Engineered Biochar for Metal Recycling and Repurposed Applications
Abstract
:1. Introduction
2. Preparation and Characterization of Engineered Biochar
2.1. Feedstock Selection
2.2. Thermochemical Conversion Processes for Biochar Production
2.3. Surface Modification and Functionalization Methods
2.4. Characterization Techniques of Biochar Materials
3. Mechanisms of Metal Adsorption on Biochar
3.1. Physical Adsorption
3.2. Chemical Adsorption
3.2.1. Ion Exchange
3.2.2. Complexation
3.2.3. Electrostatic Attraction
3.2.4. Precipitation
3.2.5. Other Mechanisms
4. Factors Influencing Metal Adsorption Capacity of Biochar
4.1. Effect of Biochar Properties on Metal Adsorption
4.1.1. Surface Area and Porosity
4.1.2. Surface Functional Groups
4.2. Effect of Metal Characteristics
4.3. Environmental Conditions
4.3.1. Effect of pH
4.3.2. Effect of Temperature
4.3.3. Effect of Competing Ions
Factors | Description | Impact on Metal Adsorption | Example | Reference |
---|---|---|---|---|
Surface area | Total area available for metal ion binding on the BC surface | A larger surface area increases the number of active sites, enhancing adsorption | Increased surface area from 273.26 to 2372.51 m2/g improved Hg adsorption capacity | [85] |
Porosity | Micropores and mesopores in BC affect the accessibility of adsorption sites | Higher porosity improves accessibility and adsorption capacity | Alkali treatment of BC from Douglas fir enlarged micropores to mesopores, enhancing adsorption The KOH-activated BC effectively adsorbed Cr(VI), Pb(II), and Cd(II) with capacities of 127.2, 140.0, and 29.0 mg/g, respectively | [126] |
Functional groups | The chemical groups on BC that interact with metal ions | Different functional groups enhance interaction with specific metals | Cr(III) immobilized through complexation with the -COOH group of the modified BC | [127] |
Cation exchange capacity (CEC) | BC’s ability to exchange cations with metal ions | Higher CEC improves the BC’s ability to adsorb metal ions | CEC of all BC samples increased by 1.33 to 2.40 times post-modification, enhancing the immobilization efficiency for Cd(II) and Cu(II) | [59] |
Ionic radius | The size of the metal ion affects how easily it can fit into adsorption sites on BC | Smaller ionic radius may enhance adsorption due to better site fit | Cr(III) exhibited higher adsorption efficiency due to its smaller ionic radius (0.0615 nm) compared to Cu(II) (0.073 nm) and Zn(II) (0.074 nm) | [102] |
Charge | The electrical charge of metal ions influencing electrostatic interactions with BC | A higher charge can lead to stronger electrostatic attraction | The crayfish shell BC possessed a higher positive charge, resulting in stronger electrostatic interactions with As | [128] |
Speciation | The chemical form of the metal ion in solution, which affects its interaction with BC | Different species may have varying adsorption efficiencies | The speciation of arsenic significantly influences its removal efficiency; As(V) is more readily adsorbed compared to As(III) due to its greater stability and inertness | [100] |
Oxidation state | The oxidation state of the metal ion, which affects its reactivity and interaction with functional groups on BC | Different oxidation states influence the adsorption mechanisms | Cr(VI) reduction to Cr(III) impacts its adsorption on BC | [113] |
pH of the medium | The acidity or alkalinity of the solution affects the ionization of functional groups and metal speciation | pH changes can enhance or reduce adsorption depending on the metal type | Cationic metals such as Cu2+ increase with higher pH, while Cr(VI) adsorption decreases | [114,115] |
Temperature | The thermal condition of the environment affecting adsorption kinetics and capacity | Increased temperature can enhance or reduce adsorption depending on the process | Higher temperatures improved the adsorption capacity (160 mg/g) of U(VI) by BC | [117] |
Competing ions | The presence of other ions in the solution that can compete with metal ions for adsorption sites | A high concentration of competing ions can decrease metal adsorption | Anions (Cl−, SO42−, PO43−, and NO3−) in wastewater competed with Cr(VI) for adsorption sites, leading to a reduction in adsorption capacity | [127] |
5. Engineered Biochar for the Adsorption of Specific Types of Metals
5.1. Adsorption of Heavy Metals
Biochar Sources | Temperature (°C) | Procedure | Pollutant | Adsorption Capacity (mg/g) | Sorption Mechanism | Reference |
---|---|---|---|---|---|---|
Rice straw | 100–700 | Stepwise pyrolysis, including drying, grinding, and slow pyrolysis under anaerobic conditions. The BC was sonicated to form colloids | Cr(III) | 2.4–14.1 | Physical adsorption due to high specific surface area and functional groups | [136] |
Eupatorium adenophorum | 500 | Mixed with magnesium nitrate and ferric chloride, dried, and then pyrolyzed in an oxygen-free environment | Pb(II) | 252.70 | Precipitation and cation exchange | [137] |
Eupatorium adenophorumj | 500 | Mixed with magnesium nitrate and ferric chloride, dried, and then pyrolyzed in an oxygen-free environment | Cd(II) | 156.60 | Precipitation and cation exchange | [137] |
Sargassum hemiphyllum | 700 | Dried, ground, sieved, pyrolyzed in muffle furnace 10 °C·min−1 | Cu(II) | 75–120 | Physical sorption, ion exchange, surface complexation, surface precipitation, electrostatic interaction, metal–π interaction | [138] |
HFO-BC (BC with Fe(III) and NaOH treatment) | - | Treated with 1 mol/L FeCl3 solution, stirred in 5% NaOH solution, washed, dried | Cd(II), Cu(II) | 29.9, 34.1 | Inner-sphere complexation, migration from solution to adsorbent surface, pore diffusion | [139] |
Sulfonated BC (SBC) | 180 | Carbonization and sulfonation with A. compressus, H2SO4 treatment, washing, and drying | Pb(II), Cd(II) | 191.07, 85.76 | Complexation, ion exchange, electrostatic interaction | [90] |
Nix-MnO2/BC | - | Hybrid BC precursor from CS and RH biomasses pyrolysis; surface-functionalized with Ni-MnO2 nanorods via ultrasonication, hydrothermal treatment, and calcination | Li+ | 89.2 | Physisorption via electrostatic attractive forces; monolayer adsorption according to Langmuir model | [140] |
Magnetic EP BC | 400, 800 | Enteromorpha prolifera biomass (126 g) treated with 120 mL FeCl3 (2 mol/L) solution, stirred at 80 °C for 2 h. Ferric hydroxide-coated biomass separated via centrifugation, dried at 80 °C overnight. Pyrolysis at 400 or 800 °C under N2 with heating rate of 5 °C/min and N2 flow rate of 300 mL/min. Washed with 1 M HCl and distilled water, dried at 80 °C | Cr(VI) | 95.23 | Enhanced adsorption due to increased surface polarity and specific surface; likely includes physical adsorption due to magnetic modification | [141] |
Coffee ground | 650 | SCG/FO mixtures pyrolyzed in a quartz tube furnace with CO2 atmosphere. Mixtures of SCG and FO in mass ratios SCG1/FO0.33, SCG1/FO0.5, SCG1/FO1, and SCG1/FO2. Pyrolysis at 10 °C/min heating rate to 650 °C, held for 60 min, cooled to 25 ± 2 °C | Sb(V), Cd(II), Ni(II) | Sb(V): 7.0 (single mode), 9.3 (multiple mode); Cd(II): 12.7; Ni(II): 16.8 | Ternary complexation on iron oxides surface; competition for adsorption sites in multiple mode reduces Cd(II) and Ni(II) uptake but enhances Sb(V) removal | [142] |
Porous BC | 600 | Corn straw powder soaked in 25% ZnCl2 for 20 h, dried, pyrolyzed at 600 °C for 1.5 h with N2, mixed with Fe(NO3) and Zn(NO3)2, pH adjusted to 11, stirred, red-brown precipitate formed | Ce(IV) | 453.518 | Chemisorption via surface active sites fits quasisecondary kinetic model better; adsorption influenced by temperature and is heat absorbing | [143] |
Palm tree fronds | 650 | Carbonization at 650 °C under inert N2 atmosphere. Oxidation with 8 M HNO3 | Eu3+ | 123 | Reaction equation: Proposed two-step mechanism: Cation exchange of carboxylic protons with Eu3+, followed by complexation of Eu3+ with carboxylate groups | [144] |
Orange peel | 600 | Orange peel cut, washed, oven-dried at 60 °C, heated at 600 °C under oxygen-limited conditions for 2 h, ground and sieved to <0.15 mm | La(III) | 55.57 | High adsorption capacity; mesoporous structure with well-developed porosity and surface functional groups | [145] |
