Environmental Impacts and Contaminants Management in Sewage Sludge-to-Energy and Fertilizer Technologies: Current Trends and Future Directions
Abstract
:1. Introduction to Sewage Sludge
European Trends in Sewage Sludge Generation
2. Sewage Sludge Treatment and Reuse Technologies—Need for Development in the Context of Circular Economy, Sustainable Development, Human Health, and Energy and Fertilizer Saving
3. Anaerobic Digestion and Biogas Production
4. Thermochemical Conversion: Pyrolysis and Gasification and Combustion
5. Fertilizers from Sewage Sludge
6. Emerging Trends and Future Directions
7. Sewage Sludge-to-Energy and Fertilizer Technologies for Enhanced Sustainability
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CE | Circular economy |
OWtE | Organic waste-to-energy |
WtE | Waste-to-energy |
GHGs | Greenhouse gasses |
RRfW | Resource recovery from waste |
OSW | Organic solid waste |
AF | Anaerobic fermentation |
ETP | Electron transport phosphorylation |
AD | Anaerobic digestion |
VFAs | Volatile fatty acids |
MSW | Municipal solid waste |
COD | Chemical oxygen demand |
HTC | Hydrothermal carbonization |
CHP | combined heat and power systems |
HTC | Hydrothermal carbonization |
HTL | Hydrothermal liquefaction |
BAT | Best available techniques |
PAHs | polycyclic aromatic hydrocarbons |
HTV | Hydrothermal vaporization |
HTG | Hydrothermal gasification |
DCWG | Supercritical water gasification |
(EPA) | Environmental Protection Agency |
PPCPs | pharmaceuticals and personal care products |
EDCs | endocrine-disrupting chemicals |
BPA | bisphenol A |
PFAS | per- and poly-fluoroalkyl substances |
LC-MS | Liquid Chromatography-Mass Spectrometry |
GC-MS | Gas Chromatography-Mass Spectrometry |
UPLC | Ultra-Performance Liquid Chromatography |
FTIR | Fourier Transform Infrared Spectroscopy |
PCR | Polymerase Chain Reaction |
SEM | Scanning Electron Microscopy |
TEM | Transmission Electron Microscopy |
QSAR | Quantitative Structure–Activity Relationship |
RQ | Risk Quotient Method: |
PNEC | predicted no-effect concentration |
LCA | Life Cycle Assessment |
RA | Risk Assessment |
PERI | potential environmental risk indicator |
RAC | risk assessment code |
ERF | environmental risk factor |
ERA | Environmental Risk Assessment |
ER | Potential Ecological Risk Factor |
RI | Risk Index |
RAC | Risk Assessment Code |
ICF | Individual Contamination Factor |
GRI | Global Risk Index |
IER | Individual Ecological Risk |
GER | Global Ecological Risk |
GIS | Geographic Information Systems |
AI | artificial intelligence |
PE | population equivalent |
References
- Zuloaga, O.; Navarro, P.; Bizkarguenaga, E.; Iparraguirre, A.; Vallejo, A.; Olivares, M.; Prieto, A. Overview of extraction, clean-up and detection techniques for the determination of organic pollutants in sewage sludge: A review. Anal. Chim. Acta 2012, 736, 7–29. [Google Scholar] [CrossRef]
- Qadir, M.; Drechsel, P.; Jiménez Cisneros, B.; Kim, Y.; Pramanik, A.; Mehta, P.; Olaniyan, O. Global and regional potential of wastewater as a water, nutrient and energy source. Nat. Resour. Forum 2020, 44, 40–51. [Google Scholar] [CrossRef]
- Wei, L.; Zhu, F.; Li, Q.; Xue, C.; Xia, X.; Yu, H.; Zhao, Q.; Jiang, J.; Bai, S. Development, current state and future trends of sludge management in China: Based on exploratory data and CO2-equivaient emissions analysis. Environ. Int. 2020, 144, 106093. [Google Scholar] [CrossRef]
- Han, W.; Jin, P.; Chen, D.; Liu, X.; Jin, H.; Wang, R.; Liu, Y. Resource reclamation of municipal sewage sludge based on local conditions: A case study in Xi’an, China. J. Clean. Prod. 2021, 316, 128189. [Google Scholar] [CrossRef]
- Zhou, G.; Gu, Y.; Yuan, H.; Gong, Y.; Wu, Y. Selecting sustainable technologies for disposal of municipal sewage sludge using a multi-criterion decision-making method: A case study from China. Resour. Conserv. Recycl. 2020, 161, 104881. [Google Scholar] [CrossRef]
- Medaoud, S.; Mokrani, L.; Mezhoud, S.; Ziane, S. Characterization of Stabilised Sewage Sludge for Reuse in Road Pavement. Civ. Environ. Eng. Rep. 2022, 32, 201–217. [Google Scholar] [CrossRef]
- Shanmugam, K.; Gadhamshetty, V.; Tysklind, M.; Bhattacharyya, D.; Upadhyayula, V.K.K. A sustainable performance assessment framework for circular management of municipal wastewater treatment plants. J. Clean. Prod. 2022, 339, 130657. [Google Scholar] [CrossRef]
- Masmoudi, A.; Ben Sik Ali, A.; Dhaouadi, H.; Mhiri, H. Comparison Between Two Solar Drying Techniques of Sewage Sludge: Draining Solar Drying and Drying Bed. Waste Biomass Valorization 2021, 12, 4089–4102. [Google Scholar] [CrossRef]
- Wang, J.; Xu, S.; Zhao, K.; Song, G.; Zhao, S.; Liu, R. Risk control of antibiotics, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) during sewage sludge treatment and disposal: A review. Sci. Total Environ. 2023, 877, 162772. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, A. Heavy metals in ground water affect the human health global challenge. In Computational Intelligence and Applications for Pandemics and Healthcare; IGI Global: Hershey, PA, USA, 2022; pp. 139–158. [Google Scholar]
- Li, S.; Li, R.; Tang, Y.; Chen, G. Microwave-induced heavy metal removal from dewatered biosolids for cost-effective composting. J. Clean. Prod. 2019, 241, 118342. [Google Scholar] [CrossRef]
