Effect of Heating Rate on the Pyrolysis Behavior and Kinetics of Coconut Residue and Activated Carbon: A Comparative Study
Abstract
:1. Introduction
2. Experimental
2.1. Raw Materials
2.2. Pyrolysis through TGA
2.3. Kinetic Studies
Coats–Redfern Method
3. Results and Discussion
3.1. Thermogravimetric Analysis
3.2. Analysis of Thermal Decomposition Kinetics Using the Coats–Redfern Method
3.3. Evaluation of Kinetic Energy through Coats–Redfern Method
3.4. Scanning Electron Microscopy (SEM)
3.5. Brunauer–Emmett–Teller (BET)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bach, Q.V.; Tran, K.Q.; Skreiberg, Ø.; Trinh, T.T. Effects of wet torrefaction on pyrolysis of woody biomass fuels. Energy 2015, 88, 443–456. [Google Scholar] [CrossRef]
- Bhavanam, A.; Sastry, R. Kinetic study of solid waste pyrolysis using distributed activation energy model. Bioresour. Technol. 2015, 178, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Aksu, Z. Application of biosorption for the removal of organic pollutants: A review. Process Biochem. 2005, 40, 997–1026. [Google Scholar] [CrossRef]
- Çepelioğullar, Ö.; Pütün, A.E. Thermal and kinetic behaviors of biomass and plastic wastes in co-pyrolysis. Energy Convers. Manag. 2013, 75, 263–270. [Google Scholar] [CrossRef]
- Edreis, E.M.; Li, X.; Luo, G.; Sharshir, S.; Yao, H. Kinetic analyses and synergistic effects of CO2 co-gasification of low sulphur petroleum coke and biomass wastes. Bioresour. Technol. 2018, 267, 54–62. [Google Scholar] [CrossRef]
- Ian, I.; Li, X.; Jian, Y.; Dacres, O.D.; Zhong, M.; Liu, J.; Ma, F.; Rahman, N. Kinetic study of biomass pellet pyrolysis by using distributed activation energy model and Coats Redfern methods and their comparison. Bioresour. Technol. 2019, 294, 122099. [Google Scholar]
- Nemanova, V.; Abedini, A.; Liliedahl, T.; Engvall, K. Co-gasification of petroleum coke and biomass. Fuel 2014, 117, 870–875. [Google Scholar] [CrossRef]
- Zakrzewski, R. Pyrolysis kinetics of wood comparison of iso and polythermal thermogravimetric methods. Electron. J. Pol. Agric. Univ. 2003, 6, #04. [Google Scholar]
- Gao, Y.; Ding, L.; Li, X.; Wang, W.; Xue, Y.; Zhu, X.; Hu, H.; Luo, G.; Naruse, I.; Bai, Z.; et al. Na&Ca removal from Zhundong coal by a novel CO2-water leaching method and the ashing behavior of the leached coal. Fuel 2017, 210, 8–14. [Google Scholar]
- Reina, J.; Velo, E.; Puigjaner, L. Thermogravimetric study of the pyrolysis of waste wood. Thermochim. Acta 1998, 320, 161–167. [Google Scholar] [CrossRef]
- Deka, M.; Saikia, C.; Baruah, K. Studies on thermal degradation and termite resistant properties of chemically modified wood. Bioresour. Technol. 2002, 84, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hu, Z.; Mian, I.; Dacres, O.D.; Li, J.; Wei, B.; Zhong, M.; Li, X.; Rahman, N.; Luo, G.; et al. Gasification Kinetics of Organic Solid Waste Pellets: Comparative Study Using Distributed Activation Energy Model and Coats–Redfern Method. Energies 2022, 15, 9575. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J.; Shao, J.; Liu, Z.; Zhang, G.; Xu, T.; Guo, J.; Wang, H.; Xu, R.; Lin, H. Thermal behavior and kinetic analysis of co-combustion of waste biomass/low rank coal blends. Energy Convers. Manag. 2016, 124, 414–426. [Google Scholar] [CrossRef]
- Liu, N.; Fan, W.; Dobashi, R.; Huang, L. Kinetic modeling of thermal decomposition of natural cellulosic materials in air atmosphere. J. Anal. Appl. Pyrolysis 2002, 63, 303–325. [Google Scholar] [CrossRef]