Corn cob | 600 | A mixture of 6.5 g KCl/NaCl (1:1) and 3 g corncob powder was dissolved in 30 mL DI water and soaked for 12 h at 50 °C. In the final hour, 1 g of Na2S, Na2S2O3, Na2SO3, or Na2SO4 was added. The precursors were then filtered, dried at 80 °C for 12 h | Pb(II), Cu(II) | 421.8 for Pb(II), 185 for Cu | Ion exchange, electrostatic interaction, cation–π interaction | [146] |
Apple wood | 700 | - | Cr(VI) | 5 | Electrostatic interactions, ion exchange, complexation | [147] |
Food waste | 300 | Food waste was mixed, oven-dried (105 °C), ground (10-mesh sieve), and stored in a sealed container at room temperature | Cd(II), Pb(II) | Cd 16.86, Pb 12.41 | Surface complexation, cation–π interaction, precipitation, electrostatic interaction | [148] |
Sewage sludge–coconut fiber | 600 | Copyrolysis | Cu(II), Zn(II), Ni(II), Cd(II) | - | Electrostatic interaction, complexation, π–π interaction, H-bond, pore filling, crystal lattices | [149] |
Modified pineapple pulp | 400 | - | Cu(II) | 41.9 | Ion exchange, complexation, electrostatic attraction | [150] |
5.2. Adsorption of Transition Metals
5.3. Adsorption of Rare Earth Metals
6. Recycling and Regeneration of Metal-Loaded Biochar
6.1. Chemical Regeneration Techniques
6.2. Thermochemical Recycling Techniques
6.3. Limitations in Recycling and Environmental Considerations
7. Applications of Metal-Loaded Biochar
7.1. Soil Amendment and Fertilization
7.2. Catalytic Applications
7.2.1. Application for Wastewater Treatment
Raw Materials | Metal Compounds | Process | Remarks | References |
---|---|---|---|---|
Calamus | MoO2-enhanced Fe2+/Fe3+ | Impregnation and followed by pyrolysis, 600 °C | Degradation of tetracycline, 90.9% | [188] |
Rice straw | MoO2-enhanced Fe2+/Fe3+ | Impregnation and followed by pyrolysis, 800 °C | Degradation of BPA, >96% | [191] |
Cherry kernel | CoCl2·6H2O | Impregnation and followed by pyrolysis, 800 °C | Degradation of BPA, ~100% | [186] |
Rice straw | CuCl2·2H2O | Impregnation and followed by pyrolysis, 800 °C | Degradation of ciprofloxacin, ~100% | [180] |
Rice straw | FeCl3·6H2O/LaCl3·7H2O | Pyrolysis, 450 °C | Adsorption of phosphorus, 52 mg P/g | [182] |
Corn stalks | KOH, FeCl3·6H2O | Autoclave at 200 °C, Copyrolysis (800 °C) with KOH and impregnation in FeCl3·6H2O solution | 480.9 mg g−1 of Pb2+adsorption capacity | [193] |
Sewage sludge | Zero valent iron | Copyrolysis 500 °C | 83.4% degradation of sulfamethoxazole | [194] |
Municipal sludge | FeCl3·6H2O | Impregnation and followed by pyrolysis, 400 °C | 99.8% degradation of thiamethoxam | [195] |
7.2.2. Applications for Catalytic Bio-Oil Production
Feedstock for BC | Process for BC Catalyst | Metal Ion Sources | Feedstock for Biofuel | Process for Biofuel | Remarks | References |
---|---|---|---|---|---|---|
Rice husk | Microwave-assisted catalytic pyrolysis, 550 °C | Fe(NO3)3, impregnation and calcined with BC | Corn cob | MW-assisted torrefaction | Increased phenol compounds in bio-oil up to 60% | [200] |
Cellulose powder | Pyrolysis, 600 °C | Ni(NO3)2·6H2O, impregnation and calcined with cellulose powder BC (CPB) | Lignin model compounds | Hydrogenolysis, 140 °C | Increased yield of phenol (12.5%) and cyclohexanol (80.7%) | [199] |
Peanut shell | Microwave-assisted Pyrolysis, 550 °C | FeCl2·4H2O and FeCl3 (1:1 ratio), impregnation and calcined, 450 °C | Peanut shell | Pyrolysis | Total bio-oil 24.3% where 27% aliphatic and 18% aromatic hydrocarbon selectivity | [201] |
Rice husk | Pyrolysis, 700 °C | CaO (30 wt%), impregnation and calcined (700 °C) with rice husk BC | Palm oil | Transesterification reaction, 65 °C | Biodiesel yields up to 93.4% | [209] |
Municipal sludge | Pyrolysis, 800 °C | CaO (20 wt%), impregnation and calcined (700 °C) with the BC | Palm oil | Transesterification reaction, 65 °C | Biodiesel yields up to 93.8% | [207] |
Peanut shell | Pyrolysis, 700 °C | FeCl3·4H2O, MnCl2·4H2O, NaCl; impregnation and calcined with BC | Peanut shell | Pyrolysis, 440–660 °C | 8% phenolic selectivity over Fe3+ | [202] |
Pine tree needles | Impregnation with ZnCl2 (1:1 biomass to ZnCl2 weight ratio) and Pyrolysis, 700 °C | Ni(NO3)2·6H2O, Impregnation and calcined with the modified BC, 500 °C | Pine tree needles | Pyrolysis, 550 °C | Increased the aromatic selectivity to ~36% | [197] |
7.3. Electrochemical Applications
8. Future Research Directions
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef] [PubMed]
- Emenike, E.C.; Iwuozor, K.O.; Anidiobi, S.U. Heavy metal pollution in aquaculture: Sources, impacts and mitigation techniques. Biol. Trace Elem. Res. 2021, 200, 4476–4492. [Google Scholar] [CrossRef] [PubMed]
- Yaashikaa, P.; Kumar, P.S.; Jeevanantham, S.; Saravanan, R. A review on bioremediation approach for heavy metal detoxification and accumulation in plants. Environ. Pollut. 2022, 301, 119035. [Google Scholar] [CrossRef] [PubMed]
- Gaustad, G.; Williams, E.; Leader, A. Rare earth metals from secondary sources: Review of potential supply from waste and byproducts. Resour. Conserv. Recycl. 2021, 167, 105213. [Google Scholar] [CrossRef]
- Duan, C.; Ma, T.; Wang, J.; Zhou, Y. Removal of heavy metals from aqueous solution using carbon-based adsorbents: A review. J. Water Process Eng. 2020, 37, 101339. [Google Scholar] [CrossRef]
- Patra, B.R.; Mukherjee, A.; Nanda, S.; Dalai, A.K. Biochar production, activation and adsorptive applications: A review. Environ. Chem. Lett. 2021, 19, 2237–2259. [Google Scholar] [CrossRef]
- Li, Y.; Gupta, R.; Zhang, Q.; You, S. Review of biochar production via crop residue pyrolysis: Development and perspectives. Bioresour. Technol. 2023, 369, 128423. [Google Scholar] [CrossRef]
- Tan, S.; Zhou, G.; Yang, Q.; Ge, S.; Liu, J.; Cheng, Y.W.; Yek, P.N.Y.; Mahari, W.A.W.; Kong, S.H.; Chang, J.-S. Utilization of current pyrolysis technology to convert biomass and manure waste into biochar for soil remediation: A review. Sci. Total Environ. 2023, 864, 160990. [Google Scholar] [CrossRef]
- Liao, W.; Zhang, X.; Ke, S.; Shao, J.; Yang, H.; Zhang, S.; Chen, H. Effect of different biomass species and pyrolysis temperatures on heavy metal adsorption, stability and economy of biochar. Ind. Crops Prod. 2022, 186, 115238. [Google Scholar] [CrossRef]
- Panwar, N.L.; Pawar, A. Influence of activation conditions on the physicochemical properties of activated biochar: A review. Biomass Convers. Biorefinery 2020, 12, 925–947. [Google Scholar] [CrossRef]
- Anto, S.; Sudhakar, M.; Ahamed, T.S.; Samuel, M.S.; Mathimani, T.; Brindhadevi, K.; Pugazhendhi, A. Activation strategies for biochar to use as an efficient catalyst in various applications. Fuel 2021, 285, 119205. [Google Scholar] [CrossRef]
- Xu, Z.; He, M.; Xu, X.; Cao, X.; Tsang, D.C. Impacts of different activation processes on the carbon stability of biochar for oxidation resistance. Bioresour. Technol. 2021, 338, 125555. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.; Parthasarathy, P.; Mackey, H.R.; Al-Ansari, T.; McKay, G. Food waste biochar: A sustainable solution for agriculture application and soil–water remediation. Carbon Res. 2024, 3, 41. [Google Scholar] [CrossRef]
- Afraz, M.; Muhammad, F.; Nisar, J.; Shah, A.; Munir, S.; Ali, G.; Ahmad, A. Production of value added products from biomass waste by pyrolysis: An updated review. Waste Manag. Bull. 2024, 1, 30–40. [Google Scholar] [CrossRef]
- Islam, M.S.; Kwak, J.-H.; Nzediegwu, C.; Wang, S.; Palansuriya, K.; Kwon, E.E.; Naeth, M.A.; El-Din, M.G.; Ok, Y.S.; Chang, S.X. Biochar heavy metal removal in aqueous solution depends on feedstock type and pyrolysis purging gas. Environ. Pollut. 2021, 281, 117094. [Google Scholar] [CrossRef]
- Hashem, M.A.; Hasan, M.; Momen, M.A.; Payel, S.; Nur-A-Tomal, M.S. Water hyacinth biochar for trivalent chromium adsorption from tannery wastewater. Environ. Sustain. Indic. 2020, 5, 100022. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, R.; Pant, D.; Malaviya, P. Engineered algal biochar for contaminant remediation and electrochemical applications. Sci. Total Environ. 2021, 774, 145676. [Google Scholar] [CrossRef]
