Size-Dispersed Calcium Phosphate-Based Paints for Sustainable, Durable Cool Roof Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis
2.2.1. Calcium Pyrophosphate Pigment
2.2.2. PRC Paint
2.3. Characterization
3. Results and Discussion
3.1. Optical Performance
3.2. Durability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mandal, J.; Yang, Y.; Yu, N.; Raman, A.P. Paints as a Scalable and Effective Radiative Cooling Technology for Buildings. Joule 2020, 4, 1350–1356. [Google Scholar] [CrossRef]
- Anderson, G.B.; Bell, M.L. Heat Waves in the United States: Mortality Risk during Heat Waves and Effect Modification by Heat Wave Characteristics in 43 U.S. Communities. Environ. Health Perspect. 2011, 119, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Santamouris, M.; Pavlou, K.; Synnefa, A.; Niachou, K.; Kolokotsa, D. Recent progress on passive cooling techniques: Advanced technological developments to improve survivability levels in low-income households. Energy Build. 2007, 39, 859–866. [Google Scholar] [CrossRef]
- Santamouris, M.; Khan, H.S.; Paolini, R.; Julia, O.M.L.; Garshasbi, S.; Papakonstantinou, I.; Valenta, J. Recent Advances in Fluorescence-Based Colored Passive Daytime Radiative Cooling for Heat Mitigation. Int. J. Thermophys. 2024, 45, 90. [Google Scholar] [CrossRef]
- Morales-Inzunza, S.; González-Trevizo, M.E.; Martínez-Torres, K.E.; Luna-León, A.; Tamayo-Pérez, U.J.; Fernández-Melchor, F.; Santamouris, M. On the potential of cool materials in the urban heat island context: Scalability challenges and technological setbacks towards building decarbonization. Energy Build. 2023, 296, 113330. [Google Scholar] [CrossRef]
- Li, X.; Peoples, J.; Huang, Z.; Zhao, Z.; Qiu, J.; Ruan, X. Full Daytime Sub-ambient Radiative Cooling in Commercial-like Paints with High Figure of Merit. Cell Rep. Phys. Sci. 2020, 1, 100221. [Google Scholar] [CrossRef]
- Gagnon, P.; Margolis, R.; Melius, J.; Phillips, C.; Elmore, R. Rooftop Solar Photovoltaic Technical Potential in the United States. A Detailed Assessment; Technical Report NREL/TP–6A20-65298; National Renewable Energy Laboratory: Golden, CO, USA, 2016; p. 1236153. [CrossRef]
- Joshi, S.; Mittal, S.; Holloway, P.; Shukla, P.R.; Ó Gallachóir, B.; Glynn, J. High resolution global spatiotemporal assessment of rooftop solar photovoltaics potential for renewable electricity generation. Nat. Commun. 2021, 12, 5738. [Google Scholar] [CrossRef] [PubMed]
- Levin, J.R.; Daisey, G.; Elbert, K.C.; Mallardi, J.; Westmeyer, M.; Williams, D. Acrylic Binder and Formulation Design for More Sustainable Elastomeric Cool Roof Coatings (ERCs). In ACS Symposium Series; Cheng, H.N., Gross, R.A., Eds.; American Chemical Society: Washington, DC, USA, 2023; Volume 1451, pp. 203–218. [Google Scholar] [CrossRef]
- Muruzina, E.V.; Murzagalina, E.I. Study of the eco-friendly roofing materials based on elastomers in accelerated modes. Procedia Environ. Sci. Eng. Manag. 2020, 7, 571–579. [Google Scholar]
- Pisello, A.L. State of the art on the development of cool coatings for buildings and cities. Sol. Energy 2017, 144, 660–680. [Google Scholar] [CrossRef]
- Gong, Q.; Lu, L.; Chen, J.; Yin Lau, W.; Ho Cheung, K. A novel aqueous scalable eco-friendly paint for passive daytime radiative cooling in sub-tropical climates. Sol. Energy 2023, 255, 236–242. [Google Scholar] [CrossRef]
