Review of Research on the Present Situation of Development and Resource Potential of Wind and Solar Energy in China
Abstract
:1. Introduction
2. Resource Potential Characteristics of Wind and Solar Energy Resources in China
3. Development and Utilization of Wind and Solar Energy Resources in China
3.1. Development and Utilization of Wind Energy Resources in China
3.2. Development and Utilization of Solar Energy Resources in China
4. Driving Factors for the Development and Utilization of Wind and Solar Energy Resources in China
4.1. Direct Impact of Regional Policies and Management Measures
4.2. The Promoting Role of Science and Technology and Development Mode
4.3. Indirect Effects of Climate Warming and Air Pollution
5. Future Guarantee of China’s Wind and Solar Energy Resources Development and Utilization
5.1. The Service Ability of Regional Climate Information under Different Time Scales
5.2. Prediction Techniques for High-Resolution Spatiotemporal Datasets
5.3. The Coordinated Development of Industrial Planning and Development Technology
6. Summary and Prospect
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Randerson, J.T.; Liu, H.; Flanner, M.G.; Chambers, S.D.; Jin, Y.; Hess, P.G.; Pfister, G.; Mack, M.C.; Treseder, K.K.; Welp, L.R.; et al. The Impact of Boreal Forest Fire on Climate Warming. Science 2006, 314, 1130–1132. [Google Scholar] [CrossRef]
- Papaefthymiou, G.; Dragoon, K. Towards 100% renewable energy systems: Uncapping power system flexibility. Energy Policy 2016, 92, 69–82. [Google Scholar] [CrossRef]
- Palutikof, J.P.; Boulter, S.L.; Field, C.B.; Mach, K.J.; Manning, M.R.; Mastrandrea, M.D.; Meyer, L.; Minx, J.C.; Pereira, J.J.; Plattner, G.-K.; et al. Enhancing the review process in global environmental assessments: The case of the IPCC. Environ. Sci. Policy 2023, 139, 118–129. [Google Scholar] [CrossRef]
- Liu, Z.; Guan, D.; Wei, W.; Davis, S.J.; Ciais, P.; Bai, J.; Peng, S.; Zhang, Q.; Hubacek, K.; Marland, G.; et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 2015, 524, 335–338. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, Z.; Zhang, S.; Ye, X.; Jiang, H. Spatial econometric analysis of carbon emission intensity and its driving factors fromenergy consumption in China. Acta Geogr. Sin. 2013, 68, 1418–1431. [Google Scholar]
- Kim, S.K.; Park, S. Impacts of renewable energy on climate vulnerability: A global perspective for energy transition in a climate adaptation framework. Sci. Total Environ. 2023, 859 Pt 1, 160175. [Google Scholar] [CrossRef]
- Lv, A.; Li, T.; Zhang, W.; Liu, Y. Spatiotemporal Distribution and Complementarity of Wind and Solar Energy in China. Energies 2022, 15, 7365. [Google Scholar] [CrossRef]
- Wang, X.; Mei, Y.; Kong, Y.; Lin, Y.; Wang, H. Improved multi-objective model and analysis of the coordinated operation of a hydro-wind-photovoltaic system. Energy 2017, 134, 813–839. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Fan, W.; Liu, T.; Zhou, J.; Shi, J.K. Optimal Capacity Configuration of Wind-solar-water-battery Complementary Power Generation System in Remote Mountainous Areas. J. Power Supply 2018, 16, 138–146. [Google Scholar]
- Zhou, J.; Lu, P.; Li, Y.; Wang, C.; Yuan, L.; Mo, L. Short-term hydro-thermal-wind complementary scheduling considering uncertainty of wind power using an enhanced multi-objective bee colony optimization algorithm. Energy Convers. Manag. 2016, 123, 116–129. [Google Scholar] [CrossRef]