- Kosowski, P.; Szostek, M.; Pieniazek, R.; Antos, P.; Skrobacz, K.; Piechowiak, T.; Zaczek, A.; Józefczyk, R.; Balawejder, M. New approach for sewage sludge stabilization with ozone. Sustainability 2020, 12, 886. [Google Scholar] [CrossRef]
- Kamizela, T.; Lyng, K.A.; Saxegård, S.; Švédová, B.; Grobelak, A. Bionor sewage sludge technology—Biomass to fertiliser and a soil addition. J. Clean. Prod. 2021, 319, 128655. [Google Scholar] [CrossRef]
- Jafarinejad, S. Comparison of the Full-Scale Municipal Wastewater Treatment Plant Designs Consisting of Modified Bardenpho Process with and Without Membrane Bioreactor for Nutrient Removal: Cost Analysis. In International Conference on Sustainable Development of Water and Environment; Springer International Publishing: Cham, Switzerland, 2021; pp. 47–63. [Google Scholar]
- Buta, M.; Hubeny, J.; Zieliński, W.; Harnisz, M.; Korzeniewska, E. Sewage sludge in agriculture–the effects of selected chemical pollutants and emerging genetic resistance determinants on the quality of soil and crops–a review. Ecotoxicology and Environmental Safety. 2021, 214, 112070. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Poddar, B.J.; Nakhate, S.P.; Chavan, A.R.; Singh, A.K.; Purohit, H.J.; Khardenavis, A.A. Role of heterotrophic nitrifiers and aerobic denitrifiers in simultaneous nitrification and denitrification process: A nonconventional nitrogen removal pathway in wastewater treatment. Lett. Appl. Microbiol. 2022, 74, 159–184. [Google Scholar] [CrossRef] [PubMed]
- Ehalt Macedo, H.; Lehner, B.; Nicell, J.; Grill, G.; Li, J.; Limtong, A.; Shakya, R. Distribution and characteristics of wastewater treatment plants within the global river network. Earth Syst. Sci. Data 2022, 14, 559–577. [Google Scholar] [CrossRef]
- Huang, A.; Zhi, D.; Zhou, Y. Current Progress of Microplastics in Sewage Sludge. Handb. Environ. Chem. 2023, 114, 167–187. [Google Scholar]
- Pozzebon, E.A.; Seifert, L. Emerging environmental health risks associated with the land application of biosolids: A scoping review. Environ. Health 2023, 22, 57. [Google Scholar] [CrossRef]
- Fu, X.; Hou, R.; Yang, P.; Qian, S.; Feng, Z.; Chen, Z.; Wang, F.; Yuan, R.; Chen, H.; Zhou, B. Application of external carbon source in heterotrophic denitrification of domestic sewage: A review. Sci. Total Environ. 2022, 817, 153061. [Google Scholar] [CrossRef]
- Available online: https://ec.europa.eu/eurostat/databrowser/view/env_ww_spd/default/table?lang=en&category=env.env_wat.env_nwat (accessed on 18 August 2024).
- Ding, A.; Zhang, R.; Ngo, H.H.; He, X.; Ma, J.; Nan, J.; Li, G. Life cycle assessment of sewage sludge treatment and disposal based on nutrient and energy recovery: A review. Sci. Total Environ. 2021, 769, 144451. [Google Scholar] [CrossRef]
- Hušek, M.; Moško, J.; Pohořelý, M. Sewage sludge treatment methods and P-recovery possibilities: Current state-of-the-art. J. Environ. Manag. 2022, 315, 115090. [Google Scholar] [CrossRef]
- Bolesta, W.; Głodniok, M.; Styszko, K. From Sewage Sludge to the Soil—Transfer of Pharmaceuticals: A Review. Int. J. Environ. Res. Public Health 2022, 19, 10246. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.D.; Upadhyay, A.; Shrivastava, S.; Vivekanand, V. Life-cycle assessment of sewage sludge-based large-scale biogas plant. Bioresour. Technol. 2020, 309, 123373. [Google Scholar] [CrossRef] [PubMed]
- Stahel, W.R. The circular economy. Nature 2016, 531, 435–438. [Google Scholar] [CrossRef] [PubMed]
- Velenturf, A.P.M.; Purnell, P. Principles for a sustainable circular economy. Sustain. Prod. Consum. 2021, 27, 1437–1457. [Google Scholar] [CrossRef]
- Kwapinski, W.; Kolinovic, I.; Leahy, J.J. Sewage Sludge Thermal Treatment Technologies with a Focus on Phosphorus Recovery: A Review. Waste Biomass Valorization 2021, 12, 5837–5852. [Google Scholar] [CrossRef]
- Yu, B.; Luo, J.; Xie, H.; Yang, H.; Chen, S.; Liu, J.; Zhang, R.; Li, Y.Y. Species, Fractions, and Characterization of Phosphorus in Sewage Sludge: A Critical Review from the Perspective of Recovery. Sci. Total Environ. 2021, 786, 147437. [Google Scholar] [CrossRef]
- Neczaj, E.; Grosser, A.; Grobelak, A.; Celary, P.; Singh, B.R. Conversion of Sewage Sludge and Other Biodegradable Waste into High-Value Soil Amendment within a Circular Bioeconomy Perspective. Energies 2021, 14, 6953. [Google Scholar] [CrossRef]
- Lazaroiu, G.; Valaskova, K.; Nica, E.; Durana, P.; Kral, P.; Bartoš, P.; Maroušková, A. Techno-Economic Assessment: Food Emulsion Waste Management. Energies 2020, 13, 4922. [Google Scholar] [CrossRef]
- Wu, D.; Peng, X.; Li, L.; Yang, P.; Peng, Y.; Liu, H.; Wang, X. Commercial biogas plants: Review on operational parameters and guide for performance optimization. Fuel 2021, 303, 121282. [Google Scholar] [CrossRef]
- Balasundaram, G.; Tyagi, V.K.; Lo, S.-L. Environmental Materials and Waste: Circular Economy and Pollution Abatement; Prasad, M.N.V., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; Volume 2, Chapter 9; pp. 289–314. [Google Scholar] [CrossRef]
- Mitraka, G.C.; Kontogiannopoulos, K.N.; Batsioula, M.; Banias, G.F.; Zouboulis, A.I.; Kougias, P.G. A Comprehensive Review on Pretreatment Methods for Enhanced Biogas Production from Sewage Sludge. Energies 2022, 15, 6536. [Google Scholar] [CrossRef]