- Chen, S.; Meng, A.; Long, Y.; Zhou, H.; Li, Q.; Zhang, Y. TGA pyrolysis and gasification of combustible municipal solid waste. J. Energy Inst. 2015, 88, 332–343. [Google Scholar] [CrossRef]
- Coats, A.W.; Redfern, J.P. Kinetic parameters from thermogravimetric data. Nature 1964, 201, 68. [Google Scholar] [CrossRef]
- Miura, K.; Maki, T. A simple method for estimating f (E) and k 0 (E) in the distributed activation energy model. Energy Fuels 1998, 12, 864–869. [Google Scholar] [CrossRef]
- Ferdous, D.; Dalai, A.K.; Bej, S.K.; Thring, R.W. Pyrolysis of Lignins: Experimental and Kinetics Studies. Energy Fuels 2002, 16, 1405–1412. [Google Scholar] [CrossRef]
- Edreis, E.M.; Yao, H. Kinetic thermal behaviour and evaluation of physical structure of sugar cane bagasse char during non-isothermal steam gasification. J. Mater. Res. Technol. 2016, 5, 317–326. [Google Scholar] [CrossRef]
- Hu, M.; Chen, Z.; Wang, S.; Guo, D.; Ma, C.; Zhou, Y.; Chen, J.; Laghari, M.; Fazal, S.; Xiao, B.; et al. Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser–Suzuki deconvolution, and iso-conversional method. Energy Convers. Manag. 2016, 118, 1–11. [Google Scholar] [CrossRef]
- Petrović, Z.S.; Zavargo, Z.Z. Reliability of methods for determination of kinetic parameters from thermogravimetry and DSC measurements. J. Appl. Polym. Sci. 1986, 32, 4353–4367. [Google Scholar] [CrossRef]
- Neagu, M.; Vijan, L.; Giosanu, D. Adsorption study of phenolic compounds substituted with NO2 and Cl groups on activated carbon. J. Environ. Prot. Ecol. 2013, 14, 552–558. [Google Scholar]
- Maiti, S.; Purakayastha, S.; Ghosh, B. Thermal characterization of mustard straw and stalk in nitrogen at different heating rates. Fuel 2007, 86, 1513–1518. [Google Scholar] [CrossRef]
- Cai, J.; Liu, R. New distributed activation energy model: Numerical solution and application to pyrolysis kinetics of some types of biomass. Bioresour. Technol. 2008, 99, 2795–2799. [Google Scholar] [CrossRef]
- Kök, M.; Pamir, M. Non-isothermal pyrolysis and kinetics of oil shales. J. Therm. Anal. Calorim. 1999, 56, 953–958. [Google Scholar] [CrossRef]
- Strezov, V.; Moghtaderi, B.; Lucas, J. Thermal study of decomposition of selected biomass samples. J. Therm. Anal. Calorim. 2003, 72, 1041–1048. [Google Scholar] [CrossRef]
- Quan, C.; Li, A.; Gao, N. Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes. Waste Manag. 2009, 29, 2353–2360. [Google Scholar] [CrossRef] [PubMed]
- Di Blasi, C. Combustion and gasification rates of lignocellulosic chars. Prog. Energy Combust. Sci. 2009, 35, 121–140. [Google Scholar] [CrossRef]
- Agarwal, R.K. On the use of the Arrhenius equation to describe cellulose and wood pyrolysis. Thermochim. Acta 1985, 91, 343–349. [Google Scholar] [CrossRef]
- Guo, J.; Lua, A.C. Effect of Heating Temperature on the Properties of Chars and Activated Carbons Prepared From Oil Palm Stones. J. Therm. Anal. Calorim. 2000, 60, 417–425. [Google Scholar] [CrossRef]
- Vlaev, L.; Markovska, I.; Lyubchev, L. Non-isothermal kinetics of pyrolysis of rice husk. Thermochim. Acta 2003, 406, 1–7. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, G.; Zhu, J.; Wang, Y.; Yang, H.; Jin, L.; Hu, H. Insight into synergistic effect of co-pyrolysis of low-rank coal and waste polyethylene with or without additives using rapid infrared heating. J. Energy Inst. 2022, 102, 384–394. [Google Scholar] [CrossRef]