- Li, J.; Chen, S.; Wu, Y.; Wang, Q.; Liu, X.; Qi, L.; Lu, X.; Gao, L. How to make better use of intermittent and variable energy? A review of wind and photovoltaic power consumption in China. Renew. Sustain. Energy Rev. 2021, 137, 110626. [Google Scholar] [CrossRef]
- Bianchi, E.; Guozden, T.; Kozulj, R. Assessing low frequency variations in solar and wind power and their climatic teleconnections. Renew. Energy 2022, 190, 560–571. [Google Scholar] [CrossRef]
- Zhu, R.; Wang, Y.; Xiang, Y.; Sun, C.; Chang, R.; Hu, G.; Gao, Z. Study on climate characteristics and development potential of wind energy resources in China. Acta Energiae Solaris Sin. 2021, 42, 409–418. [Google Scholar]
- Zhao, D.; Luo, Y.; Gao, G.; Zhu, C. Essential Characteristics of solar direct Radiation over recent 50 years in China. Acta Energiae Solaris Sin. 2009, 30, 946–952. [Google Scholar]
- Lu, H.; Wang, C.; Li, Q.; Wiser, R.; Porter, K. Reducing wind power curtailment in China: Comparing the roles of coal power flexibility and improved dispatch. Clim. Policy 2019, 19, 623–635. [Google Scholar] [CrossRef]
- Wilberforce, T.; Baroutaji, A.; El Hassan, Z.; Thompson, J.; Soudan, B.; Olabi, A. Prospects and challenges of concentrated solar photovoltaics and enhanced geothermal energy technologies. Sci. Total Environ. 2019, 659, 851–861. [Google Scholar] [CrossRef]
- Zou, L.; Wang, L.; Li, J.; Lu, Y.; Gong, W.; Niu, Y. Global surface solar radiation and photovoltaic power from Coupled Model Intercomparison Project Phase 5 climate models. J. Clean. Prod. 2019, 224, 304–324. [Google Scholar] [CrossRef]
- Gupta, A.; Kumar, A.; Khatod, D.K. Optimized scheduling of hydropower with increase in solar and wind installations. Energy 2019, 183, 716–732. [Google Scholar] [CrossRef]
- Yang, Y.; Xia, S. China must balance renewable energy sites. Science 2022, 378, 609. [Google Scholar] [CrossRef]
- Fang, W.; Yang, C.; Liu, D.; Huang, Q.; Ming, B.; Cheng, L.; Wang, L.; Feng, G.; Shang, J. Assessment of Wind and Solar Power Potential and Their Temporal Complementarity in China’s Northwestern Provinces: Insights from ERA5 Reanalysis. Energies 2023, 16, 7109. [Google Scholar] [CrossRef]
- Graczyk, D.; Pińskwar, I.; Choryński, A.; Stasik, R. Less power when more is needed. Climate-related current and possible future problems of the wind energy sector in Poland. Renew. Energy 2024, 232, 121093. [Google Scholar] [CrossRef]
- Ma, X.; Liu, Y.; Yan, J.; Wang, H. A WGAN-GP-Based Scenarios Generation Method for Wind and Solar Power Complementary Study. Energies 2023, 16, 3114. [Google Scholar] [CrossRef]
- Wang, Z.; Han, F.; Li, C.; Li, K.; Wang, Z. Distribution characteristics and geographical interpretation of the upper limit ofmontane deciduous broad-leaved forests in the eastern monsoon region of China. Acta Geogr. Sin. 2024, 79, 240–258. [Google Scholar]
- Li, T.; Yin, P.; Lv, A.; Zhang, W.; Yin, J.; Xiong, J. Spatio-temporal Characteristics of Climate Production Potential of Vegetation in Eastern Monsoon Region of China. J. Northeast For. Univ. 2023, 51, 62–69+91. [Google Scholar]
- Han, S.; Zhang, L.N.; Liu, Y.Q.; Zhang, H.; Yan, J.; Lbi, L.; Lei, X.H.; Wang, X. Quantitative evaluation method for the complementarity of wind–solar–hydro power and optimization of wind–solar ratio. Appl. Energy 2019, 236, 973–984. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Zhao, W. Benefit evaluation of developing wind-solar complementary irrigation model in Northwest China. China Rural Water Hydropower 2017, 43–46. [Google Scholar] [CrossRef]
- GB/T 18710-2002; Methodology of Wind Energy Resource Assessment for Wind Farm. Standardization Administration of China: Beijing, China, 2002.
