Optimal Estimation of Under-Frequency Load Shedding Scheme Parameters by Considering Virtual Inertia Injection
Abstract
:1. Introduction
- A UFLS scheme is proposed that considers the injection of virtual inertia using a VSC-HVDC link;
- The optimal location of the UFL relays, the activation threshold of each stage as well as the delay time and percentage of load shedding at each stage are determined through a GA.
2. Virtual Inertia
2.1. Inertia Constant and Oscillation Equation
2.2. Synthetic Inertia
3. Under-Frequency Load Shedding Scheme
4. Optimal Under-Frequency Load Shedding Scheme Using a GA
4.1. Mathematical Approach
4.2. Objective Function
4.3. Genetic Algorithm
4.3.1. Initial Population
4.3.2. Fitness Evaluation
4.3.3. Tournament Selection
4.3.4. Crossover Process
4.3.5. Mutation
4.3.6. New Generation
4.3.7. Stopping Criteria
4.4. Co-Simulation Framework: PowerFactory + Python
- Step 1: A vector X is defined, with the parameters of the candidate solution.
- Step 2: The space of possible values is defined for each of the genes of vector X. Thus, vectors and represent the limits of the parameters associated with the candidate solution.
- Step 3: The initial population is created by configuring individuals randomly.
- Step 4: The parameters of each individual are sent as configuration inputs for each of the UFRs that make up the UFLS system implemented in DigSILENT PowerFactory.
- Step 5: The inertial response control scheme of the VSC-HVDC link is activated.
- Step 6: A load flow is executed, and the total active power consumed by the system is exported to the GA in Python.
- Step 7: The initial conditions and dynamic simulation are run in DigSILENT PowerFactory, taking into account the frequency events defined in the dynamic simulation.
- Step 8: The results of the frequency time series and the total value of active power demanded by the system after UFLS action are sent to the GA in Python.
- Step 9: The objective function is evaluated by finding the difference between the total consumed active power values. If frequency violation values are evident in the frequency time series, the objective function takes a value that renders this individual unfeasible as a solution.
- Step 10: The selection tournament is conducted.
- Step 11: The individuals selected in the selection tournament are crossed over.
- Step 12: A mutation is applied to the resulting individuals from the crossover.
- Step 13: With the mutation included in the genes of the individuals, the new generation is ready to be evaluated.
- Step 14: If the stopping criteria are met, the algorithm stops, providing the solution. Otherwise, the algorithm returns to Step 4 and repeats the cycle until the stopping criteria are met.
5. Results
- Case 1: Frequency response to generation loss without VSC-HVDC link and UFLS scheme (base case).
- Case 2: Frequency response to generation loss considering VSC-HVDC link operation without virtual inertia injection and without UFLS scheme.
- Case 3: Frequency response to generation loss considering the operation of a traditional UFLS scheme and a VSC-HVDC link without inertia.
- Case 4: Frequency response to generation loss considering the virtual inertia injection of the VSC-HVDC link and the operation of a traditional UFLS.
- Case 5: Frequency response to generation loss considering the operation of an optimized UFLS scheme and a VSC-HVDC link without inertia.
- Case 6: Frequency response to generation loss considering virtual inertia injection of the VSC-HVDC link and operation of an optimized UFLS.
5.1. Case 1
5.2. Case 2
5.3. Case 3
- The frequency will never be less than 57.5 Hz.
- In contingencies, the time that the frequency remains below 58.5 Hz should be minimized.
- After 10 s of an event, the system frequency should be above the threshold of the first stage of the UFLS.
- The amount of load to be disconnected in events should be optimized, avoiding over frequency as much as possible, i.e., frequencies exceeding 60 Hz after an event has occurred.