- Paradelo, R.; Navarro-Pedreño, J.; Glaser, B.; Grobelak, A.; Kowalska, A.; Singh, B.R. Potential and Constraints of Use of Organic Amendments from Agricultural Residues for Improvement of Soil Properties. Sustainability 2024, 16, 158. [Google Scholar] [CrossRef]
- Fernando-Foncillas, C.; Estevez, M.M.; Uellendahl, H.; Varrone, C. Co-management of sewage sludge and other organic wastes: A scandinavian case study. Energies 2021, 14, 3411. [Google Scholar] [CrossRef]
- Zhan, J.; Han, Y.; Xu, S.; Wang, X.; Guo, X. Succession and change of potential pathogens in the co-composting of rural sewage sludge and food waste. Waste Manag. 2022, 149, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Corrin, T.; Rabeenthira, P.; Young, K.M.; Mathiyalagan, G.; Baumeister, A.; Pussegoda, K.; Waddell, L.A. A scoping review of human pathogens detected in untreated human wastewater and sludge. J. Water Health 2024, 22, 436–449. [Google Scholar] [CrossRef]
- Wydro, U.; Jankowska, M.; Wołejko, E.; Kondzior, P.; Łozowicka, B.; Kaczyński, P.; Rodziewicz, J.; Janczukowicz, W.; Pietryczuk, A.; Cudowski, A.; et al. Changes in soil biological properties after sewage sludge and pesticide application in wheat cultivation. Appl. Sci. 2022, 12, 11452. [Google Scholar] [CrossRef]
- Geng, H.; Xu, Y.; Zheng, L.; Gong, H.; Dai, L.; Dai, X. An overview of removing heavy metals from sewage sludge: Achievements and perspectives. Environ. Pollut. 2020, 266, 115375. [Google Scholar] [CrossRef]
- Yakamercan, E.; Ari, A.; Aygün, A. Land application of municipal sewage sludge: Human health risk assessment of heavy metals. J. Clean. Prod. 2021, 319, 128568. [Google Scholar] [CrossRef]
- Całus-Makowska, K.; Grosser, A.; Grobelak, A. Pharmaceutical contamination in wastewater treatment plants: Occurrence, challenges in detection and insights on high-performance liquid chromatography as an effective analytical tool in environmental matrices—A review. Dessalination Water Treat. 2023, 305, 129–154. [Google Scholar] [CrossRef]
- Rolsky, C.; Kelkar, V.; Driver, E.; Halden, R.U. Municipal Sewage Sludge as a Source of Microplastics in the Environment. Curr. Opin. Environ. Sci. Health 2020, 14, 16–22. [Google Scholar] [CrossRef]
- Gao, D.; Li, X.Y.; Liu, H.T. Source, Occurrence, Migration and Potential Environmental Risk of Microplastics in Sewage Sludge and during Sludge Amendment to Soil. Sci. Total Environ. 2020, 742, 140355. [Google Scholar] [CrossRef]
- Khawer, M.U.B.; Naqvi, S.R.; Ali, I.; Arshad, M.; Juchelková, D.; Anjum, M.W.; Naqvi, M. Anaerobic digestion of sewage sludge for biogas & biohydrogen production: State-of-the-art trends and prospects. Fuel 2022, 329, 125416. [Google Scholar] [CrossRef]
- Smol, M. Circular economy in wastewater treatment plant—Water, energy and raw materials recovery. Energies 2023, 16, 3911. [Google Scholar] [CrossRef]
- Grosser, A.; Grobelak, A.; Rorat, A.; Courtois, P.; Vandenbulcke, F.; Lemière, S.; Guyoneaud, R.; Attard, E.; Celary, P. Effects of silver nanoparticles on performance of anaerobic digestion of sewage sludge and associated microbial communities. Renew. Energy 2021, 171, 1014–1025. [Google Scholar] [CrossRef]
- Khanh Nguyen, V.; Kumar Chaudhary, D.; Hari Dahal, R.; Hoang Trinh, N.; Kim, J.; Chang, S.W.; Hong, Y.; Duc La, D.; Nguyen, X.C.; Hao Ngo, H.; et al. Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel 2021, 285, 119105. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Available online: https://archive.epa.gov/region9/organics/web/pdf/ebmudfactsheet.pdf (accessed on 25 July 2024).
- Duan, S.; Iwanowicz, L.R.; Noguera-Oviedo, K.; Kaushal, S.S.; Rosenfeldt, E.J.; Aga, D.S.; Murthy, S. Evidence that watershed nutrient management practices effectively reduce estrogens in environmental waters. Sci. Total Environ. 2021, 758, 143904. [Google Scholar] [CrossRef]
- Dang, C.H.; Cappai, G.; Chung, J.W.; Jeong, C.; Kulli, B.; Marchelli, F.; Ro, K.S.; Román, S. Research Needs and Pathways to Advance Hydrothermal Carbonization Technology. Agronomy 2024, 14, 247. [Google Scholar] [CrossRef]
- Aragón-Briceño, C.I.; Ross, A.B.; Camargo-Valero, M.A. Mass and energy integration study of hydrothermal carbonization with anaerobic digestion of sewage sludge. Renew. Energy 2021, 167, 473–483. [Google Scholar] [CrossRef]
- Nordell, E.; Björn, A.; Waern, S.; Shakeri Yekta, S.; Sundgren, I.; Moestedt, J. Thermal post-treatment of digestate in order to increase biogas production with simultaneous pasteurization. J. Biotechnol. 2022, 344, 32–39. [Google Scholar] [CrossRef]
- Ahn, J.Y.; Chang, S.W. Effects of sludge concentration and disintegration/solubilization pretreatment methods on increasing anaerobic biodegradation efficiency and biogas production. Sustainability 2021, 13, 12887. [Google Scholar] [CrossRef]
- Lares, M.; Ncibi, M.C.; Sillanpää, M.; Sillanpää, M. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res. 2018, 133, 236–246. [Google Scholar] [CrossRef]
- Hou, L.; Kumar, D.; Yoo, C.; Gitsov, I.; Majumder, E. Conversion and removal strategies for microplastics in wastewater treatment plants and landfills. Chem. Eng. J. 2021, 406, 126715. [Google Scholar] [CrossRef]
- Casella, C.; Sol, D.; Laca, A.; Díaz, M. Microplastics in Sewage Sludge: A review. Environ. Sci. Pollut. Res. 2023, 30, 63382–63415. [Google Scholar] [CrossRef]