- GB/T 37526-2019; Assessment Method for Solar Energy Resource. China Meteorological Administration: Beijing, China, 2019.
- Wang, Q.; Luo, K.; Ming, X.; Mu, Y.; Ye, S.; Fan, J. Climatic impacts of wind power in the relatively stable and unstable atmosphere: A case study in China during the explosive growth from 2009 to 2018. J. Clean. Prod. 2023, 429, 139569. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, K.; Wu, C.; Tan, J.; He, R.; Ye, S.; Fan, J. Inter-farm cluster interaction of the operational and planned offshore wind power base. J. Clean. Prod. 2023, 396, 136529. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, K.; Wu, C.; Fan, J. Impact of substantial wind farms on the local and regional atmospheric boundary layer: Case study of Zhangbei wind power base in China. Energy 2019, 183, 1831136–1831149. [Google Scholar] [CrossRef]
- Shen, Y. Review of Applications of Satellite Remote Sensing Data to Solar Energy Resources Assessment in China in Recent 20 Years. Meteorol. Mon. 2010, 36, 111–115. [Google Scholar]
- Feng, Y.; Que, L.; Feng, J. Spatiotemporal characteristics of wind energy resources from 1960 to 2016 over China. Atmos. Ocean. Sci. Lett. 2020, 13, 136–145. [Google Scholar] [CrossRef]
- Li, K.; He, F.; Xi, J. An Analysis of utilization potential distribution of wind power in Mainland China. Resour. Sci. 2010, 32, 1672–1678. [Google Scholar]
- Liao, S.; Liu, K.; Li, Z. Estimation of grid based spatial distribution of wind energy resource in China. J. Geo-Inf. Sci. 2008, 10, 551–556. [Google Scholar]
- Yánez-Rosales, P.; del Río-Gamero, B.; Schallenberg-Rodriguez, J. Rationale for selecting the most suitable areas for offshore wind energy farms in isolated island systems. Case study: Canary Islands. Energy 2024, 307, 132589. [Google Scholar] [CrossRef]
- Yuan, C.; Xue, H.; Yang, Z. A numerical modeling study for offshore wind speed. Acta Energiae Solaris Sin. 2004, 25, 740–743. [Google Scholar]
- Yang, Z.; Xue, H.; Sang, J. The study on the estimation of wind energy over complex terrain. Acta Energiae Solaris Sin. 2004, 25, 744–749. [Google Scholar]
- Mu, H.; Xu, J.; Yang, Y. Assessment An Application of Numerical Modeling to Shanghai Offshore Wind Energy Resource. Plateau Meteorol. 2008, 27, 196–202. [Google Scholar]
- International Renewable Energy Agency. Renewable Capacity Statistics 2019; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2019. [Google Scholar]
- Ren21. Renwables 2018 Global Status Report; Ren21: Paris, France, 2019. [Google Scholar]
- Chaaban, K.A.; Alfadl, N. A comparative study of machine learning approaches for an accurate predictive modeling of solar energy generation. Energy Rep. 2024, 12, 1293–1302. [Google Scholar] [CrossRef]
- Musa, S.D.; Zhonghua, T.; Ibrahim, A.O.; Habib, M. China’s energy status: A critical look at fossils and renewable options. Renew. Sustain. Energy Rev. 2018, 81, 2281–2290. [Google Scholar] [CrossRef]
- Dong, R. The International Energy Agency released the Global Electricity Market Update: Outlook 2023–2024: Electricity supply and demand are exacerbated by climate impacts. China Power Enterp. Manag. 2023, 19, 94–96. [Google Scholar]
- Wang, M.; Wei, K.; Wang, S. The International Energy Agency released World Energy Investment Report 2023. Foreign Nucl. News 2023, 6, 22–24. [Google Scholar]
- Wang, Z. Analysis and Countermeasures for Reuse of Wind and Photovoltaic Power Curtailment in China. Sino-Glob. Energy 2021, 26, 23–26. [Google Scholar]
