [Google Scholar] [CrossRef]
- Hwang, H.; Ahn, J.; Lee, H.; Oh, J.; Kim, J.; Ahn, J.-P.; Kim, H.-K.; Lee, J.-H.; Yoon, Y.; Hwang, J.-H. Deep Learning-Assisted Microstructural Analysis of Ni/YSZ Anode Composites for Solid Oxide Fuel Cells. Mater. Charact. 2021, 172, 110906. [Google Scholar] [CrossRef]
- Liu, X.; Yan, Z.; Zhong, Z. Predicting Elastic Modulus of Porous La0.6Sr0.4Co0.2Fe0.8O3−δ Cathodes from Microstructures via FEM and Deep Learning. Int. J. Hydrogen Energy 2021, 46, 22079–22091. [Google Scholar] [CrossRef]
- Chen, M.T.; Fu, X.-W.; Deng, Z.-H.; Li, X.; Wu, X.-L.; Xu, Y.-W.; Xue, T. Data-Driven Fault Detection for SOFC System Based on Random Forest and SVM. In Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 2829–2834. [Google Scholar]
- Xue, T.; Wu, X.; Xu, Y.; Jing, S.; Li, Z.; Jiang, J.; Deng, Z.; Fu, X.; Xi, L. Fault Diagnosis of SOFC Stack Based on Neural Network Algorithm. Energy Procedia 2019, 158, 1798–1803. [Google Scholar] [CrossRef]
- Costamagna, P.; De Giorgi, A.; Moser, G.; Pellaco, L.; Trucco, A. Data-Driven Fault Diagnosis in SOFC-Based Power Plants under off-Design Operating Conditions. Int. J. Hydrogen Energy 2019, 44, 29002–29006. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, S.; Yang, Y. A General Approach for Fault Identification in SOFC-Based Power Generation Systems. In Proceedings of the 2018 Annual American Control Conference (ACC), Milwaukee, WI, USA, 27–29 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 3816–3821. [Google Scholar]
- Fu, X.; Liu, Y.; Li, X. Source Diagnosis of Solid Oxide Fuel Cell System Oscillation Based on Data Driven. Energies 2020, 13, 4069. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, X.; Zhao, D.; Xu, Y.; Wang, B.; Zu, Y.; Li, D.; Jiang, J.; Jiang, C.; Fu, X.; et al. Data-Driven Fault Diagnosis Method for the Safe and Stable Operation of Solid Oxide Fuel Cells System. J. Power Sources 2021, 490, 229561. [Google Scholar] [CrossRef]
- Subotić, V.; Eibl, M.; Hochenauer, C. Artificial Intelligence for Time-Efficient Prediction and Optimization of Solid Oxide Fuel Cell Performances. Energy Convers. Manag. 2021, 230, 113764. [Google Scholar] [CrossRef]
- Kang, J.-L.; Wang, C.-C.; Wong, D.S.-H.; Jang, S.-S.; Wang, C.-H. Digital Twin Model and Dynamic Operation for a Plant-Scale Solid Oxide Fuel Cell System. J. Taiwan Inst. Chem. Eng. 2021, 118, 60–67. [Google Scholar] [CrossRef]
- Huo, H.; Ji, Y.; Kuang, X.; Liu, Y.; Wu, Y. Dynamic Modeling of SOFC Based on Support Vector Regression Machine and Improved Particle Swarm Optimization. In Proceedings of the Proceeding of the 11th World Congress on Intelligent Control and Automation, Shenyang, China, 29 June–4 July 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1853–1858. [Google Scholar] [CrossRef]
- Marra, D.; Sorrentino, M.; Pianese, C.; Iwanschitz, B. A Neural Network Estimator of Solid Oxide Fuel Cell Performance for On-Field Diagnostics and Prognostics Applications. J. Power Sources 2013, 241, 320–329. [Google Scholar] [CrossRef]