- Büks and Martin Kaupenjohann Global concentrations of microplastics in soils—A review. SOIL 2020, 6, 649–662. [CrossRef]
- Tagg, A.S.; Brandes, E.; Fischer, F.; Fischer, D.; Brandt, J.; Labrenz, M. Agricultural application of microplastic-rich sewage sludge leads to further uncontrolled contamination. Sci. Total Environ. 2022, 806, 150611. [Google Scholar] [CrossRef] [PubMed]
- Menéndez-Manjón, A.; Martínez-Díez, R.; Sol, D.; Laca, A.; Laca, A.; Rancaño, A.; Díaz, M. Long-Term Occurrence and Fate of Microplastics in WWTPs: A Case Study in Southwest Europe. Appl. Sci. 2022, 12, 2133. [Google Scholar] [CrossRef]
- Harley-Nyang, D.; Memon, F.A.; Jones, N.; Galloway, T. Investigation and analysis of microplastics in sewage sludge and biosolids: A case study from one wastewater treatment works in the UK. Sci. Total Environ. 2022, 823, 153735. [Google Scholar] [CrossRef]
- Hurley, R.R.; Lusher, A.L.; Olsen, M.; Nizzetto, L. Validation of a Method for Extracting Microplastics from Complex, Organic-Rich, Environmental Matrices. Environ. Sci. Technol. 2018, 52, 7409–7417. [Google Scholar] [CrossRef]
- Lamolinara, B.; Pérez-Martínez, A.; Guardado-Yordi, E.; Guillén Fiallos, C.; Diéguez-Santana, K.; Ruiz-Mercado, G.J. Anaerobic digestate management, environmental impacts, and techno-economic challenges. Waste Manag. 2022, 140, 14–30. [Google Scholar] [CrossRef]
- Montusiewicz, A.; Szaja, A.; Musielewicz, I.; Cydzik-Kwiatkowska, A.; Lebiocka, M. Effect of bioaugmentation on digestate metal concentrations in anaerobic digestion of sewage sludge. PLoS ONE 2020, 15, e0235508. [Google Scholar] [CrossRef]
- Rijo, B.; Nobre, C.; Brito, P.; Ferreira, P. An Overview of the Thermochemical Valorization of Sewage Sludge: Principles and Current Challenges. Energies 2024, 17, 2417. [Google Scholar] [CrossRef]
- Mathanker, A.; Das, S.; Pudasainee, D.; Khan, M.; Kumar, A.; Gupta, R. A Review of Hydrothermal Liquefaction of Biomass for Biofuels Production with a Special Focus on the Effect of Process Parameters, Co-Solvents, and Extraction Solvents. Energies 2021, 14, 4916. [Google Scholar] [CrossRef]
- Giwa, A.S.; Maurice, N.J.; Luoyan, A.; Liu, X.; Yunlong, Y.; Hong, Z. Advances in sewage sludge application and treatment: Process integration of plasma pyrolysis and anaerobic digestion with the resource recovery. Heliyon 2023, 9, e19765. [Google Scholar] [CrossRef]
- Carotenuto, A.; Di Fraia, S.; Massarotti, N.; Sobek, S.; Uddin, M.R.; Vanoli, L.; Werle, S. Sewage Sludge Gasification Process Optimization for Combined Heat and Power Generation. Energies 2023, 16, 4742. [Google Scholar] [CrossRef]
- Wielgosiński, G.; Czerwińska, J.; Szymańska, O.; Bujak, J. Simultaneous NOx and dioxin removal in the SNCR process. Sustainability 2020, 12, 5766. [Google Scholar] [CrossRef]
- Kirkok, S.K.; Kibet, J.K.; Kinyanjui, T.K.; Okanga, F.I. A review of persistent organic pollutants: Dioxins, furans, and their associated nitrogenated analogues. In SN Applied Sciences; Springer Nature: Berlin/Heidelberg, Germany, 2020; Volume 2. [Google Scholar] [CrossRef]
- Conesa, J.A.; Ortuño, N.; Palmer, D. Estimation of Industrial Emissions during Pyrolysis and Combustion of Different Wastes Using Laboratory Data. Sci. Rep. 2020, 10, 6750. [Google Scholar] [CrossRef]
- Safavi, A.; Richter, C.; Unnthorsson, R. Dioxin Formation in Biomass Gasification: A Review. Energies 2022, 15, 700. [Google Scholar] [CrossRef]
- Ahmad, A.; Hussain, F.; Javed, M.H.; Ali, M.; Nizami, A.S. Gasification of Sewage Sludge. In Sustainable Treatment and Management of Sewage Sludge; CRC Press: Boca Raton, FL, USA, 2023; pp. 181–202. [Google Scholar] [CrossRef]
- Pacheco, N.; Ribeiro, A.; Oliveira, F.; Pereira, F.; Marques, L.; Teixeira, J.C.; Vilarinho, C.; Barbosa, F.V. Sewage Sludge Plasma Gasification: Characterization and Experimental Rig Design. Reactions 2024, 5, 285–304. [Google Scholar] [CrossRef]
- Petrlik, J.; Beeler, B.; Ismawati, Y.; Bell, L. Toxic Contamination Caused by Plastic Waste in Countries of the Global South. In Plastic Waste Trade: A New Colonialist Means of Pollution Transfer; Springer Nature: Cham, Switzerland, 2024; pp. 113–128. [Google Scholar]
- Tang, L.; Guo, J.; Wan, R.; Jia, M.; Qu, J.; Li, L.; Bo, X. Air pollutant emissions and reduction potentials from municipal solid waste incineration in China. Environ. Pollut. 2023, 319, 121021. [Google Scholar] [CrossRef]
- Neuwahl, F.; Cusano, G.; Benavides, J.G.; Holbrook, S.; Roudier, S. Best Available Techniques (BAT) Reference Document for Waste Incineration; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Chang, H.; Zhao, Y.; Zhao, S.; Damgaard, A.; Christensen, T.H. Review of inventory data for the thermal treatment of sewage sludge. Waste Manag. 2022, 146, 106–118. [Google Scholar] [CrossRef]
- Hasan, M.; Hasan, M.R.; Khan, R.A.; Rashid, T.U. Sewage Sludge: Is It a Sustainable Fertilizer or a Source of Contaminants? In Environmental Engineering and Waste Management; Springer: Cham, Switzerland, 2024; pp. 101–131. [Google Scholar] [CrossRef]
- Kominko, H.; Gorazda, K.; Wzorek, Z. Formulation and evaluation of organo-mineral fertilizers based on sewage sludge optimized for maize and sunflower crops. Waste Manag. 2021, 136, 57–66. [Google Scholar] [CrossRef]