- Zhang, S.; Li, X. Study on application of ERA5 data to solar energy resource assessment over China’s region. Acta Energiae Solaris Sin. 2023, 44, 280–285. [Google Scholar]
- Chuanhui, W.; Yanbo, S.; Jinfeng, Y.; Shunwu, Z. Applicability of three Reanalysis data in assessment of solar energy resources in China. Acta Energiae Solaris Sin. 2022, 43, 164–173. [Google Scholar]
- Kaiser, D.P. Decreasing cloudiness over China: An updated analysis examining additional variables. Geophys. Res. Lett. 2000, 27, 2193–2196. [Google Scholar] [CrossRef]
- Streets, D.G.; Yu, C.; Wu, Y.; Chin, M.; Zhao, Z.; Hayasaka, T.; Shi, G. Aerosol trends over China, 1980–2000. Atmos. Res. 2008, 88, 174–182. [Google Scholar] [CrossRef]
- Yuzhu, H.; Xinghua, L.; Yanan, H. Change rules and influencing factors of 57 years of solar energy resources in inner mongolia. Acta Energiae Solaris Sin. 2021, 42, 145–151. [Google Scholar]
- Zhong, Z.; He, B.; Chen, H.W.; Chen, D.; Zhou, T.; Dong, W.; Xiao, C.; Xie, S.-P.; Song, X.; Guo, L.; et al. Reversed asymmetric warming of sub-diurnal temperature over land during recent decades. Nat. Commun. 2023, 14, 7189. [Google Scholar] [CrossRef]
- Gu, Y.; Xu, J.; Chen, D.; Wang, Z.; Li, Q. Overall review of peak shaving for coal-fired power units in China. Renew. Sustain. Energy Rev. 2016, 54, 723–731. [Google Scholar] [CrossRef]
- Yu, C.; Zhao, X.; Wen, F.; Chung, C.; Chung, T.; Huang, M. Pricing and procurement of operating reserves in competitive pool-based electricity markets. Electr. Power Syst. Res. 2004, 73, 37–43. [Google Scholar] [CrossRef]
- Zhang, J. Research on the Pricing Method of Trans-provincial Acceptance of Hydropower Spilled Energy. China Rural. Water Hydropower 2016, 7, 175–179. [Google Scholar]
- Qiu, L.; He, L.; Lu, H.; Liang, D. Systematic potential analysis on renewable energy centralized co-development at high altitude: A case study in Qinghai-Tibet plateau. Energy Convers. Manag. 2022, 267, 115879. [Google Scholar] [CrossRef]
- Wen, Y.; Kamranzad, B.; Lin, P. Joint exploitation potential of offshore wind and wave energy along the south and southeast coasts of China. Energy 2022, 249, 123710. [Google Scholar] [CrossRef]
- Dong, J.; Dou, X.; Liu, D.; Bao, A.; Wang, D.; Zhang, Y.; Jiang, P. Benefit Sharing of Power Transactions in Distributed Energy Systems with Multiple Participants. Sustainability 2023, 15, 9128. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, C.; Yang, T.; Jin, X.; Jia, Z.; Shen, J.; Wu, X. Assessment of climate change impacts on the hydro-wind-solar energy supply system. Renew. Sustain. Energy Rev. 2022, 162, 112480. [Google Scholar] [CrossRef]
- Wang, W.; Luo, Y.; Zhao, D. The Power Transition under the Interaction of Different Systems—A Case Study of the Guangdong-Hong Kong-Macao Greater Bay Area. Sustainability 2023, 15, 5577. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Wang, Z.; Li, S.; Li, J.; He, G.; Li, Y.; Liu, Y.; Piao, S.; Gao, Z.; et al. Potential contributions of wind and solar power to China’s carbon neutrality. Resour. Conserv. Recycl. 2022, 180, 106155. [Google Scholar] [CrossRef]
- Jordan, D.K.; Dalia, P.E.; Gregory, W.C. An integrated reservoir-power system model for evaluating the impacts of wind integration on hydropower resources. Renew. Energy 2014, 71, 553–562. [Google Scholar]