- Zhao, B.; Xu, C.; Jin, C.; Lu, K.; Chen, K.; Li, X.; Li, L.; Pei, G. Superhydrophobic bilayer coating for passive daytime radiative cooling. Nanophotonics 2024, 13, 583–591. [Google Scholar] [CrossRef]
- Sun, J.; Wang, J.; Guo, T.; Bao, H.; Bai, S. Daytime passive radiative cooling materials based on disordered media: A review. Sol. Energy Mater. Sol. Cells 2022, 236, 111492. [Google Scholar] [CrossRef]
- Peoples, J.; Ruan, X. Radiative Cooling Paints; Elsevier: Amsterdam, The Netherlands, 2023; pp. 393–419. [Google Scholar]
- Li, X.; Peoples, J.; Yao, P.; Ruan, X. Ultrawhite BaSO4 Paints and Films for Remarkable Daytime Subambient Radiative Cooling. ACS Appl. Mater. Interfaces 2021, 13, 21733–21739. [Google Scholar] [CrossRef]
- Lv, J.; Chen, Z.; Li, X. Calcium Phosphate Paints for Full-Daytime Subambient Radiative Cooling. ACS Appl. Energy Mater. 2022, 5, 4117–4124. [Google Scholar] [CrossRef]
- Kralikova, R.; Pinosova, M.; Koblasa, F.; Wessely, E.; Rusko, M. Environmental and Health Impact of Paint Products. In DAAAM Proceedings, 1st ed.; Katalinic, B., Ed.; DAAAM International: Vienna, Austria, 2020; Volume 1, pp. 35–43. [Google Scholar] [CrossRef]
- Caratenuto, A.; Leach, K.; Liu, Y.; Zheng, Y. Nanofibrous Biomaterial-Based Passive Cooling Paint Structurally Linked by Alkane-Oleate Interactions. ACS Appl. Mater. Interfaces 2024, 16, 12717–12730. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.; Peoples, J.; Li, X.; Yang, X.; Bao, H.; Ruan, X. Electronic and phononic origins of BaSO4 as an ultra-efficient radiative cooling paint pigment. Mater. Today Phys. 2022, 24, 100658. [Google Scholar] [CrossRef]
- Incropera, F.P.; DeWitt, D.P.; Bergman, T.L.; Lavine, A.S. Fundamentals of Heat and Mass Transfer, 6th ed.; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- NREL. Reference Air Mass 1.5 Spectra. Available online: https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html (accessed on 30 June 2023).
- SPIE. MODTRAN4 Radiative Transfer Modeling for Atmospheric Correction; Spectral Sciences, Inc.: Burlington, MA, USA, 1999; Volume 3756. [Google Scholar]
- Peoples, J.; Li, X.; Lv, Y.; Qiu, J.; Huang, Z.; Ruan, X. A strategy of hierarchical particle sizes in nanoparticle composite for enhancing solar reflection. Int. J. Heat Mass Transf. 2019, 131, 487–494. [Google Scholar] [CrossRef]
- Tian, Y.; Shao, H.; Liu, X.; Chen, F.; Li, Y.; Tang, C.; Zheng, Y. Superhydrophobic and recyclable cellulose-fiber-based composites for high-efficiency passive radiative cooling. ACS Appl. Mater. Interfaces 2021, 13, 22521–22530. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caratenuto, A.; Leung, S.; LeCompte, N.; Zheng, Y. Size-Dispersed Calcium Phosphate-Based Paints for Sustainable, Durable Cool Roof Applications. Energies 2024, 17, 4178. https://doi.org/10.3390/en17164178
Caratenuto A, Leung S, LeCompte N, Zheng Y. Size-Dispersed Calcium Phosphate-Based Paints for Sustainable, Durable Cool Roof Applications. Energies. 2024; 17(16):4178. https://doi.org/10.3390/en17164178
Chicago/Turabian StyleCaratenuto, Andrew, Sunny Leung, Nathaniel LeCompte, and Yi Zheng. 2024. "Size-Dispersed Calcium Phosphate-Based Paints for Sustainable, Durable Cool Roof Applications" Energies 17, no. 16: 4178. https://doi.org/10.3390/en17164178
APA StyleCaratenuto, A., Leung, S., LeCompte, N., & Zheng, Y. (2024). Size-Dispersed Calcium Phosphate-Based Paints for Sustainable, Durable Cool Roof Applications. Energies, 17(16), 4178. https://doi.org/10.3390/en17164178