- Qrenawi, L.I.; Rabah, F.K.J. Sludge management in water treatment plants: Literature review. Int. J. Environ. Waste Manag. 2021, 27, 93–125. [Google Scholar] [CrossRef]
- Kowalska, A.; Grobelak, A.; Almås, Å.R.; Singh, B.R. Effect of Biowastes on Soil Remediation, Plant Productivity and Soil Organic Carbon Sequestration: A Review. Energies 2020, 13, 5813. [Google Scholar] [CrossRef]
- Farsang, A.; Babcsányi, I.; Ladányi, Z.; Perei, K.; Bodor, A.; Csányi, K.T.; Barta, K. Evaluating the effects of sewage sludge compost applications on the microbial activity, the nutrient and heavy metal content of a Chernozem soil in a field survey. Arab. J. Geosci. 2020, 13, 1–9. [Google Scholar] [CrossRef]
- Muter, O.; Dubova, L.; Kassien, O.; Cakane, J.; Alsina, I. Application of the Sewage Sludge in Agriculture: Soil Fertility, Technoeconomic, and Life-Cycle Assessment. Hazard. Waste Manag. 2022, 125, 1–26. [Google Scholar] [CrossRef]
- Beduk, F.; Aydin, S.; Ulvi, A.; Aydin, M.E. Persistent Organic Pollutants in Sewage Sludge: Occurrence, Temporal Concentration Variation and Risk Assessment for Sewage Sludge Amended Soils. KSCE J. Civ. Eng. 2023, 27, 3694–3704. [Google Scholar] [CrossRef]
- Dolu, T.; Nas, B. Full-scale anaerobic digestion of sewage sludges: Fate evaluation of pharmaceuticals and main metabolites. J. Water Process Eng. 2023, 51, 103366. [Google Scholar] [CrossRef]
- Nunes, N.; Ragonezi, C.; Gouveia, C.S.S.; Pinheiro de Carvalho, M.Â.A. Review of Sewage Sludge as a Soil Amendment in Relation to Current International Guidelines: A Heavy Metal Perspective. Sustainability 2021, 13, 2317. [Google Scholar] [CrossRef]
- Kowalska, A.; Singh, B.R.; Grobelak, A. Carbon Footprint for Post-Mining Soils: The Dynamic of Net CO2 Fluxes and SOC Sequestration at Different Soil Remediation Stages under Reforestation. Energies 2022, 15, 9452. [Google Scholar] [CrossRef]
- Silva, J.L.; Demolin Leite, G.L.; de Souza Tavares, W.; Souza Silva, F.W.; Sampaio, R.A.; Azevedo, A.M.; Serrão, J.E.; Zanuncio, J.C. Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in degraded area. R. Soc. Open Sci. 2020, 7, 191196. [Google Scholar] [CrossRef]
- Adelodun, B.; Kumar, P.; Odey, G.; Ajibade, F.O.; Ibrahim, R.G.; Alamri, S.A.M.; Alrumman, S.A.; Eid, E.M.; Kumar, V.; Adeyemi, K.A.; et al. A safe haven of SARS-CoV-2 in the environment: Prevalence and potential transmission risks in the effluent, sludge, and biosolids. Geosci. Front. 2022, 13, 101373. [Google Scholar] [CrossRef]
- Tijani, J.O.; Fatoba, O.O.; Babajide, O.O.; Petrik, L.F. Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: A review. Environ. Chem. Lett. 2016, 14, 27–49. [Google Scholar] [CrossRef]
- González, S.; Barceló, D.; Petrovic, M. Advanced liquid chromatography-mass spectrometry (LC-MS) methods applied to wastewater removal and the fate of surfactants in the environment. TrAC Trends Anal. Chem. 2007, 26, 116–124. [Google Scholar] [CrossRef]
- Boix, C.; Ibáñez, M.; Fabregat-Safont, D.; Morales, E.; Pastor, L.; Sancho, J.V.; Sánchez-Ramírez, J.E.; Hernández, F. Analytical methodologies based on LC–MS/MS for monitoring selected emerging compounds in liquid and solid phases of the sewage sludge. MethodsX 2016, 3, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Ligon, A.P.; Zuehlke, S.; Spiteller, M. GC-MS analysis of organic compounds in wastewater and sewage sludge. J. Sep. Sci. 2008, 31, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Castro, G.; Ramil, M.; Cela, R.; Rodríguez, I. Identification and determination of emerging pollutants in sewage sludge driven by UPLC-QTOF-MS data mining. Sci. Total Environ. 2021, 778, 146256. [Google Scholar] [CrossRef]
- Huang, A.; Zhi, D.; Zhou, Y. Current Progress of Microplastics in Sewage Sludge. In Emerging Pollutants in Sewage Sludge and Soils; Núñez-Delgado, A., Arias-Estévez, M., Eds.; The Handbook of Environmental Chemistry; Springer: Cham, Switzerland, 2022; Volume 114. [Google Scholar] [CrossRef]
- Wang, Q.; Raju, C.S.; Almind-Jørgensen, N.; Laustrup, M.; Reitzel, K.; Nielsen, U.G. Variation in phosphorus speciation of sewage sludge throughout three wastewater treatment plants: Determined by sequential extraction combined with microscopy, NMR spectroscopy, and powder X-ray diffraction. Environ. Sci. Technol. 2022, 56, 8975–8983. [Google Scholar] [CrossRef]
- Butarewicz, A.; Wrzaszcz, E.; Rosochacki, S. Toxicity of sewage from industrial wastewater tratment plants. J. Ecol. Eng. 2019, 20, 191–199. [Google Scholar] [CrossRef]
- Rede, D.; Teixeira, I.; Delerue-Matos, C.; Fernandes, V.C. Assessing emerging and priority micropollutants in sewage sludge: Environmental insights and analytical approaches. Environ. Sci. Pollut. Res. Int. 2024, 31, 3152–3168. [Google Scholar] [CrossRef]
- Grobelak, A.; Sobczyk, M.; Całus, K. Drug and multidrug resistance in waterborne pathogens. In Waterborne Pathogens: Detection and Treatment; Butterworth-Heinemann: Oxford, UK, 2020; pp. 279–300. [Google Scholar] [CrossRef]
- Yasir, M. Analysis of microbial communities and pathogen detection in domestic sewage using metagenomic sequencing. Diversity 2021, 13, 6. [Google Scholar] [CrossRef]
- Meier, C.; Voegelin, A.; Pradas Del Real, A.; Sarret, G.; Mueller, C.R.; Kaegi, R. Transformation of Silver Nanoparticles in Sewage Sludge during Incineration. Environ. Sci. Technol. 2016, 50, 3503–3510. [Google Scholar] [CrossRef]