- Jacobson, M.Z.; Delucchi, M.A.; Cameron, M.A.; Frew, B.A. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes. Proc. Natl. Acad. Sci. USA 2015, 112, 15060–15065. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Ma, J.; Zhu, S. Renewable energy development and multi-energy complementation, taking Qinghai as an example. J. Tsinghua Univ. (Sci. Technol.) 2022, 62, 1357–1365. [Google Scholar]
- Jurasz, J.; Mikulik, J.; Dąbek, P.B.; Guezgouz, M.; Kaźmierczak, B. Complementarity and ‘Resource Droughts’ of Solar and Wind Energy in Poland: An ERA5-Based Analysis. Energies 2021, 14, 1118. [Google Scholar] [CrossRef]
- Puspitarini, H.D.; François, B.; Zaramella, M.; Brown, C.; Borga, M. The impact of glacier shrinkage on energy production from hydropower-solar complementarity in alpine river basins. Sci. Total Environ. 2020, 719, 137488. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Iglesias, G. Hybrid offshore wind-solar energy farms: A novel approach through retrofitting. Energy Convers. Manag. 2024, 319, 118903. [Google Scholar] [CrossRef]
- Xie, J.; Bao, Z.F.; Cao, H.; Xu, Y.; Lu, J. Research and prospects on joint dispatching technology of hydro-wind-solarstorage in lower reaches of Jinsha River. Yangtze River 2022, 53, 193–202. [Google Scholar]
- Tang, W. Research on data analysis model construction of distributed chemical energy storage system. Energy Storage Sci. Technol. 2022, 11, 737–738. [Google Scholar]
- Li, H.; Wang, Y.; Zhang, N.; Zhang, G.; Tian, X. Aggregate Model of Massive Distributed Energy Storage for Power System Operation. In Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), Bucharest, Romania, 29 September–2 October 2019. [Google Scholar]
- Zhang, N.; Jiang, H.; Li, Y.; Yong, P.; Li, M.; Zhu, H.; Ci, S.; Kang, C. Aggregating distributed energy storage: Cloud-based flexibility services from China. IEEE Power Energy Mag. 2021, 19, 63–73. [Google Scholar] [CrossRef]
- Basu, M. Optimal generation scheduling of hydrothermal system with demand side management considering uncertainty and outage of renewable energy sources. Renew. Energy 2020, 146, 530–542. [Google Scholar] [CrossRef]
- Hansen, C.; Ghimire, G.R.; Kao, S.C. Evaluation of Nominal Energy Storage at Existing Hydropower Reservoirs in the US. Water Resour. Res. 2022, 58, e2022WR032210. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, M. Evaluation and comparison of green efficiency of four coastal urban agglomerations in eastern China. China Popul. Resour. Environ. 2019, 29, 11–20. [Google Scholar]
- Feng, W.; Bian, W.; Guo, X. Primary Analysis of Running Status of Pumped Storage Power Station in China. Water Resour. Power 2008, 154–156. [Google Scholar] [CrossRef]
- Mostafaeipour, A.; Bidokhti, A.; Fakhrzad, M.B.; Sadegheih, A.; Mehrjerdi, Y.Z. A new model for the use of renewable electricity to reduce carbon dioxide emissions. Energy 2022, 238, 121602. [Google Scholar] [CrossRef]
- Adams, S.; Nsiah, C. Reducing carbon dioxide emissions; Does renewable energy matter? Sci. Total Environ. 2019, 693, 133288. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.-Y.; Cai, H.; Chen, L.; Li, T. Spatiotemporal Evolution and Multi-Scenario Prediction of Carbon Storage in the GBA Based on PLUS–InVEST Models. Sustainability 2023, 15, 8421. [Google Scholar] [CrossRef]
- International Renewable Energy Agency. Renewables 2016 Global Status Report; IRENA: Masdar City, United Arab Emirates, 2016. [Google Scholar]