5.4. Case 4
5.5. Case 5
5.6. Case 6
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Parameters of the IEEE 39-Bus Test System
Name | Bus i | Bus j | R1 (OHM) | X1 (OHM) | Length (km) |
---|---|---|---|---|---|
LINE 01-02 | Bus 01 | Bus 02 | 4.165876 | 48.91928 | 163.0643 |
LINE 01-39 | Bus 01 | Bus 39 | 1.19025 | 29.75625 | 99.1875 |
LINE 02-03 | Bus 02 | Bus 03 | 1.547325 | 17.97277 | 59.90925 |
LINE 02-25 | Bus 02 | Bus 25 | 8.33175 | 10.23615 | 34.1205 |
LINE 03-04 | Bus 03 | Bus 04 | 1.547325 | 25.35233 | 84.50775 |
LINE 03-18 | Bus 03 | Bus 18 | 1.309275 | 15.83033 | 52.76775 |
LINE 04-05 | Bus 04 | Bus 05 | 0.9522001 | 15.2352 | 50.784 |
LINE 04-14 | Bus 04 | Bus 14 | 0.9521999 | 15.35423 | 51.18075 |
LINE 05-06 | Bus 05 | Bus 06 | 0.23805 | 3.09465 | 10.3155 |
LINE 05-08 | Bus 05 | Bus 08 | 0.9521999 | 13.3308 | 44.436 |
LINE 06-07 | Bus 06 | Bus 07 | 0.7141501 | 10.9503 | 36.501 |
LINE 06-11 | Bus 06 | Bus 11 | 0.8331751 | 9.760051 | 32.5335 |
LINE 07-08 | Bus 07 | Bus 08 | 0.4761001 | 5.47515 | 18.2505 |
LINE 08-09 | Bus 08 | Bus 09 | 2.737574 | 43.20608 | 144.0202 |
LINE 09-39 | Bus 09 | Bus 39 | 1.19025 | 29.75625 | 99.1875 |
LINE 10-11 | Bus 10 | Bus 11 | 0.4761001 | 5.118075 | 17.06025 |
LINE 10-13 | Bus 10 | Bus 13 | 0.4761001 | 5.118075 | 17.06025 |
LINE 13-14 | Bus 13 | Bus 14 | 1.071225 | 12.02153 | 40.07175 |
LINE 14-15 | Bus 14 | Bus 15 | 2.14245 | 25.82843 | 86.09475 |
LINE 15-16 | Bus 15 | Bus 16 | 1.071225 | 11.18835 | 37.2945 |
LINE 16-17 | Bus 16 | Bus 17 | 0.8331751 | 10.59323 | 35.31075 |
LINE 16-19 | Bus 16 | Bus 19 | 1.9044 | 23.20988 | 77.36625 |
LINE 16-21 | Bus 16 | Bus 21 | 0.9522001 | 16.06837 | 53.56125 |
LINE 16-24 | Bus 16 | Bus 24 | 0.3570751 | 7.022476 | 23.40825 |
LINE 17-18 | Bus 17 | Bus 18 | 0.8331751 | 9.760051 | 32.5335 |
LINE 17-27 | Bus 17 | Bus 27 | 1.547325 | 20.59133 | 68.63775 |
LINE 21-22 | Bus 21 | Bus 22 | 0.9522001 | 16.6635 | 55.545 |
LINE 22-23 | Bus 22 | Bus 23 | 0.7141501 | 11.4264 | 38.088 |
LINE 23-24 | Bus 23 | Bus 24 | 2.61855 | 41.65875 | 138.8625 |
LINE 25-26 | Bus 25 | Bus 26 | 3.8088 | 38.44508 | 128.1503 |
LINE 26-27 | Bus 26 | Bus 27 | 1.66635 | 17.49668 | 58.32225 |
LINE 26-28 | Bus 26 | Bus 28 | 5.118075 | 56.41785 | 188.0595 |
LINE 26-29 | Bus 26 | Bus 29 | 6.784425 | 74.39063 | 247.9688 |
LINE 28-29 | Bus 28 | Bus 29 | 1.66635 | 17.97277 | 59.90925 |
Name | Nominal Apparent Power (MVA) | Voltage Relation (HV/LV) | Short Circuit Impedance (%) |
---|---|---|---|
TRF 02-30 | 1000 | YN 345/16.5 Y | 18.1 |
TRF 06-31 | 700 | YN 345/16.5 Y | 17.5 |
TRF 10-32 | 800 | YN 345/16.5 Y | 16 |
TRF 11-12 | 300 | YN 345/138 Y | 13.06 |
TRF 13-12 | 300 | YN 345/138 Y | 13.06 |
TRF 19-20 | 1000 | YN 345/230 Y | 13.82 |
TRF 19-33 | 800 | YN 345/16.5 Y | 11.37 |
TRF 20-34 | 300 | YN 345/16.5 Y | 10.81 |
TRF 22-35 | 800 | YN 345/16.5 Y | 11.44 |
TRF 23-36 | 700 | YN 345/16.5 Y | 19.04 |
TRF 25-37 | 700 | YN 345/16.5 Y | 16.25 |
TRF 29-38 | 1000 | YN 345/16.5 Y | 15.62 |
References
- Ebinyu, E.; Abdel-Rahim, O.; Mansour, D.E.A.; Shoyama, M.; Abdelkader, S.M. Grid-Forming Control: Advancements towards 100% Inverter-Based Grids—A Review. Energies 2023, 16, 7579. [Google Scholar] [CrossRef]