- Berthod, L.; Whitley, D.C.; Roberts, G.; Sharpe, A.; Greenwood, R.; Mills, G.A. Quantitative structure-property relationships for predicting sorption of pharmaceuticals to sewage sludge during waste water treatment processes. Sci. Total Environ. 2017, 579, 1512–1520. [Google Scholar] [CrossRef] [PubMed]
- Pietrzak, D. Modeling migration of organic pollutants in groundwater—Review of available software. Environ. Model. Softw. 2021, 144, 105145. [Google Scholar] [CrossRef]
- Harder, R.; Peters, G.M.; Svanström, M.; Khan, S.J.; Molander, S. Estimating human toxicity potential of land application of sewage sludge: The effect of modelling choices. Int. J. Life Cycle Assess. 2017, 22, 731–743. [Google Scholar] [CrossRef]
- Filipovic, V.; Cerne, M.; Simunek, J.; Filipovic, L.; Romic, M.; Ondraek, G.; Bogunovic, I.; Mustac, I.; Krevh, V.; Ferencevic, A.; et al. Modeling water flow and phosphorus sorption in a soil amended with sewage sludge and olive pomace as compost or biochar. Agronomy 2020, 10, 1163. [Google Scholar] [CrossRef]
- Carpio, M.J.; Rodríguez-Cruz, M.S.; Sánchez-Martín, M.J.; Marín-Benito, J.M. Pesticide Fate in Soils Under Different Agricultural Management Practices. Handb. Environ. Chem. 2022, 113, 251–286. [Google Scholar] [CrossRef]
- Badawy, M.I.; El-Gohary, F.A.; Abdel-Wahed, M.S.; Gad-Allah, T.A.; Ali, M.E.M. Mass flow and consumption calculations of pharmaceuticals in sewage treatment plant with emphasis on the fate and risk quotient assessment. Sci. Rep. 2023, 13, 3500. [Google Scholar] [CrossRef]
- Latosińska, J.; Kowalik, R.; Gawdzik, J. Risk Assessment of Soil Contamination with Heavy Metals from Municipal Sewage Sludge. Appl. Sci. 2021, 11, 548. [Google Scholar] [CrossRef]
- Tytła, M. Identification of the Chemical Forms of Heavy Metals in Municipal Sewage Sludge as a Critical Element of Ecological Risk Assessment in Terms of Its Agricultural or Natural Use. Int. J. Environ. Res. Public Health 2020, 17, 4640. [Google Scholar] [CrossRef]
- Styszko, K.; Durak, J.; Kończak, B.; Głodniok, M.; Borgulat, A. The impact of sewage sludge processing on the safety of its use. Sci. Rep. 2022, 12, 12227. [Google Scholar] [CrossRef]
- Ecofate Software. Available online: https://www.sfu.ca/rem/toxicology/our-models/ecofate.html (accessed on 10 August 2024).
- Erlandsson, M.; Carlson, R.; Flemström, K. DANTES-Demonstrate and Assess Tools for Environmental Sustainability. In Proceedings of the Sixth International Conference on EcoBalance, Tsukuba, Japan, 25–27 October 2004. [Google Scholar]
- Mudura, R. Use of GIS techniques in investigating the lands suitable for sewage sludge application. Int. Multidiscip. Sci. GeoConference SGEM 2016, 3, 591–598. [Google Scholar] [CrossRef]
- Zhang, X.; Shu, K.; Rajkumar, S.; Sivakumar, V. Research on deep integration of application of artificial intelligence in environmental monitoring system and real economy. Environ. Impact Assess. Rev. 2021, 86, 106499. [Google Scholar] [CrossRef]
- Nti, E.K.; Cobbina, S.J.; Attafuah, E.E.; Senanu, L.D.; Amenyeku, G.; Gyan, M.A.; Forson, D.; Safo, A.R. Water pollution control and revitalization using advanced technologies: Uncovering artificial intelligence options towards environmental health protection, sustainability and water security. Heliyon 2023, 9, 18170. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Thunéll, S.; Lindberg, U.; Jiang, L.; Trygg, J.; Tysklind, M.; Souihi, N. A machine learning framework to improve effluent quality control in wastewater treatment plants. Sci. Total Environ. 2021, 784, 147138. [Google Scholar] [CrossRef]
- Pramanik, S. Intelligent Farming Utilizing a Soil Tracking Device. Convergence of Cloud Computing, AI, and Agricultural Science; IGI Global: Hershey, PA, USA, 2023; pp. 164–186. [Google Scholar] [CrossRef]
- Magid, J.; Pedersen, K.E.; Hansen, M.; Cedergreen, N.; Brandt, K.K. Comparative assessment of the risks associated with use of manure and sewage sludge in Danish agriculture. Adv. Agron. 2020, 164, 289–334. [Google Scholar] [CrossRef]
- AL-Huqail, A.A.; Kumar, P.; Abou Fayssal, S.; Adelodun, B.; Širić, I.; Goala, M.; Choi, K.S.; Taher, M.A.; El-Kholy, A.S.; Eid, E.M. Sustainable Use of Sewage Sludge for Marigold (Tagetes erecta L.) Cultivation: Experimental and Predictive Modeling Studies on Heavy Metal Accumulation. Horticulturae 2023, 9, 447. [Google Scholar] [CrossRef]
- Hu, Y.; Wei, R.; Yu, K.; Liu, Z.; Zhou, Q.; Zhang, M.; Qu, S. Exploring sludge yield patterns through interpretable machine learning models in China’s municipal wastewater treatment plants. Resour. Conserv. Recycl. 2024, 204, 107467. [Google Scholar] [CrossRef]
- Facchini, F.; Ranieri, L.; Vitti, M. A neural network model for decision-making with application in sewage sludge management. Appl. Sci. 2021, 11, 5434. [Google Scholar] [CrossRef]
- Ai, W.; Liu, S.; Liao, H.; Du, J.; Cai, Y.; Liao, C.; Wang, J. Application of hyperspectral imaging technology in the rapid identification of microplastics in farmland soil. Sci. Tot. Environ. 2022, 807, 151030. [Google Scholar] [CrossRef]
- Directive-2008/98-EN-Waste Framework Directive-EUR-Lex. (n.d.). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008L0098 (accessed on 9 August 2024).