- Khor, C.S.; Lalchand, G. A review on sustainable power generation in Malaysia to 2030: Historical perspective, current assessment, and future strategies. Renew. Sustain. Energy Rev. 2014, 29, 952.e60. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of China. China’s Policies and Actions for Addressing Climate Change in 2023. Environ. Prot. 2022, 50, 45–56. [Google Scholar]
- Sun, J.; Wang, Y.; Yang, X. Analysis of Spatial and Temporal Variation Character of Climate Risks of Wind and Solal. Electr. Power 2023, 56, 1–10. [Google Scholar]
- Wu, J.; Yan, Y. Projection and Outlook of Future Wind Energy and Solar Energy Resources in China. Energy China 2023, 45, 49–58. [Google Scholar]
- Gao, X.; Wang, M.; Filippo, G. Climate change over China in the 21st century as simulated by BCC_CSM1.1-RegCM4.0. Atmos. Ocean. Sci. Lett. 2013, 6, 381–386. [Google Scholar]
- Li, D.; Feng, J.; Dosio, A.; Qi, J.; Xu, Z.; Yin, B. Historical evaluation and future projections of 100-m wind energy potentials over CORDEX-East Asia. J. Geophys. Res. Atmos. 2020, 125, e2020JD032874. [Google Scholar] [CrossRef]
- Guan, X. Development and Utilization of Wind and Solar Energy; China Meteorological Press: Beijing, China, 2018; pp. 84–200. [Google Scholar]
- Wang, R.-Y.; Mo, X.; Ji, H.; Zhu, Z.; Wang, Y.-S.; Bao, Z.; Li, T. Comparison of the CASA and InVEST models’ effects for estimating spatiotemporal differences in carbon storage of green spaces in megacities. Sci. Rep. 2024, 14, 5456. [Google Scholar] [CrossRef]
Method | Advantages | Disadvantages |
---|---|---|
The evaluation method based on observation | Based on the measured data; the data quality is better, and the error in calculation is relatively low. | The number of sites is limited and unevenly distributed, and the research cost is relatively high. |
The evaluation method based on numerical models | It can evaluate resources in areas without measured data, which is suitable for future prediction. | There are large uncertainties in the data. |
The evaluation method based on satellite remote sensing | The coverage area in the spatial scale is relatively extensive, and it provides top-down observation data with high spatiotemporal resolution, with spatiotemporal continuity. | The treatment of clouds and aerosols is not perfect. The data time scale is relatively short and cannot provide real-time data. |
The evaluation method based on re-analysis data | Relatively comprehensive factors can be considered, and its advantages are as follows: multiple data sets and easy access; low research costs; relatively long time scales; and relatively wide spatial distribution. | Data quality cannot be guaranteed, and local applicability needs to be assessed. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Liu, Y.; Lv, A. Review of Research on the Present Situation of Development and Resource Potential of Wind and Solar Energy in China. Energies 2024, 17, 4158. https://doi.org/10.3390/en17164158
Li T, Liu Y, Lv A. Review of Research on the Present Situation of Development and Resource Potential of Wind and Solar Energy in China. Energies. 2024; 17(16):4158. https://doi.org/10.3390/en17164158
Chicago/Turabian StyleLi, Taohui, Yonghao Liu, and Aifeng Lv. 2024. "Review of Research on the Present Situation of Development and Resource Potential of Wind and Solar Energy in China" Energies 17, no. 16: 4158. https://doi.org/10.3390/en17164158
APA StyleLi, T., Liu, Y., & Lv, A. (2024). Review of Research on the Present Situation of Development and Resource Potential of Wind and Solar Energy in China. Energies, 17(16), 4158. https://doi.org/10.3390/en17164158