- Adeniyi, A.G.; Iwuozor, K.O.; Emenike, E.C.; Ajala, O.J.; Ogunniyi, S.; Muritala, K.B. Thermochemical co-conversion of biomass-plastic waste to biochar: A review. Green Chem. Eng. 2024, 5, 31–49. [Google Scholar] [CrossRef]
- Amalina, F.; Razak, A.S.A.; Krishnan, S.; Sulaiman, H.; Zularisam, A.W.; Nasrullah, M. Biochar production techniques utilizing biomass waste-derived materials and environmental applications—A review. J. Hazard. Mater. Adv. 2022, 7, 100134. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Bio/Technol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Kumar, P.S.; Gayathri, R.; Rathi, B.S. A review on adsorptive separation of toxic metals from aquatic system using biochar produced from agro-waste. Chemosphere 2021, 285, 131438. [Google Scholar] [CrossRef]
- Kumar, M.; Xiong, X.; Wan, Z.; Sun, Y.; Tsang, D.C.W.; Gupta, J.; Gao, B.; Cao, X.; Tang, J.; Ok, Y.S. Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Bioresour. Technol. 2020, 312, 123613. [Google Scholar] [CrossRef] [PubMed]
- Zuhara, S.; Pradhan, S.; McKay, G. Pyrolysis of biosolids with waste cardboard: Effect of operating parameters, feedstock size and blending ratio. Int. J. Environ. Sci. Technol. 2024, 21, 617–630. [Google Scholar] [CrossRef]
- Masud, M.A.A.; Shin, W.S.; Sarker, A.; Septian, A.; Das, K.; Deepo, D.M.; Iqbal, M.A.; Islam, A.R.M.T.; Malafaia, G. A critical review of sustainable application of biochar for green remediation: Research uncertainty and future directions. Sci. Total Environ. 2023, 904, 166813. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, B.; Fang, J.; Zhang, M.; Chen, H.; Zhou, Y.; Creamer, A.E.; Sun, Y.; Yang, L. Characterization and environmental applications of clay–biochar composites. Chem. Eng. J. 2014, 242, 136–143. [Google Scholar] [CrossRef]
- Zhao, L.; Cao, X.; Mašek, O.; Zimmerman, A. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J. Hazard. Mater. 2013, 256–257, 1–9. [Google Scholar] [CrossRef]
- Leng, L.; Xiong, Q.; Yang, L.; Li, H.; Zhou, Y.; Zhang, W.; Jiang, S.; Li, H.; Huang, H. An overview on engineering the surface area and porosity of biochar. Sci. Total Environ. 2021, 763, 144204. [Google Scholar] [CrossRef]
- Chen, Y.-D.; Liu, F.; Ren, N.-Q.; Ho, S.-H. Revolutions in algal biochar for different applications: State-of-the-art techniques and future scenarios. Chin. Chem. Lett. 2020, 31, 2591–2602. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, B.; Yao, Y.; Fang, J.; Zhang, M.; Zhou, Y.; Chen, H.; Yang, L. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem. Eng. J. 2014, 240, 574–578. [Google Scholar] [CrossRef]
- Amalina, F.; Razak, A.S.A.; Krishnan, S.; Zularisam, A.W.; Nasrullah, M. A comprehensive assessment of the method for producing biochar, its characterization, stability, and potential applications in regenerative economic sustainability—A review. Clean. Mater. 2022, 3, 100045. [Google Scholar] [CrossRef]
- Vijayaraghavan, K. Recent advancements in biochar preparation, feedstocks, modification, characterization and future applications. Environ. Technol. Rev. 2019, 8, 47–64. [Google Scholar] [CrossRef]
- Chandra, S.; Bhattacharya, J. Influence of temperature and duration of pyrolysis on the property heterogeneity of rice straw biochar and optimization of pyrolysis conditions for its application in soils. J. Clean. Prod. 2019, 215, 1123–1139. [Google Scholar] [CrossRef]
- Gale, M.; Nguyen, T.; Moreno, M.; Gilliard-AbdulAziz, K.L. Physiochemical Properties of Biochar and Activated Carbon from Biomass Residue: Influence of Process Conditions to Adsorbent Properties. ACS Omega 2021, 6, 10224–10233. [Google Scholar] [CrossRef] [PubMed]
- Jawad, A.H.; Razuan, R.; Appaturi, J.N.; Wilson, L.D. Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus) rind prepared via one-step liquid phase H2SO4 activation. Surf. Interfaces 2019, 16, 76–84. [Google Scholar] [CrossRef]
- Mariyam, S.; Alherbawi, M.; Pradhan, S.; Al-Ansari, T.; McKay, G. Biochar yield prediction using response surface methodology: Effect of fixed carbon and pyrolysis operating conditions. Biomass Convers. Biorefinery 2023, 1–14. [Google Scholar] [CrossRef]
- Pradhan, S.; Abdelaal, A.H.; Mroue, K.; Al-Ansari, T.; Mackey, H.R.; McKay, G. Biochar from vegetable wastes: Agro-environmental characterization. Biochar 2020, 2, 439–453. [Google Scholar] [CrossRef]
- Carolin, C.F.; Kumar, P.S.; Saravanan, A.; Joshiba, G.J.; Naushad, M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng. 2017, 5, 2782–2799. [Google Scholar] [CrossRef]
- Jiang, T.; Wang, B.; Gao, B.; Cheng, N.; Feng, Q.; Chen, M.; Wang, S. Degradation of organic pollutants from water by biochar-assisted advanced oxidation processes: Mechanisms and applications. J. Hazard. Mater. 2023, 442, 130075. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Preparation, modification and environmental application of biochar: A review. J. Clean. Prod. 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- Kazemi Shariat Panahi, H.; Dehhaghi, M.; Ok, Y.S.; Nizami, A.-S.; Khoshnevisan, B.; Mussatto, S.I.; Aghbashlo, M.; Tabatabaei, M.; Lam, S.S. A comprehensive review of engineered biochar: Production, characteristics, and environmental applications. J. Clean. Prod. 2020, 270, 122462. [Google Scholar] [CrossRef]
- Brown, A.E.; Adams, J.M.M.; Grasham, O.R.; Camargo-Valero, M.A.; Ross, A.B. An Assessment of Different Integration Strategies of Hydrothermal Carbonisation and Anaerobic Digestion of Water Hyacinth. Energies 2020, 13, 5983. [Google Scholar] [CrossRef]
- Chen, W.-H.; Hoang, A.T.; Nižetić, S.; Pandey, A.; Cheng, C.K.; Luque, R.; Ong, H.C.; Thomas, S.; Nguyen, X.P. Biomass-derived biochar: From production to application in removing heavy metal-contaminated water. Process Saf. Environ. Prot. 2022, 160, 704–733. [Google Scholar] [CrossRef]
- Ponnusamy, V.K.; Nagappan, S.; Bhosale, R.R.; Lay, C.-H.; Duc Nguyen, D.; Pugazhendhi, A.; Chang, S.W.; Kumar, G. Review on sustainable production of biochar through hydrothermal liquefaction: Physico-chemical properties and applications. Bioresour. Technol. 2020, 310, 123414. [Google Scholar] [CrossRef]
- Sakhiya, A.K.; Anand, A.; Kaushal, P. Production, activation, and applications of biochar in recent times. Biochar 2020, 2, 253–285. [Google Scholar] [CrossRef]
- Hassan, M.; Liu, Y.; Naidu, R.; Parikh, S.J.; Du, J.; Qi, F.; Willett, I.R. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis. Sci. Total Environ. 2020, 744, 140714. [Google Scholar] [CrossRef]
- Medeiros, D.C.C.d.S.; Nzediegwu, C.; Benally, C.; Messele, S.A.; Kwak, J.-H.; Naeth, M.A.; Ok, Y.S.; Chang, S.X.; Gamal El-Din, M. Pristine and engineered biochar for the removal of contaminants co-existing in several types of industrial wastewaters: A critical review. Sci. Total Environ. 2022, 809, 151120. [Google Scholar] [CrossRef]
- Qiu, B.; Shao, Q.; Shi, J.; Yang, C.; Chu, H. Application of biochar for the adsorption of organic pollutants from wastewater: Modification strategies, mechanisms and challenges. Sep. Purif. Technol. 2022, 300, 121925. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Chen, M. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresour. Technol. 2016, 214, 836–851. [Google Scholar] [CrossRef]
- Kim, Y.; Oh, J.-I.; Vithanage, M.; Park, Y.-K.; Lee, J.; Kwon, E.E. Modification of biochar properties using CO2. Chem. Eng. J. 2019, 372, 383–389. [Google Scholar] [CrossRef]
- Wan, S.; Qiu, L.; Tang, G.; Chen, W.; Li, Y.; Gao, B.; He, F. Ultrafast sequestration of cadmium and lead from water by manganese oxide supported on a macro-mesoporous biochar. Chem. Eng. J. 2020, 387, 124095. [Google Scholar] [CrossRef]
- Lyu, H.; Gao, B.; He, F.; Zimmerman, A.R.; Ding, C.; Huang, H.; Tang, J. Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms. Environ. Pollut. 2018, 233, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Cheng, M.; Zeng, G.; Tan, X.; Wu, H.; Liang, J.; Shen, M.; Song, B.; Liu, J.; Yang, H.; et al. Insights into catalytic removal and separation of attached metals from natural-aged microplastics by magnetic biochar activating oxidation process. Water Res. 2020, 179, 115876. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Pi, J.; Zong, M.; Wang, Y.; Li, W.; Liao, Q. Chromium removal using magnetic biochar derived from herb-residue. J. Taiwan Inst. Chem. Eng. 2016, 68, 289–294. [Google Scholar] [CrossRef]