- Directive-91/271-EN-EUR-Lex. (n.d.). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31991L0271 (accessed on 9 August 2024).
- Directive-86/278-EN-EUR-Lex. (n.d.). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31986L0278 (accessed on 9 August 2024).
- Grobelak, A.; Spinosa, L. Sustainable/integrated/sewage sludge management. In Sustainable and Circular Management of Resources and Waste towards a Green Deal; Elsevier: Amsterdam, The Netherlands, 2023; pp. 163–181. [Google Scholar]
- Đurđević, D.; Žiković, S.; Čop, T. Socio-Economic, Technical and Environmental Indicators for Sustainable Sewage Sludge Management and LEAP Analysis of Emissions Reduction. Energies 2022, 15, 6050. [Google Scholar] [CrossRef]
- Bachev, H.; Ivanov, B. Efficiency and factors for agricultural use of sludge in circular Bulgarian economy. J. Appl. Econ. Sci. 2021, 16, 1–44. [Google Scholar] [CrossRef]
- Palma-Heredia, D.; Poch, M.; Cugueró-Escofet, M. Implementation of a decision support system for sewage sludge management. Sustainability 2020, 12, 9089. [Google Scholar] [CrossRef]
Location | Sampling Site | Concentration (pcs/kg) | Shape | Polymer | Reference |
---|---|---|---|---|---|
Germany | Dewatered sludge | 1200–9400 | Fragments, films | PE, PP, PA | [58] |
China (11 provinces) | Dewatered sludge | 1600–56,400 | Fibers, fragments | PE, PP, PET | [59] |
Spain (Barcelona) | Primary and secondary sludge | 7500–25,000 | Fibers, fragments | PP, PET, PA | [60] |
United Kingdom | Primary sludge | 37,700—286,500 | Fibers, fragments | PES, PVA, PE, others | [61] |
Finland | Tertiary treated sludge | 2000–12,000 | Fragments, beads | PE, PET, PS | [55] |
Norway | Dewatered raw sludge | 6000 | Fragments, beads | PE, PET, PS, PVC | [62] |
USA (Midwest) | Dewatered sludge | 10,000–30,000 | Fibers, films | PE, PP, PVC | [59] |
Italy (Milan) | Dewatered sludge | 5800–37,600 | Fragments, fibers | PS, PE, PP | [18] |
Technique | Description | Application | Reference |
---|---|---|---|
Chromatography and mass spectrometry | |||
High-Performance Liquid Chromatography (HPLC) | Separates, identifies, and quantifies mixture components | pharmaceuticals, steroid hormones, and endocrine-disrupting personal care products | [91] [42] |
Liquid Chromatography-Mass Spectrometry (LC-MS) | Identifies non-volatile and thermally labile compounds by combining liquid chromatography and mass spectrometry | - Surfactants - thiabendazole, acesulfame, fenofibric acid, valsartan, irbesartan, salicylic acid, diclofenac, carbamazepine, 4-amino antipyrine (4-AA), 4-acetyl amino antipyrine (4-AAA), 4-formyl amino antipyrine (4-FAA), venlafaxine and benzoylecgonine | [92] [93] |
Gas Chromatography-Mass Spectrometry (GC-MS) | Detects volatile and semi-volatile organic compounds | 22 organic compounds used in industrial personal care products (PCPs) | [94] |
Ultra-Performance Liquid Chromatography (UPLC) | Enhanced form of HPLC with higher resolution and sensitivity | 60 emerging pollutants in sewage sludge | [95] |
Spectroscopy | |||
Fourier Transform Infrared Spectroscopy (FTIR) | Identifies organic, polymeric, and some inorganic materials | Polymer analysis, microplastics, | [96] |
Nuclear Magnetic Resonance (NMR) Spectroscopy | Provides molecular structure and dynamics information | Structural biology, organic chemistry, drug discovery | [97] |
Bioassays | |||
Toxicity Tests | Uses organisms like Daphnia magna, fish embryos, or algae to assess biological effects | Environmental toxicity assessment, pharmaceutical testing, ecological studies | [98] |
Genotoxicity Assays | Detects genetic damage potential; Comet Assay | Carcinogenicity testing, drug development, environmental health | [99] |
Molecular techniques | |||
Polymerase Chain Reaction (PCR) | Detects specific DNA sequences for bacteria or antibiotic resistance genes | Clinical diagnostics, genetic research, microbial identification | [100] |
Metagenomics | Offers insights into microbial communities and their functions | Environmental microbiology, human microbiome studies, biodiversity assessments | [101] |
Microscopy | |||
Scanning Electron Microscopy (SEM); Transmission Electron Microscopy (TEM) | Provides detailed surface images for identifying microplastics and nanoparticles Offers high-resolution images for micro- and nanoparticles | Nanoparticles’ transformation in sewage sludge | [102] |
Tool/Method | Description | Application | Reference |
---|---|---|---|
Quantitative Structure–Activity Relationship (QSAR) Models | Predict contaminant properties and effects based on chemical structure | Understanding the sorption of pharmaceuticals to sludge in risk assessment | [103] |
Exposure Models | Estimate human and environmental exposure levels | Public health risk assessment, environmental exposure studies, regulatory compliance; estimation of the human toxicity potential associated with chemical contaminants released upon the application of sewage sludge to agricultural land | [104] |
Fate and Transport Models | GMS (Groundwater Modeling System): used to simulate groundwater flow and contaminant transport in subsurface environments; HYDRUS version 5.01: a software package for simulating water, heat, and solute movement in variably saturated media; USEPA’s PRZM (Pesticide Root Zone Model): originally developed for pesticides; | - model the leaching of contaminants from sludge into groundwater; - model the transport of contaminants in soil following sludge application; - model can be adapted to simulate the fate and transport of contaminants in the root zone of crops fertilized with sewage sludge; | [105] [106] [107] |