- İskenderoğlu, F.C.; Baltacioğlu, M.K.; Demir, M.H.; Baldinelli, A.; Barelli, L.; Bidini, G. Comparison of Support Vector Regression and Random Forest Algorithms for Estimating the SOFC Output Voltage by Considering Hydrogen Flow Rates. Int. J. Hydrogen Energy 2020, 45, 35023–35038. [Google Scholar] [CrossRef]
- Hosamo, H.; Hosamo, M.H.; Nielsen, H.K.; Svennevig, P.R.; Svidt, K. Digital Twin of HVAC System (HVACDT) for Multiobjective Optimization of Energy Consumption and Thermal Comfort Based on BIM Framework with ANN-MOGA. Adv. Build. Energy Res. 2023, 17, 125–171. [Google Scholar] [CrossRef]
- Testasecca, T.; Lazzaro, M.; Sirchia, A. Towards Digital Twins of Buildings and Smart Energy Networks: Current and Future Trends. In Proceedings of the 2023 IEEE International Workshop on Metrology for Living Environment (MetroLivEnv), Milano, Italy, 29–31 May 2023. [Google Scholar]
- Hosamo, H.H.; Nielsen, H.K.; Kraniotis, D.; Svennevig, P.R.; Svidt, K. Improving Building Occupant Comfort through a Digital Twin Approach: A Bayesian Network Model and Predictive Maintenance Method. Energy Build. 2023, 288, 112992. [Google Scholar] [CrossRef]
- Mckee, D. Platform Stack Architectural Framework: An Introductory Guide—A Digital Twin Consortium White Paper. 2023. Available online: https://www.digitaltwinconsortium.org/wp-content/uploads/sites/3/2023/07/Platform-Stack-Architectural-Framework-2023-07-11.pdf (accessed on 10 August 2024).
- Brownlee, J. XGBoost with Python: Gradient Boosted Trees with XGBoost and Scikit-Learn. 2016. Available online: https://books.google.it/books?id=HgmqDwAAQBAJ (accessed on 10 August 2024).
- Louppe, G. Understanding Random Forests: From Theory to Practice. arXiv 2014, arXiv:1407.7502. [Google Scholar]
- Palomba, V.; Ferraro, M.; Frazzica, A.; Vasta, S.; Sergi, F.; Antonucci, V. Dynamic Simulation of a Multi-Generation System, for Electric and Cooling Energy Provision, Employing a SOFC Cogenerator and an Adsorption Chiller. Energy Procedia 2017, 143, 416–423. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Nominal electric power in AC [kW] | 1.3 |
Minimum power output in AC [kW] | 0.5 |
Maximum power output in AC [kW] | 1.5 |
Electric efficiency in nominal condition on NG LHV | 57% |
Cogeneration efficiency in nominal condition on NG LHV | 88% |
Nominal thermal power output [kW] | 0.75 |
Nominal NG consumption [m3/h] | 0.24 |
NG supply pressure [mbar] | 17–25 |
Start-up time [h] | 24 |
Model | MSE | MAE | RMSE | MAPE | R2 | WS | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | Test | Total | Test | Total | Test | Total | Test | Total | Test | Total | Test | |
XGBoost | 0.13 | 0.27 | 0.16 | 0.25 | 0.36 | 0.52 | 0.04 | 0.04 | 0.98 | 0.96 | 0.03 | 0.04 |
RF | 0.10 | 0.14 | 0.17 | 0.24 | 0.31 | 0.38 | 0.04 | 0.04 | 0.99 | 0.98 | 0.03 | 0.03 |
LSTM | 0.29 | 0.24 | 0.36 | 0.36 | 0.54 | 0.49 | 0.07 | 0.07 | 0.96 | 0.96 | 0.06 | 0.05 |
GBoost | 0.11 | 0.17 | 0.20 | 0.25 | 0.33 | 0.41 | 0.04 | 0.04 | 0.98 | 0.97 | 0.03 | 0.03 |