- Wang, S.; Guo, W.; Gao, F.; Wang, Y.; Gao, Y. Lead and uranium sorptive removal from aqueous solution using magnetic and nonmagnetic fast pyrolysis rice husk biochars. RSC Adv. 2018, 8, 13205–13217. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Ma, F.; Tankpa, V.; Bai, S.; Guo, X.; Wang, X. Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: A review. Sci. Total Environ. 2019, 668, 1298–1309. [Google Scholar] [CrossRef]
- Antunes, E.; Jacob, M.V.; Brodie, G.; Schneider, P.A. Silver removal from aqueous solution by biochar produced from biosolids via microwave pyrolysis. J. Environ. Manag. 2017, 203, 264–272. [Google Scholar] [CrossRef]
- Chen, M.; He, F.; Hu, D.; Bao, C.; Huang, Q. Broadened operating pH range for adsorption/reduction of aqueous Cr(VI) using biochar from directly treated jute (Corchorus capsularis L.) fibers by H3PO4. Chem. Eng. J. 2020, 381, 122739. [Google Scholar] [CrossRef]
- Liang, H.; Sun, R.; Song, B.; Sun, Q.; Peng, P.; She, D. Preparation of nitrogen-doped porous carbon material by a hydrothermal-activation two-step method and its high-efficiency adsorption of Cr(VI). J. Hazard. Mater. 2020, 387, 121987. [Google Scholar] [CrossRef]
- Zhang, H.; Shao, J.; Zhang, S.; Zhang, X.; Chen, H. Effect of phosphorus-modified biochars on immobilization of Cu (II), Cd (II), and As (V) in paddy soil. J. Hazard. Mater. 2020, 390, 121349. [Google Scholar] [CrossRef]
- Wang, L.; Bolan, N.S.; Tsang, D.C.W.; Hou, D. Green immobilization of toxic metals using alkaline enhanced rice husk biochar: Effects of pyrolysis temperature and KOH concentration. Sci. Total Environ. 2020, 720, 137584. [Google Scholar] [CrossRef]
- Bian, S.; Xu, S.; Yin, Z.; Liu, S.; Li, J.; Xu, S.; Zhang, Y. An Efficient Strategy for Enhancing the Adsorption Capabilities of Biochar via Sequential KMnO4-Promoted Oxidative Pyrolysis and H2O2 Oxidation. Sustainability 2021, 13, 2641. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, Y.; Yang, Y.; Huang, J.; Zimmerman, A.R.; Chen, H.; Hu, X.; Gao, B. Mechanisms and adsorption capacities of hydrogen peroxide modified ball milled biochar for the removal of methylene blue from aqueous solutions. Bioresour. Technol. 2021, 337, 125432. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Li, J.; Yin, Z.; Liu, S.; Bian, S.; Zhang, Y. A highly efficient strategy for enhancing the adsorptive and magnetic capabilities of biochar using Fenton oxidation. Bioresour. Technol. 2020, 315, 123797. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Wang, B.; Yuan, S.; Wu, X.; Chen, J.; Wang, L. Adsorptive removal of chloramphenicol from wastewater by NaOH modified bamboo charcoal. Bioresour. Technol. 2010, 101, 7661–7664. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, S.; Chen, J. A novel pyro-hydrochar via sequential carbonization of biomass waste: Preparation, characterization and adsorption capacity. J. Clean. Prod. 2018, 176, 187–195. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, Y.; Gao, B.; Chen, R.; Wu, F. Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse. Environ. Sci. Pollut. Res. 2018, 25, 25659–25667. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, F.; Dai, M.; Ali, I.; Shen, X.; Hou, X.; Alhewairini, S.S.; Peng, C.; Naz, I. Application of microbial immobilization technology for remediation of Cr(VI) contamination: A review. Chemosphere 2022, 286, 131721. [Google Scholar] [CrossRef]
- Lin, M.; Li, F.; Li, X.; Rong, X.; Oh, K. Biochar-clay, biochar-microorganism and biochar-enzyme composites for environmental remediation: A review. Environ. Chem. Lett. 2023, 21, 1837–1862. [Google Scholar] [CrossRef]
- Inyang, M.; Gao, B.; Zimmerman, A.; Zhou, Y.; Cao, X. Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars. Environ. Sci. Pollut. Res. 2015, 22, 1868–1876. [Google Scholar] [CrossRef]
- Phiri, Z.; Moja, N.T.; Nkambule, T.T.I.; de Kock, L.-A. Utilization of biochar for remediation of heavy metals in aqueous environments: A review and bibliometric analysis. Heliyon 2024, 10, e25785. [Google Scholar] [CrossRef]
- Tho, P.T.; Van, H.T.; Nguyen, L.H.; Hoang, T.K.; Ha Tran, T.N.; Nguyen, T.T.; Hanh Nguyen, T.B.; Nguyen, V.Q.; Le Sy, H.; Thai, V.N.; et al. Enhanced simultaneous adsorption of As(iii), Cd(ii), Pb(ii) and Cr(vi) ions from aqueous solution using cassava root husk-derived biochar loaded with ZnO nanoparticles. RSC Adv. 2021, 11, 18881–18897. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.K.; Chaurasia, B.; Dubey, A.; Faneite Noguera, A.M.; Gupta, A.; Kothari, R.; Upadhyaya, C.P.; Kumar, A.; Hashem, A.; Alqarawi, A.A.; et al. Biological Characterization and Instrumental Analytical Comparison of Two Biorefining Pretreatments for Water Hyacinth (Eichhornia crassipes) Biomass Hydrolysis. Sustainability 2021, 13, 245. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Varjani, S.; Saravanan, A. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnol. Rep. 2020, 28, e00570. [Google Scholar] [CrossRef]
- Waqas, M.; Aburiazaiza, A.S.; Miandad, R.; Rehan, M.; Barakat, M.A.; Nizami, A.S. Development of biochar as fuel and catalyst in energy recovery technologies. J. Clean. Prod. 2018, 188, 477–488. [Google Scholar] [CrossRef]
- Chen, S.; Qin, C.; Wang, T.; Chen, F.; Li, X.; Hou, H.; Zhou, M. Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar: Adsorption capacity, isotherm, kinetic, thermodynamics and mechanism. J. Mol. Liq. 2019, 285, 62–74. [Google Scholar] [CrossRef]
- Labiadh, L.; Kamali, A.R. Textural, structural and morphological evolution of mesoporous 3D graphene saturated with methyl orange dye during thermal regeneration. Diam. Relat. Mater. 2020, 103, 107698. [Google Scholar] [CrossRef]
- Santoso, E.; Ediati, R.; Kusumawati, Y.; Bahruji, H.; Sulistiono, D.O.; Prasetyoko, D. Review on recent advances of carbon based adsorbent for methylene blue removal from waste water. Mater. Today Chem. 2020, 16, 100233. [Google Scholar] [CrossRef]
- Hamzah, N.; Tokimatsu, K.; Yoshikawa, K. Solid Fuel from Oil Palm Biomass Residues and Municipal Solid Waste by Hydrothermal Treatment for Electrical Power Generation in Malaysia: A Review. Sustainability 2019, 11, 1060. [Google Scholar] [CrossRef]
- Sun, Y.; Xiong, X.; He, M.; Xu, Z.; Hou, D.; Zhang, W.; Ok, Y.S.; Rinklebe, J.; Wang, L.; Tsang, D.C.W. Roles of biochar-derived dissolved organic matter in soil amendment and environmental remediation: A critical review. Chem. Eng. J. 2021, 424, 130387. [Google Scholar] [CrossRef]
- Chiappero, M.; Norouzi, O.; Hu, M.; Demichelis, F.; Berruti, F.; Di Maria, F.; Mašek, O.; Fiore, S. Review of biochar role as additive in anaerobic digestion processes. Renew. Sustain. Energy Rev. 2020, 131, 110037. [Google Scholar] [CrossRef]
- Świechowski, K.; Rasaq, W.A.; Stegenta-Dąbrowska, S.; Białowiec, A. Characterization of Engineered Biochar: Proximate Analyses, Ultimate Analyses, Physicochemical Analyses, Surface Analyses, and Molecular Analyses. In Engineered Biochar: Fundamentals, Preparation, Characterization and Applications; Ramola, S., Mohan, D., Masek, O., Méndez, A., Tsubota, T., Eds.; Springer Nature: Singapore, 2022; pp. 127–148. [Google Scholar]
- Liu, M.; Almatrafi, E.; Zhang, Y.; Xu, P.; Song, B.; Zhou, C.; Zeng, G.; Zhu, Y. A critical review of biochar-based materials for the remediation of heavy metal contaminated environment: Applications and practical evaluations. Sci. Total Environ. 2022, 806, 150531. [Google Scholar] [CrossRef] [PubMed]
- Agboola, O.D.; Benson, N.U. Physisorption and chemisorption mechanisms influencing micro (nano) plastics-organic chemical contaminants interactions: A review. Front. Environ. Sci. 2021, 9, 678574. [Google Scholar] [CrossRef]
- Heinrich, P.; Hanslik, L.; Kämmer, N.; Braunbeck, T. The tox is in the detail: Technical fundamentals for designing, performing, and interpreting experiments on toxicity of microplastics and associated substances. Environ. Sci. Pollut. Res. 2020, 27, 22292–22318. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhen, F.; Zhang, Q.; Qian, X.; Li, W.; Sun, Y.; Zhang, L.; Qu, B. Nanoporous biochar with high specific surface area based on rice straw digestion residue for efficient adsorption of mercury ion from water. Bioresour. Technol. 2022, 359, 127471. [Google Scholar] [CrossRef]