Risk Quotient (RQ) Method: | Defined as the ratio between the maximum measured environmental concentration and the predicted no-effect concentration (PNEC) | The ecotoxicological potential of the studied nine PhACs in the wastewater discharged from the sewage treatment plant (Egypt) | [108] |
Life Cycle Assessment (LCA) | Semi-quantitative assessment methodology for selecting appropriate sludge treatment options based on a lifecycle assessment approach. | analysis of the technological unconventional system of a small wastewater treatment plant with modifications generating fertilizer, biomass, or peat substitution (“biosolids factory” concept) | [13] |
Risk Assessment (RA) | Scientific process in which the risks posed by inherent hazards involved in the process or situations are estimated either quantitatively or qualitatively | Environmental hazard indicators: the accumulation index of heavy metals in soil (Igeo), potential environmental risk indicator (PERI), risk assessment code (RAC), environmental risk factor (ERF); assessment of natural usage of sewage sludge. | [109] |
Environmental Risk Assessment (ERA) | Identifying and evaluating the adverse effects on the ecosystems, animals, and people, exposed through the environment, resulting from technological activities. | Potential Ecological Risk Factor (ER), Risk Index (RI), Risk Assessment Code (RAC), Individual Contamination Factor (ICF), Global Risk Index (GRI), Individual Ecological Risk (IER), Global Ecological Risk (GER); to demonstrate the differences between the level of ecological risk posed by the different heavy metals in sewage sludge | [110] |
Ecological Risk Assessment (ERA in the USA) | process that “evaluates the likelihood that adverse ecological effects may occur or are occurring as a result of exposure to one or more stressors” | Diclofenac, ibuprofen, and carbamazepine, 17-α-ethinylestradiol, β-estradiol, residues in sewage sludge; potential ecotoxicological effects | [111] |
EcoFate, tool | EcoFate is a software package for conducting ecosystem-based environmental and ecological risk assessments of chemical emissions by point and non-point sources in freshwater and marine aquatic ecosystems, including lakes, rivers, and marine inlets. EcoFate is available online [112] | EcoFate is designed to assess the cumulative impact of chemical inputs in terms of contaminant concentrations in water, sediment, and biota of an entire ecosystem. | [113] |
Geographic Information Systems (GIS) | Spatial analysis and mapping of contamination sources and patterns | Environmental monitoring, urban planning, public health surveillance, disaster response; to select sites suitable for land application of sewage waste. | [114] |
Technology | Advantages | Disadvantages | Microplastic Removal Efficiency | Inorganic Pollutants (Heavy Metals) Removal | Pharmaceuticals Removal | References |
---|---|---|---|---|---|---|
Composting | - Low cost - Produces organic fertilizers | -Slow degradation of some MPs - Emission of greenhouse gases (CH4, CO2) | Low (4–13%) | Low to moderate (depends on compost quality) | Low to moderate | [5,18,37] |
Thermophilic composting | - Faster organic material degradation - High temperature helps eliminate pathogens | - Requires high temperatures, increasing energy costs - Low effectiveness for some MPs | Moderate (29–43%) | Moderate (Temperature-dependent) | Moderate | [5,18,106] |
Anaerobic digestion (55 °C) | - High MP removal efficiency - Biogas production | - Requires specific temperature control - Infrastructure required for biogas processing | High (75–91%) | Moderate to High | Low to moderate | [5,63] |
Sludge drying | - Volume reduction | - High energy cost - Low MP removal efficiency | Low | Moderate (Stabilizes but does not remove metals) | Low to Moderate | [5,26,61] |
Sludge incineration | - Complete destruction of MPs and pathogens - Energy generation | - High capital and operational costs - Greenhouse gas and other pollutant emissions | Very High (100%) | Very High (Complete metal destruction) | Very High (Complete destruction | [5,18,26,55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grobelak, A.; Całus-Makowska, K.; Jasińska, A.; Klimasz, M.; Wypart-Pawul, A.; Augustajtys, D.; Baor, E.; Sławczyk, D.; Kowalska, A. Environmental Impacts and Contaminants Management in Sewage Sludge-to-Energy and Fertilizer Technologies: Current Trends and Future Directions. Energies 2024, 17, 4983. https://doi.org/10.3390/en17194983
Grobelak A, Całus-Makowska K, Jasińska A, Klimasz M, Wypart-Pawul A, Augustajtys D, Baor E, Sławczyk D, Kowalska A. Environmental Impacts and Contaminants Management in Sewage Sludge-to-Energy and Fertilizer Technologies: Current Trends and Future Directions. Energies. 2024; 17(19):4983. https://doi.org/10.3390/en17194983
Chicago/Turabian StyleGrobelak, Anna, Klaudia Całus-Makowska, Anna Jasińska, Marek Klimasz, Aleksandra Wypart-Pawul, Dominika Augustajtys, Estera Baor, Daria Sławczyk, and Aneta Kowalska. 2024. "Environmental Impacts and Contaminants Management in Sewage Sludge-to-Energy and Fertilizer Technologies: Current Trends and Future Directions" Energies 17, no. 19: 4983. https://doi.org/10.3390/en17194983
APA StyleGrobelak, A., Całus-Makowska, K., Jasińska, A., Klimasz, M., Wypart-Pawul, A., Augustajtys, D., Baor, E., Sławczyk, D., & Kowalska, A. (2024). Environmental Impacts and Contaminants Management in Sewage Sludge-to-Energy and Fertilizer Technologies: Current Trends and Future Directions. Energies, 17(19), 4983. https://doi.org/10.3390/en17194983