ANN | 0.28 | 0.26 | 0.34 | 0.34 | 0.53 | 0.51 | 0.04 | 0.04 | 0.96 | 0.95 | 0.04 | 0.04 |
Polynomial Regression | 0.41 | 0.36 | 0.45 | 0.44 | 0.64 | 0.60 | 0.09 | 0.09 | 0.94 | 0.94 | 0.07 | 0.07 |
Model | 500 h | 1000 h | 1500 h | 2000 h | 2500 h | |||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | WS | R2 | WS | R2 | WS | R2 | WS | R2 | WS | |
XGBoost | 0.998 | 0.004 | 0.876 | 0.067 | 0.941 | 0.038 | 0.957 | 0.035 | 0.975 | 0.035 |
RF | 0.837 | 0.085 | 0.929 | 0.041 | 0.943 | 0.037 | 0.969 | 0.028 | 0.983 | 0.031 |
LSTM | 0.957 | 0.030 | 0.872 | 0.081 | 0.883 | 0.090 | 0.914 | 0.080 | 0.953 | 0.060 |
GBoost | 0.938 | 0.034 | 0.966 | 0.022 | 0.958 | 0.029 | 0.971 | 0.027 | 0.974 | 0.036 |
ANN | 0.845 | 0.081 | 0.961 | 0.025 | 0.892 | 0.062 | 0.911 | 0.057 | 0.950 | 0.047 |
Polynomial Regression | 0.993 | 0.009 | 0.878 | 0.079 | 0.859 | 0.105 | 0.888 | 0.099 | 0.941 | 0.074 |
Model | Advantages | Disadvantages | Limitations |
---|---|---|---|
XGBoost | High accuracy (MAPE = 0.04) | Requires a lot of memory | Possible overfitting if not properly regularised |
Fast training times (0.19 s) | |||
RF | Highest R2 (0.99) and WS (0.03) | Poor performance on small dataset (R2500 h = 0.84) | Not always suitable for sequential or temporal data |
Fast training times (0.54 s) | |||
LSTM | Excellent for time series | Very long training times (6.47 s) | Large amounts of data required |
GBoost | Robustness as the number of data variates (R2 > 0.93) | Many iterations needed to fine-tune hyperparameters | Can overfit with too many iterations |
ANN | Ability to capture complex patterns | High training times (3.72 s) | Large amounts of data for training needed |
Polynomial Regression | Very fast training times (0.008 s) | Not as accurate as other models | Sensitive to outliers |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Testasecca, T.; Maniscalco, M.P.; Brunaccini, G.; Airò Farulla, G.; Ciulla, G.; Beccali, M.; Ferraro, M. Toward a Digital Twin of a Solid Oxide Fuel Cell Microcogenerator: Data-Driven Modelling. Energies 2024, 17, 4140. https://doi.org/10.3390/en17164140
Testasecca T, Maniscalco MP, Brunaccini G, Airò Farulla G, Ciulla G, Beccali M, Ferraro M. Toward a Digital Twin of a Solid Oxide Fuel Cell Microcogenerator: Data-Driven Modelling. Energies. 2024; 17(16):4140. https://doi.org/10.3390/en17164140
Chicago/Turabian StyleTestasecca, Tancredi, Manfredi Picciotto Maniscalco, Giovanni Brunaccini, Girolama Airò Farulla, Giuseppina Ciulla, Marco Beccali, and Marco Ferraro. 2024. "Toward a Digital Twin of a Solid Oxide Fuel Cell Microcogenerator: Data-Driven Modelling" Energies 17, no. 16: 4140. https://doi.org/10.3390/en17164140
APA StyleTestasecca, T., Maniscalco, M. P., Brunaccini, G., Airò Farulla, G., Ciulla, G., Beccali, M., & Ferraro, M. (2024). Toward a Digital Twin of a Solid Oxide Fuel Cell Microcogenerator: Data-Driven Modelling. Energies, 17(16), 4140. https://doi.org/10.3390/en17164140