- Ambaye, T.; Vaccari, M.; van Hullebusch, E.D.; Amrane, A.; Rtimi, S. Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. Int. J. Environ. Sci. Technol. 2021, 18, 3273–3294. [Google Scholar] [CrossRef]
- Wu, J.; Wang, T.; Wang, J.; Zhang, Y.; Pan, W.-P. A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity. Sci. Total Environ. 2021, 754, 142150. [Google Scholar] [CrossRef]
- Almanassra, I.W.; Chatla, A.; Zakaria, Y.; Kochkodan, V.; Shanableh, A.; Laoui, T.; Atieh, M.A. Palm leaves based biochar: Advanced material characterization and heavy metal adsorption study. Biomass Convers. Biorefinery 2024, 14, 14811–14830. [Google Scholar] [CrossRef]
- Ye, Q.; Li, Q.; Li, X. Removal of heavy metals from wastewater using biochars: Adsorption and mechanisms. Environ. Pollut. Bioavailab. 2022, 34, 385–394. [Google Scholar] [CrossRef]
- Yu, W.; Hu, J.; Yu, Y.; Ma, D.; Gong, W.; Qiu, H.; Hu, Z.; Gao, H.-w. Facile preparation of sulfonated biochar for highly efficient removal of toxic Pb(II) and Cd(II) from wastewater. Sci. Total Environ. 2021, 750, 141545. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Q.; Xia, H.; Liu, R.; Zhang, Y. Enhanced complexation and electrostatic attraction through fabrication of amino- or hydroxyl-functionalized Fe/Ni-biochar composite for the adsorption of Pb(II) and Cd(II). Sep. Purif. Technol. 2024, 328, 125074. [Google Scholar] [CrossRef]
- Chen, C.-K.; Chen, J.-J.; Nguyen, N.-T.; Le, T.-T.; Nguyen, N.-C.; Chang, C.-T. Specifically designed magnetic biochar from waste wood for arsenic removal. Sustain. Environ. Res. 2021, 31, 29. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Li, Y.; Chen, Y.; Wu, Y.; Li, H.; Wang, S.; Peng, Z.; Xu, R.; Zeng, Z. Novel magnetic pomelo peel biochar for enhancing pb(ii) and cu(ii) adsorption: Performance and mechanism. Water Air Soil Pollut. 2020, 231, 404. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Ouyang, X.F.; Dang, Z.; Yin, H. Acetate anions intercalated Fe/Mg-layered double hydroxides modified biochar for efficient adsorption of anionic and cationic heavy metal ions from polluted water. Chemosphere 2024, 362, 142652. [Google Scholar] [CrossRef]
- Vijayaraghavan, K. The importance of mineral ingredients in biochar production, properties and applications. Crit. Rev. Environ. Sci. Technol. 2021, 51, 113–139. [Google Scholar] [CrossRef]
- Frolova, L.; Kharytonov, M.; Klimkina, I.; Kovrov, O.; Koveria, A. Investigation of the adsorption of ions chromium by mean biochar from coniferous trees. Appl. Nanosci. 2022, 12, 1123–1129. [Google Scholar] [CrossRef]
- Li, A.Y.; Deng, H.; Jiang, Y.H.; Ye, C.H.; Yu, B.G.; Zhou, X.L.; Ma, A.Y. Superefficient removal of heavy metals from wastewater by Mg-loaded biochars: Adsorption characteristics and removal mechanisms. Langmuir 2020, 36, 9160–9174. [Google Scholar] [CrossRef]
- Guo, X.; Liu, A.; Lu, J.; Niu, X.; Jiang, M.; Ma, Y.; Liu, X.; Li, M. Adsorption mechanism of hexavalent chromium on biochar: Kinetic, thermodynamic, and characterization studies. ACS Omega 2020, 5, 27323–27331. [Google Scholar] [CrossRef]
- Liu, X.; Li, G.; Chen, C.; Zhang, X.; Zhou, K.; Long, X. Banana stem and leaf biochar as an effective adsorbent for cadmium and lead in aqueous solution. Sci. Rep. 2022, 12, 1584. [Google Scholar] [CrossRef]
- Wang, Y.-P.; Liu, Y.-L.; Tian, S.-Q.; Yang, J.-J.; Wang, L.; Ma, J. Straw biochar enhanced removal of heavy metal by ferrate. J. Hazard. Mater. 2021, 416, 126128. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Wang, L.; Li, H.; Westholm, L.J.; Carvalho, L.; Thorin, E.; Yu, Z.; Yu, X.; Skreiberg, Ø. A critical review on production, modification and utilization of biochar. J. Anal. Appl. Pyrolysis 2022, 161, 105405. [Google Scholar] [CrossRef]
- Xie, J.; Lin, R.; Liang, Z.; Zhao, Z.; Yang, C.; Cui, F. Effect of cations on the enhanced adsorption of cationic dye in Fe3O4-loaded biochar and mechanism. J. Environ. Chem. Eng. 2021, 9, 105744. [Google Scholar] [CrossRef]
- Tan, Z.; Yuan, S.; Hong, M.; Zhang, L.; Huang, Q. Mechanism of negative surface charge formation on biochar and its effect on the fixation of soil Cd. J. Hazard. Mater. 2020, 384, 121370. [Google Scholar] [CrossRef] [PubMed]
- Chacón, F.J.; Sánchez-Monedero, M.A.; Lezama, L.; Cayuela, M.L. Enhancing biochar redox properties through feedstock selection, metal preloading and post-pyrolysis treatments. Chem. Eng. J. 2020, 395, 125100. [Google Scholar] [CrossRef]
- Tan, X.-F.; Zhu, S.-S.; Wang, R.-P.; Chen, Y.-D.; Show, P.-L.; Zhang, F.-F.; Ho, S.-H. Role of biochar surface characteristics in the adsorption of aromatic compounds: Pore structure and functional groups. Chin. Chem. Lett. 2021, 32, 2939–2946. [Google Scholar] [CrossRef]
- Dinh, V.C.; Hou, C.-H.; Dao, T.N. O, N-doped porous biochar by air oxidation for enhancing heavy metal removal: The role of O, N functional groups. Chemosphere 2022, 293, 133622. [Google Scholar] [CrossRef]
- Meng, X.; Hu, R. Nitrogen/phosphorus enriched biochar with enhanced porosity activated by guanidine phosphate for efficient passivation of Pb(II), Cu(II) and Cd(II). J. Mol. Liq. 2021, 323, 115071. [Google Scholar] [CrossRef]
- Zeng, B.; Xu, W.; Khan, S.B.; Wang, Y.; Zhang, J.; Yang, J.; Su, X.; Lin, Z. Preparation of sludge biochar rich in carboxyl/hydroxyl groups by quenching process and its excellent adsorption performance for Cr(VI). Chemosphere 2021, 285, 131439. [Google Scholar] [CrossRef]
- Pan, J.; Deng, H.; Du, Z.; Tian, K.; Zhang, J. Design of nitrogen-phosphorus-doped biochar and its lead adsorption performance. Environ. Sci. Pollut. Res. 2022, 29, 28984–28994. [Google Scholar] [CrossRef]
- Huang, H.; Wang, Y.; Zhang, Y.; Niu, Z.; Li, X. Amino-functionalized graphene oxide for Cr(VI), Cu(II), Pb(II) and Cd(II) removal from industrial wastewater. Open Chem. 2020, 18, 97–107. [Google Scholar] [CrossRef]
- Deng, R.; Huang, D.; Wan, J.; Xue, W.; Lei, L.; Wen, X.; Liu, X.; Chen, S.; Yang, Y.; Li, Z.; et al. Chloro-phosphate impregnated biochar prepared by co-precipitation for the lead, cadmium and copper synergic scavenging from aqueous solution. Bioresour. Technol. 2019, 293, 122102. [Google Scholar] [CrossRef]
- Li, H.; Dong, X.; da Silva, E.B.; de Oliveira, L.M.; Chen, Y.; Ma, L.Q. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhang, Q.; Gao, B.; Li, M.; Fan, Z.; Sang, W.; Hao, H.; Wei, X. Removal mechanisms of Cr(VI) and Cr(III) by biochar supported nanosized zero-valent iron: Synergy of adsorption, reduction and transformation. Environ. Pollut. 2020, 265, 115018. [Google Scholar] [CrossRef]
- Biswal, B.K.; Balasubramanian, R. Use of biochar as a low-cost adsorbent for removal of heavy metals from water and wastewater: A review. J. Environ. Chem. Eng. 2023, 11, 110986. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, X.; Yuan, X.; Xie, R.; Han, L. Characteristics, adsorption behaviors, Cu(II) adsorption mechanisms by cow manure biochar derived at various pyrolysis temperatures. Bioresour. Technol. 2021, 331, 125013. [Google Scholar] [CrossRef] [PubMed]
- Paredes-Quevedo, L.C.; González-Caicedo, C.; Torres-Luna, J.A.; Carriazo, J.G. Removal of a Textile Azo-Dye (Basic Red 46) in Water by Efficient Adsorption on a Natural Clay. Water Air Soil Pollut. 2021, 232, 4. [Google Scholar] [CrossRef]
- Xu, Z.; Xing, Y.; Ren, A.; Ma, D.; Li, Y.; Hu, S. Study on adsorption properties of water hyacinth-derived biochar for uranium (VI). J. Radioanal. Nucl. Chem. 2020, 324, 1317–1327. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, T.; Zhang, H.; Liu, Y.; Xing, B. Adsorption of Pb(II) and Cd(II) by magnetic activated carbon and its mechanism. Sci. Total Environ. 2021, 757, 143910. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, X.; Zhang, M.; Liu, L.; Xu, X.; Xian, J.; Cheng, Z. Effect of temperature and duration of pyrolysis on spent tea leaves biochar: Physiochemical properties and Cd(II) adsorption capacity. Water Sci. Technol. 2020, 81, 2533–2544. [Google Scholar] [CrossRef]