- Pollard, S.; Fowler, G.; Sollars, C.; Perry, R. Low-cost adsorbents for waste and wastewater treatment: A review. Sci. Total. Environ. 1992, 116, 31–52. [Google Scholar] [CrossRef]
Biomass Sample | Proximate Analysis (wt. %) | Ultimate Analysis (wt.%, daf) | CV (MJ/Kg, db) | ||||||
---|---|---|---|---|---|---|---|---|---|
Aad | Vdaf | FCdaf * | C | H | O * | N | S | ||
RCR | 5.35 | 92.8 | 20.7 | 51.9 | 6.21 | 47.9 | 3.87 | 1.77 | 20.9 |
ACCR | 0.72 | 72.4 | 12.4 | 34.5 | 6.00 | 39.4 | 2.04 | 0.95 | 11.5 |
Model | Symbol | f(x) | g(x) |
---|---|---|---|
First-order | O1 | (1 − x) | −ln(1 − x) |
Three dimensions (Contracting Sphere) | R3 | 3(1 − x)2/3 | 1 − (1 − x)1/3 |
One-dimensional diffusion | D1 | α−1/2 | α2 |
Two-dimensional diffusion, cylindrical symmetry | D2 | [−ln(1 − α)]−1 | α + (1 − α) ln(1 − α) |
Random nucleation and subsequent growth | A2 | 2(1 − α) [−ln(1 − α)]1/2 | [−ln(1 − α)]1/2 |
Random nucleation and subsequent growth | A3 | 3(1 − α) [−ln(1 − α)]1/3 | [−ln(1 − α)]1/3 |
Samples | g(α) | E (kJ/mol) | R2 | Average E ± σ |
---|---|---|---|---|
3/5/10 °C/min | 3/5/10 °C/min | |||
RCR | −ln(1 − x) | 98.09/110.3/113.96 | 0.999/0.995/0.996 | 107.45 ± 6.78 |
1 − (1 − x)1/3 | 86.78/97.77/100.94 | 0.996/0.991/0.993 | 95.16 ± 6.07 | |
α2 | 146.15/163.83/168.72 | 0.974/0.964/0.969 | 159.57 ± 9.69 | |
α + (1 − α) ln(1 − α) | 162.63/182.05/187.66 | 0.987/0.980/0.983 | 177.45 ± 10.7 | |
[−ln(1 − α)]1/2 | 44.04/50.30/52.03 | 0.999/0.995/0.996 | 48.79 ± 3.43 | |
[−ln(1 − α)]1/3 | 26.02/30.30/31.39 | 0.999/0.993/0.994 | 29.24 ± 2.32 | |
ACCR | −ln(1 − x) | 79.68/91.71/92.04 | 0.992/0.988/0.987 | 87.81 ± 5.75 |
1 − (1 − x)1/3 | 70.64/81.45/81.78 | 0.998/0.995/0.995 | 77.96 ± 5.17 | |
α2 | 120.58/138.29/139 | 0.990/0.988/0.990 | 132.62 ± 8.52 | |
α + (1 − α) ln(1 − α) | 133.84/153.36/154.10 | 0.997/0.994/0.996 | 147.1 ± 9.38 | |
[−ln(1 − α)]1/2 | 35.18/41.15/41.22 | 0.990/0.985/0.984 | 39.17 ± 2.82 | |
[−ln(1 − α)]1/3 | 20.35/24.04/24.92 | 0.987/0.982/0.981 | 22.96 ± 1.84 |
Samples | Specific Surface Area (m2/g) | Pore Volume (cm3/g) | Average Pore Size (nm) |
---|---|---|---|
RCR | 145 | 0.0099 | 15.867 |
ACCR | 488 | 0.0118 | 9.928 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mian, I.; Rehman, N.; Li, X.; Ullah, H.; Khan, A.; Choi, C.; Han, C. Effect of Heating Rate on the Pyrolysis Behavior and Kinetics of Coconut Residue and Activated Carbon: A Comparative Study. Energies 2024, 17, 4605. https://doi.org/10.3390/en17184605
Mian I, Rehman N, Li X, Ullah H, Khan A, Choi C, Han C. Effect of Heating Rate on the Pyrolysis Behavior and Kinetics of Coconut Residue and Activated Carbon: A Comparative Study. Energies. 2024; 17(18):4605. https://doi.org/10.3390/en17184605
Chicago/Turabian StyleMian, Inamullah, Noor Rehman, Xian Li, Hidayat Ullah, Abbas Khan, Chaejin Choi, and Changseok Han. 2024. "Effect of Heating Rate on the Pyrolysis Behavior and Kinetics of Coconut Residue and Activated Carbon: A Comparative Study" Energies 17, no. 18: 4605. https://doi.org/10.3390/en17184605
APA StyleMian, I., Rehman, N., Li, X., Ullah, H., Khan, A., Choi, C., & Han, C. (2024). Effect of Heating Rate on the Pyrolysis Behavior and Kinetics of Coconut Residue and Activated Carbon: A Comparative Study. Energies, 17(18), 4605. https://doi.org/10.3390/en17184605