- Budnyak, T.M.; Błachnio, M.; Slabon, A.; Jaworski, A.; Tertykh, V.A.; Deryło-Marczewska, A.; Marczewski, A.W. Chitosan deposited onto fumed silica surface as sustainable hybrid biosorbent for Acid Orange 8 dye capture: Effect of temperature in adsorption equilibrium and kinetics. J. Phys. Chem. C 2020, 124, 15312–15323. [Google Scholar] [CrossRef]
- Harsha Vardhan, K.; Kumar, P.S.; Panda, R.C. Adsorption of copper ions from polluted water using biochar derived from waste renewable resources: Static and dynamic analysis. Int. J. Environ. Anal. Chem. 2022, 102, 4067–4088. [Google Scholar] [CrossRef]
- Singh, S.; Anil, A.G.; Naik, T.S.; Basavaraju, U.; Khasnabis, S.; Nath, B.; Kumar, V.; Subramanian, S.; Singh, J.; Ramamurthy, P.C. Mechanism and kinetics of Cr(VI) adsorption on biochar derived from Citrobacter freundii under different pyrolysis temperatures. J. Water Process Eng. 2022, 47, 102723. [Google Scholar] [CrossRef]
- Yang, H.I.; Lou, K.; Rajapaksha, A.U.; Ok, Y.S.; Anyia, A.O.; Chang, S.X. Adsorption of ammonium in aqueous solutions by pine sawdust and wheat straw biochars. Environ. Sci. Pollut. Res. 2018, 25, 25638–25647. [Google Scholar] [CrossRef]
- Zhang, M.; Song, G.; Gelardi, D.L.; Huang, L.; Khan, E.; Mašek, O.; Parikh, S.J.; Ok, Y.S. Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water. Water Res. 2020, 186, 116303. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Y.; Deng, J.; Zhou, Y.; Yuan, S. Study on the influence mechanism of mineral components in biochar on the adsorption of Cr(VI). Fuel 2023, 340, 127631. [Google Scholar] [CrossRef]
- Herath, A.; Layne, C.A.; Perez, F.; Hassan, E.I.B.; Pittman, C.U.; Mlsna, T.E. KOH-activated high surface area Douglas Fir biochar for adsorbing aqueous Cr(VI), Pb(II) and Cd(II). Chemosphere 2021, 269, 128409. [Google Scholar] [CrossRef] [PubMed]
- Guo, N.; Lv, X.; Yang, Q.; Xu, X.; Song, H. Effective removal of hexavalent chromium from aqueous solution by ZnCl2 modified biochar: Effects and response sequence of the functional groups. J. Mol. Liq. 2021, 334, 116149. [Google Scholar] [CrossRef]
- Sun, T.; Pei, P.; Sun, Y.; Xu, Y.; Jia, H. Performance and mechanism of As(III/V) removal from aqueous solution by novel positively charged animal-derived biochar. Sep. Purif. Technol. 2022, 290, 120836. [Google Scholar] [CrossRef]
- Edo, G.I.; Samuel, P.O.; Oloni, G.O.; Ezekiel, G.O.; Ikpekoro, V.O.; Obasohan, P.; Ongulu, J.; Otunuya, C.F.; Opiti, A.R.; Ajakaye, R.S.; et al. Environmental persistence, bioaccumulation, and ecotoxicology of heavy metals. Chem. Ecol. 2024, 40, 322–349. [Google Scholar] [CrossRef]
- Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. npj Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Alsawy, T.; Rashad, E.; El-Qelish, M.; Mohammed, R.H. A comprehensive review on the chemical regeneration of biochar adsorbent for sustainable wastewater treatment. npj Clean Water 2022, 5, 29. [Google Scholar] [CrossRef]
- Zhang, R.-H.; Xie, Y.; Zhou, G.; Li, Z.; Ye, A.; Huang, X.; Xie, Y.; Shi, L.; Cao, X.; Zhang, J.; et al. The effects of short-term, long-term, and reapplication of biochar on the remediation of heavy metal-contaminated soil. Ecotoxicol. Environ. Saf. 2022, 248, 114316. [Google Scholar] [CrossRef] [PubMed]
- Burachevskaya, M.; Minkina, T.; Bauer, T.; Lobzenko, I.; Fedorenko, A.; Mazarji, M.; Sushkova, S.; Mandzhieva, S.; Nazarenko, A.; Butova, V.; et al. Fabrication of biochar derived from different types of feedstocks as an efficient adsorbent for soil heavy metal removal. Sci. Rep. 2023, 13, 2020. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, K.; Wang, X.; Zhao, Q.; Jiang, J.; Jiang, M. Effect of different production methods on physicochemical properties and adsorption capacities of biochar from sewage sludge and kitchen waste: Mechanism and correlation analysis. J. Hazard. Mater. 2024, 461, 132690. [Google Scholar] [CrossRef] [PubMed]
- Singh, E.; Kumar, A.; Mishra, R.; You, S.; Singh, L.; Kumar, S.; Kumar, R. Pyrolysis of waste biomass and plastics for production of biochar and its use for removal of heavy metals from aqueous solution. Bioresour. Technol. 2021, 320, 124278. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Zhang, W.; Yan, J.; Han, L.; Chen, Y.; Ouyang, D.; Chen, M. Nanoscale zero-valent iron supported by biochars produced at different temperatures: Synthesis mechanism and effect on Cr(VI) removal. Environ. Pollut. 2017, 223, 153–160. [Google Scholar] [CrossRef]
- Cheng, S.; Meng, W.; Xing, B.; Shi, C.; Wang, Q.; Xia, D.; Nie, Y.; Yi, G.; Zhang, C.; Xia, H. Efficient removal of heavy metals from aqueous solutions by Mg/Fe bimetallic oxide-modified biochar: Experiments and DFT investigations. J. Clean. Prod. 2023, 403, 136821. [Google Scholar] [CrossRef]
- Truong, Q.-M.; Nguyen, T.-B.; Chen, W.-H.; Chen, C.-W.; Patel, A.K.; Bui, X.-T.; Singhania, R.R.; Dong, C.-D. Removal of heavy metals from aqueous solutions by high performance capacitive deionization process using biochar derived from Sargassum hemiphyllum. Bioresour. Technol. 2023, 370, 128524. [Google Scholar] [CrossRef]
- Li, Y.; Gao, L.; Lu, Z.; Wang, Y.; Wang, Y.; Wan, S. Enhanced Removal of Heavy Metals from Water by Hydrous Ferric Oxide-Modified Biochar. ACS Omega 2020, 5, 28702–28711. [Google Scholar] [CrossRef]
- Kamran, U.; Park, S.-J. Hybrid biochar supported transition metal doped MnO2 composites: Efficient contenders for lithium adsorption and recovery from aqueous solutions. Desalination 2022, 522, 115387. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Q.; Chen, J.; Yang, J.; Zhang, Y.; Chen, Y.; Li, X.; Du, W.; Liang, A.; Ho, S.-H.; et al. Adsorption behavior of Cr(VI) by magnetically modified Enteromorpha prolifera based biochar and the toxicity analysis. J. Hazard. Mater. 2020, 395, 122658. [Google Scholar] [CrossRef]
- Cho, D.-W.; Chon, C.-M.; Yim, G.-J.; Ryu, J.; Jo, H.; Kim, S.-J.; Jang, J.-Y.; Song, H. Adsorption of potentially harmful elements by metal-biochar prepared via Co-pyrolysis of coffee grounds and Nano Fe(III) oxides. Chemosphere 2023, 319, 136536. [Google Scholar] [CrossRef]
- Han, J.; Song, Y.; Li, H.; Wang, Y.; Zhang, L.; Sun, P.; Fan, J.; Li, Y. Preparation of novel magnetic porous biochar and its adsorption mechanism on cerium in rare earth wastewater. Ceram. Int. 2023, 49, 9901–9908. [Google Scholar] [CrossRef]
- Georgiou, E.; Ioannidis, I.; Pashalidis, I.; Viet, D.D.; Tsubota, T.; Kalderis, D. Europium removal from aqueous solutions by oxidized biochar prepared from waste palm tree fronds. Sustain. Chem. Environ. 2023, 4, 100040. [Google Scholar] [CrossRef]
- Liu, L.; Feng, B.; Rao, Y.Z.; Tian, C.S.; Gu, Q.X.; Huang, T.; Iqhrammullah, M. Development of Efficient Biochar Produced from Orange Peel for Effective La(III) and Y(III) Adsorption. Adsorpt. Sci. Technol. 2023, 2023, 5519783. [Google Scholar] [CrossRef]
- Yin, M.; Bai, X.; Wu, D.; Li, F.; Jiang, K.; Ma, N.; Chen, Z.; Zhang, X.; Fang, L. Sulfur-functional group tunning on biochar through sodium thiosulfate modified molten salt process for efficient heavy metal adsorption. Chem. Eng. J. 2022, 433, 134441. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, Y.; Xu, C.; Liu, P.; Lv, J.; Liu, Y.; Wang, Q. Removal mechanisms of aqueous Cr(VI) using apple wood biochar: A spectroscopic study. J. Hazard. Mater. 2020, 384, 121371. [Google Scholar] [CrossRef]
- Xing, Y.; Luo, X.; Liu, S.; Wan, W.; Huang, Q.; Chen, W. A novel eco-friendly recycling of food waste for preparing biofilm-attached biochar to remove Cd and Pb in wastewater. J. Clean. Prod. 2021, 311, 127514. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, X.; Zhang, J.; Ma, X.; Sun, P.; Zhao, L. Sewage sludge–coconut fiber co-pyrolysis biochar: Mechanisms underlying synergistic heavy metal stabilization and ciprofloxacin adsorption. J. Clean. Prod. 2022, 375, 134149. [Google Scholar] [CrossRef]
- Charnkeitkong, P.; Sripiboon, S. Effects of Cupric Ion Adsorption onto the Modified Pineapple Pulp as a Biochar Adsorbent. Key Eng. Mater. 2024, 974, 57–62. [Google Scholar] [CrossRef]
- Jomova, K.; Makova, M.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Rhodes, C.J.; Valko, M. Essential metals in health and disease. Chem.-Biol. Interact. 2022, 367, 110173. [Google Scholar] [CrossRef]
- Gupta, S.; Sireesha, S.; Sreedhar, I.; Patel, C.M.; Anitha, K.L. Latest trends in heavy metal removal from wastewater by biochar based sorbents. J. Water Process Eng. 2020, 38, 101561. [Google Scholar] [CrossRef]
- Sigdel, A.; Park, J.; Kwak, H.; Park, P.K. Arsenic removal from aqueous solutions by adsorption onto hydrous iron oxide-impregnated alginate beads. J. Ind. Eng. Chem. 2016, 35, 277–286. [Google Scholar] [CrossRef]
- Talan, D.; Huang, Q. A review of environmental aspect of rare earth element extraction processes and solution purification techniques. Miner. Eng. 2022, 179, 107430. [Google Scholar] [CrossRef]
- Liu, W.-S.; Chen, Y.-Y.; Huot, H.; Liu, C.; Guo, M.-N.; Qiu, R.-L.; Morel, J.L.; Tang, Y.-T. Phytoextraction of rare earth elements from ion-adsorption mine tailings by Phytolacca americana: Effects of organic material and biochar amendment. J. Clean. Prod. 2020, 275, 122959. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, W.; Weng, X.; Chen, Z.; Owens, G.; Chen, Z. Highly selective recovery of rare earth elements from mining wastewater using phyto-synthesized biochar dispersed iron nanoparticles. Sep. Purif. Technol. 2025, 353, 128491. [Google Scholar] [CrossRef]
- Adebayo, O.; LaDouceur, R.; Nasrullah, Z. Process Intensification for Rare Earth Elements Adsorption by Resonant Vibratory Mixing. Grad. Theses Non-Theses 2024, 320. [Google Scholar]
- Ifthikar, J.; Jiao, X.; Ngambia, A.; Wang, T.; Khan, A.; Jawad, A.; Xue, Q.; Liu, L.; Chen, Z. Facile One-Pot Synthesis of Sustainable Carboxymethyl Chitosan—Sewage Sludge Biochar for Effective Heavy Metal Chelation and Regeneration. Bioresour. Technol. 2018, 262, 22–31. [Google Scholar] [CrossRef]
- Fseha, Y.H.; Sizirici, B.; Yildiz, I.; Yavuz, C. Pristine biochar performance investigation to remove metals in primary and secondary treated municipal wastewater for groundwater recharge application. PLoS ONE 2022, 17, e0278315. [Google Scholar] [CrossRef]
- Wang, S.; Tang, Y.; Chen, C.; Wu, J.; Huang, Z.; Mo, Y.; Zhang, K.; Chen, J. Regeneration of magnetic biochar derived from eucalyptus leaf residue for lead(II) removal. Bioresour. Technol. 2015, 186, 360–364. [Google Scholar] [CrossRef]
- Poonam; Bharti, S.K.; Kumar, N. Kinetic study of lead (Pb2+) removal from battery manufacturing wastewater using bagasse biochar as biosorbent. Appl. Water Sci. 2018, 8, 119. [Google Scholar] [CrossRef]
- Alqadami, A.A.; Khan, M.A.; Otero, M.; Siddiqui, M.R.; Jeon, B.-H.; Batoo, K.M. A magnetic nanocomposite produced from camel bones for an efficient adsorption of toxic metals from water. J. Clean. Prod. 2018, 178, 293–304. [Google Scholar] [CrossRef]
- Gan, C.; Liu, Y.; Tan, X.; Wang, S.; Zeng, G.; Zheng, B.; Li, T.; Jiang, Z.; Liu, W. Effect of porous zinc–biochar nanocomposites on Cr(vi) adsorption from aqueous solution. RSC Adv. 2015, 5, 35107–35115. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, Y.; Zheng, B.; Cai, X. Competitive removal of Cd(ii) and Pb(ii) by biochars produced from water hyacinths: Performance and mechanism. RSC Adv. 2016, 6, 5223–5232. [Google Scholar] [CrossRef]
- Cui, X.; Wang, J.; Wang, X.; Du, G.; Khan, K.Y.; Yan, B.; Cheng, Z.; Chen, G. Pyrolysis of exhausted hydrochar sorbent for cadmium separation and biochar regeneration. Chemosphere 2022, 306, 135546. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Cui, P.; Liu, C.; Fang, G.; Huang, M.; Wang, Q.; Zhou, Y.; Hou, H.; Wang, Y. In situ stabilization of the adsorbed Co2+ and Ni2+ in rice straw biochar based on LDH and its reutilization in the activation of peroxymonosulfate. J. Hazard. Mater. 2021, 416, 126215. [Google Scholar] [CrossRef]
- Pan, J.; Gao, B.; Duan, P.; Guo, K.; Xu, X.; Yue, Q. Recycling exhausted magnetic biochar with adsorbed Cu2+ as a cost-effective permonosulfate activator for norfloxacin degradation: Cu contribution and mechanism. J. Hazard. Mater. 2021, 413, 125413. [Google Scholar] [CrossRef]
- Chen, Z.; Zheng, R.; Wei, W.; Wei, W.; Zou, W.; Li, J.; Ni, B.-J.; Chen, H. Recycling spent water treatment adsorbents for efficient electrocatalytic water oxidation reaction. Resour. Conserv. Recycl. 2022, 178, 106037. [Google Scholar] [CrossRef]
- Mer, K.; Sajjadi, B.; Egiebor, N.O.; Chen, W.-Y.; Mattern, D.L.; Tao, W. Enhanced degradation of organic contaminants using catalytic activity of carbonaceous structures: A strategy for the reuse of exhausted sorbents. J. Environ. Sci. 2021, 99, 267–273. [Google Scholar] [CrossRef]
- Zubrik, A.; Matik, M.; Mačingová, E.; Danková, Z.; Jáger, D.; Briančin, J.; Machala, L.; Pechoušek, J.; Hredzák, S. The use of microwave irradiation for preparation and fast-acting regeneration of magnetic biochars. Chem. Eng. Process.-Process Intensif. 2022, 178, 109016. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Z.; Yan, Y.; Zhou, Y.; Huma, B.; Tan, Z.; Zhou, T. Recovery and regeneration of water-hardened magnetic composite biochar sphere for the removal of multiple heavy metals in contaminated soils. J. Clean. Prod. 2024, 450, 141906. [Google Scholar] [CrossRef]
- Dai, Y.; Zheng, H.; Jiang, Z.; Xing, B. Combined effects of biochar properties and soil conditions on plant growth: A meta-analysis. Sci. Total Environ. 2020, 713, 136635. [Google Scholar] [CrossRef]
- Murtaza, G.; Ahmed, Z.; Eldin, S.M.; Ali, B.; Bawazeer, S.; Usman, M.; Iqbal, R.; Neupane, D.; Ullah, A.; Khan, A. Biochar-Soil-Plant interactions: A cross talk for sustainable agriculture under changing climate. Front. Environ. Sci. 2023, 11, 1059449. [Google Scholar] [CrossRef]
- Jiang, L.; Yi, X.; Xu, B.; Lai, K. Effect of wheat straw derived biochar on immobilization of Cd and Pb in single- and binary-metal contaminated soil. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 2420–2433. [Google Scholar] [CrossRef]
- Carneiro, J.S.d.S.; Leite, D.A.d.C.; Castro, G.M.d.; Franca, J.R.; Botelho, L.; Soares, J.R.; Oliveira, J.E.d.; Melo, L.C.A. Biochar-graphene oxide composite is efficient to adsorb and deliver copper and zinc in tropical soil. J. Clean. Prod. 2022, 360, 132170. [Google Scholar] [CrossRef]
- Hou, J.; Pugazhendhi, A.; Sindhu, R.; Vinayak, V.; Thanh, N.C.; Brindhadevi, K.; Chi, N.T.L.; Yuan, D. An assessment of biochar as a potential amendment to enhance plant nutrient uptake. Environ. Res. 2022, 214, 113909. [Google Scholar] [CrossRef]
- Singh Yadav, S.P.; Bhandari, S.; Bhatta, D.; Poudel, A.; Bhattarai, S.; Yadav, P.; Ghimire, N.; Paudel, P.; Paudel, P.; Shrestha, J.; et al. Biochar application: A sustainable approach to improve soil health. J. Agric. Food Res. 2023, 11, 100498. [Google Scholar] [CrossRef]
- Yameen, M.Z.; Naqvi, S.R.; Juchelková, D.; Khan, M.N.A. Harnessing the power of functionalized biochar: Progress, challenges, and future perspectives in energy, water treatment, and environmental sustainability. Biochar 2024, 6, 25. [Google Scholar] [CrossRef]
- Zeghioud, H.; Fryda, L.; Djelal, H.; Assadi, A.; Kane, A. A comprehensive review of biochar in removal of organic pollutants from wastewater: Characterization, toxicity, activation/functionalization and influencing treatment factors. J. Water Process Eng. 2022, 47, 102801. [Google Scholar] [CrossRef]
- Guo, T.; Yang, Q.; Qiu, R.; Gao, J.; Shi, J.; Lei, X.; Zhao, Z. Efficient Degradation of Ciprofloxacin in Water over Copper-Loaded Biochar Using an Enhanced Non-Radical Pathway. Molecules 2023, 28, 8094. [Google Scholar] [CrossRef]
- Ji, J.; Aleisa, R.M.; Duan, H.; Zhang, J.; Yin, Y.; Xing, M. Metallic active sites on MoO2 (110) surface to catalyze advanced oxidation processes for efficient pollutant removal. Iscience 2020, 23, 100861. [Google Scholar] [CrossRef]
- Sun, E.; Zhang, Y.; Xiao, Q.; Li, H.; Qu, P.; Yong, C.; Wang, B.; Feng, Y.; Huang, H.; Yang, L.; et al. Formable porous biochar loaded with La-Fe(hydr)oxides/montmorillonite for efficient removal of phosphorus in wastewater: Process and mechanisms. Biochar 2022, 4, 53. [Google Scholar] [CrossRef]
- Wang, B.-S.; Cao, J.-P.; Zhao, X.-Y.; Bian, Y.; Song, C.; Zhao, Y.-P.; Fan, X.; Wei, X.-Y.; Takarada, T. Preparation of nickel-loaded on lignite char for catalytic gasification of biomass. Fuel Process. Technol. 2015, 136, 17–24. [Google Scholar] [CrossRef]
- Li, Y.; Williams, P.T. Catalytic Biochar and Refuse-Derived Char for the Steam Reforming of Waste Plastics Pyrolysis Volatiles for Hydrogen-Rich Syngas. Ind. Eng. Chem. Res. 2023, 62, 14335–14348. [Google Scholar] [CrossRef]
- Wu, B.; Jia, Y.; Xu, N.; Liao, L.; Zhang, C.; Wang, Z.; Shan, Y.; Feng, W.; Xue, H. MoO2-Enhanced Fe-Loaded Biochar Promotes Fe2+/Fe3+ Cycling for Activation of Peroxydisulfate to Degrade Organic Matter. Environ. Technol. Innov. 2024, 35, 103736. [Google Scholar] [CrossRef]
- Ouyang, D.; Wu, R.; Xu, Z.; Zhu, X.; Cai, Y.; Chen, R.; Zhu, C.; Barceló, D.; Zhang, H. Efficient degradation of Bisphenol A by Fe3+/Fe2+ cycle activating persulfate with the assistance of biochar-supported MoO2. Chem. Eng. J. 2023, 455, 140381. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Yang, S.; Zhang, S.; Xu, Q.; Chen, P.; Du, Y.; Xing, Y. Cobalt-loaded cherry core biochar composite as an effective heterogeneous persulfate catalyst for bisphenol A degradation. RSC Adv. 2022, 12, 7284–7294. [Google Scholar] [CrossRef]
- Li, S.; Yang, F.; Li, J.; Cheng, K. Porous biochar-nanoscale zero-valent iron composites: Synthesis, characterization and application for lead ion removal. Sci. Total Environ. 2020, 746, 141037. [Google Scholar] [CrossRef]
- Liu, L.; Yu, R.; Zhao, S.; Cao, X.; Zhang, X.; Bai, S. Heterogeneous Fenton system driven by iron-loaded sludge biochar for sulfamethoxazole-containing wastewater treatment. J. Environ. Manag. 2023, 335, 117576. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yang, X.; Wang, J.; Zhuang, T.; Liu, S.; Dou, M.; Huo, K.; Zhou, Y.; Ding, G. Magnetic biochar pyrolyzed from municipal sludge for Fenton-like degradation of thiamethoxam: Characteristics and mechanism. J. Water Process Eng. 2023, 51, 103391. [Google Scholar] [CrossRef]
- Ahmad, M.; Islam, I.U.; Ahmad, M.; Rukh, S.; Ullah, I. Preparation of iron-modified biochar from rice straw and its application for the removal of lead (Pb+2) from lead-contaminated water by adsorption. Chem. Pap. 2022, 76, 3789–3808. [Google Scholar] [CrossRef]
- Xu, L.; Shu, Z.; Feng, L.; Zhou, J.; Li, T.; Zhao, Z.; Wang, W. Fresh biomass derived biochar with high-load zero-valent iron prepared in one step for efficient arsenic removal. J. Clean. Prod. 2022, 352, 131616. [Google Scholar] [CrossRef]
- Zhou, T.; Shi, C.; Wang, Y.; Wang, X.; Lei, Z.; Liu, X.; Wu, J.; Luo, F.; Wang, L. Progress of metal-loaded biochar-activated persulfate for degradation of emerging organic contaminants. Water Sci. Technol. 2024, 90, 824–843. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yuan, X.; Li, X.; Jiang, L.; Wang, H. Burgeoning prospects of biochar and its composite in persulfate-advanced oxidation process. J. Hazard. Mater. 2021, 409, 124893. [Google Scholar] [CrossRef]
- Ouyang, D.; Yan, J.; Qian, L.; Chen, Y.; Han, L.; Su, A.; Zhang, W.; Ni, H.; Chen, M. Degradation of 1, 4-dioxane by biochar supported nano magnetite particles activating persulfate. Chemosphere 2017, 184, 609–617. [Google Scholar] [CrossRef]
- Huang, X.; Wei, D.; Zhang, X.; Fan, D.; Sun, X.; Du, B.; Wei, Q. Synthesis of amino-functionalized magnetic aerobic granular sludge-biochar for Pb (II) removal: Adsorption performance and mechanism studies. Sci. Total Environ. 2019, 685, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Patel, P.; Mondal, P. Catalytic Pyrolysis Using a Nickel-Functionalized Chemically Activated Biochar Catalyst: Insight into Process Kinetics, Products, and Mechanism. ACS Sustain. Chem. Eng. 2022, 10, 5770–5780. [Google Scholar] [CrossRef]
- He, J.; Zhao, C.; Lercher, J.A. Ni-catalyzed cleavage of aryl ethers in the aqueous phase. J. Am. Chem. Soc. 2012, 134, 20768–20775. [Google Scholar] [CrossRef]
- Xie, J.-X.; Cao, J.-P.; Jiang, W.; Zhao, X.-Y.; Zhao, L.; Zhang, C.; Bai, H.-C. Nickel loaded on biochar prepared from different carbon sources for selective hydrogenolysis of diphenyl ether. Fuel Process. Technol. 2022, 231, 107219. [Google Scholar] [CrossRef]
- Dai, L.; Zeng, Z.; Tian, X.; Jiang, L.; Yu, Z.; Wu, Q.; Wang, Y.; Liu, Y.; Ruan, R. Microwave-assisted catalytic pyrolysis of torrefied corn cob for phenol-rich bio-oil production over Fe modified bio-char catalyst. J. Anal. Appl. Pyrolysis 2019, 143, 104691. [Google Scholar] [CrossRef]
- Bu, Q.; Cao, M.; Wang, M.; Vasudevan, S.V.; Mao, H. Enhancement of bio-oil quality over self-derived bio-char catalyst via microwave catalytic pyrolysis of peanut shell. J. Anal. Appl. Pyrolysis 2022, 164, 105534. [Google Scholar] [CrossRef]
- Liu, Z.; Li, P.; Chang, C.; Wang, X.; Song, J.; Fang, S.; Pang, S. Influence of metal chloride modified biochar on products characteristics from biomass catalytic pyrolysis. Energy 2022, 250, 123776. [Google Scholar] [CrossRef]
- Zeng, Z.; Tian, X.; Wang, Y.; Cui, X.; Zhang, Q.; Dai, L.; Liu, Y.; Zou, R.; Chen, J.; Liu, J. Microwave-assisted catalytic pyrolysis of corn cobs with Fe-modified Choerospondias axillaris seed-based biochar catalyst for phenol-rich bio-oil. J. Anal. Appl. Pyrolysis 2021, 159, 105306. [Google Scholar] [CrossRef]
- Wang, W.; Wang, M.; Huang, J.; Tang, N.; Dang, Z.; Shi, Y.; Zhaohe, M. Microwave-assisted catalytic pyrolysis of cellulose for phenol-rich bio-oil production. J. Energy Inst. 2019, 92, 1997–2003. [Google Scholar] [CrossRef]
- Zhang, Y.; Lei, H.; Yang, Z.; Duan, D.; Villota, E.; Ruan, R. From glucose-based carbohydrates to phenol-rich bio-oils integrated with syngas production via catalytic pyrolysis over an activated carbon catalyst. Green Chem. 2018, 20, 3346–3358. [Google Scholar] [CrossRef]
- Hoang Pham, L.K.; Vi Tran, T.T.; Kongparakul, S.; Reubroycharoen, P.; Ding, M.; Guan, G.; Vo, D.-V.N.; Jaiyong, P.; Youngvises, N.; Samart, C. Data-driven prediction of biomass pyrolysis pathways toward phenolic and aromatic products. J. Environ. Chem. Eng. 2021, 9, 104836. [Google Scholar] [CrossRef]
- Wang, Y.; Li, D.; Zhao, D.; Fan, Y.; Bi, J.; Shan, R.; Yang, J.; Luo, B.; Yuan, H.; Ling, X.; et al. Calcium-Loaded Municipal Sludge-Biochar as an Efficient and Stable Catalyst for Biodiesel Production from Vegetable Oil. ACS Omega 2020, 5, 17471–17478. [Google Scholar] [CrossRef]
- Jahan, M.S.; Rahman, M.M.; Sutradhar, S.; Quaiyyum, M. Fractionation of rice straw for producing dissolving pulp in biorefinery concept. Nord. Pulp Pap. Res. J. 2015, 30, 562–567. [Google Scholar] [CrossRef]
- Zhao, C.; Yang, L.; Xing, S.; Luo, W.; Wang, Z.; Lv, P. Biodiesel production by a highly effective renewable catalyst from pyrolytic rice husk. J. Clean. Prod. 2018, 199, 772–780. [Google Scholar] [CrossRef]
- Rawat, S.; Wang, C.-T.; Lay, C.-H.; Hotha, S.; Bhaskar, T. Sustainable biochar for advanced electrochemical/energy storage applications. J. Energy Storage 2023, 63, 107115. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Pei, L.; Ying, D.; Xu, X.; Zhao, L.; Jia, J.; Cao, X. Converting Ni-loaded biochars into supercapacitors: Implication on the reuse of exhausted carbonaceous sorbents. Sci. Rep. 2017, 7, 41523. [Google Scholar] [CrossRef]
- Sengottian, M.; Venkatachalam, C.D.; Ravichandran, S.R. Optimization of Alkali catalyzed hydrothermal carbonization of Prosopis juliflora woody biomass to biochar for copper and zinc adsorption and its application in supercapacitor. Int. J. Electrochem. Sci. 2022, 17, 220938. [Google Scholar] [CrossRef]
- Li, D.; Ma, J.; Xu, H.; Xu, X.; Qiu, H.; Cao, X.; Zhao, L. Recycling waste nickel-laden biochar to pseudo-capacitive material by hydrothermal treatment: Roles of nickel-carbon interaction. Carbon Res. 2022, 1, 16. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, M.; Chakma, S.; Liang, X.; Sutradhar, S.; Kozinski, J.; Kang, K. Engineered Biochar for Metal Recycling and Repurposed Applications. Energies 2024, 17, 4674. https://doi.org/10.3390/en17184674
Hasan M, Chakma S, Liang X, Sutradhar S, Kozinski J, Kang K. Engineered Biochar for Metal Recycling and Repurposed Applications. Energies. 2024; 17(18):4674. https://doi.org/10.3390/en17184674
Chicago/Turabian StyleHasan, Mehedi, Soumik Chakma, Xunjia Liang, Shrikanta Sutradhar, Janusz Kozinski, and Kang Kang. 2024. "Engineered Biochar for Metal Recycling and Repurposed Applications" Energies 17, no. 18: 4674. https://doi.org/10.3390/en17184674