- Alavi-Koosha, A.; Amraee, T.; Oskouee, S.S. A multi-area design of under frequency load shedding schemes considering energy storage system. IET Gener. Transm. Distrib. 2023, 17, 4437–4452. [Google Scholar] [CrossRef]
- Schäfer, B.; Beck, C.; Aihara, K.; Witthaut, D.; Timme, M. Non-Gaussian power grid frequency fluctuations characterized by Lévy-stable laws and superstatistics. Nat. Energy 2018, 3, 119–126. [Google Scholar] [CrossRef]
- Seheda, M.S.; Dudurych, O.B. Issues of inertia response and rate of change of frequency in power systems with different penetration of variable speed wind turbines. In Proceedings of the 2016 Electric Power Networks (EPNet), Szklarska Poreba, Poland, 19–21 September 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Haes Alhelou, H.; Golshan, M.E.H.; Hatziargyriou, N.D. A Decentralized Functional Observer Based Optimal LFC Considering Unknown Inputs, Uncertainties, and Cyber-Attacks. IEEE Trans. Power Syst. 2019, 34, 4408–4417. [Google Scholar] [CrossRef]
- Acosta, M.N.; Adiyabazar, C.; Gonzalez-Longatt, F.; Andrade, M.A.; Torres, J.R.; Vazquez, E.; Riquelme Santos, J.M. Optimal Under-Frequency Load Shedding Setting at Altai-Uliastai Regional Power System, Mongolia. Energies 2020, 13, 5390. [Google Scholar] [CrossRef]
- Hsu, C.T.; Chuang, H.J.; Chen, C.S. Adaptive load shedding for an industrial petroleum cogeneration system. Expert Syst. Appl. 2011, 38, 13967–13974. [Google Scholar] [CrossRef]
- Hong, Y.Y.; Nguyen, M.T. Multiobjective Multiscenario Under-Frequency Load Shedding in a Standalone Power System. IEEE Syst. J. 2020, 14, 2759–2769. [Google Scholar] [CrossRef]
- Hooshmand, R.; Moazzami, M. Optimal design of adaptive under frequency load shedding using artificial neural networks in isolated power system. Int. J. Electr. Power Energy Syst. 2012, 42, 220–228. [Google Scholar] [CrossRef]
- Rafinia, A.; Moshtagh, J.; Rezaei, N. Stochastic optimal robust design of a new multi-stage under-frequency load shedding system considering renewable energy sources. Int. J. Electr. Power Energy Syst. 2020, 118, 105735. [Google Scholar] [CrossRef]
- Kumar, A.; Thakur, R. A Fuzzy Logic Based Load Shedding Technique for Operation of DG in Islanding Mode. In Proceedings of the 2017 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Coimbatore, India, 14–16 December 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Haidar, A.M.; Mohamed, A.; Hussain, A. Vulnerability control of large scale interconnected power system using neuro-fuzzy load shedding approach. Expert Syst. Appl. 2010, 37, 3171–3176. [Google Scholar] [CrossRef]
- Talaat, M.; Hatata, A.; Alsayyari, A.S.; Alblawi, A. A smart load management system based on the grasshopper optimization algorithm using the under-frequency load shedding approach. Energy 2020, 190, 116423. [Google Scholar] [CrossRef]
- Amraee, T.; Darebaghi, M.G.; Soroudi, A.; Keane, A. Probabilistic Under Frequency Load Shedding Considering RoCoF Relays of Distributed Generators. IEEE Trans. Power Syst. 2018, 33, 3587–3598. [Google Scholar] [CrossRef]
- Banijamali, S.S.; Amraee, T. Semi-Adaptive Setting of Under Frequency Load Shedding Relays Considering Credible Generation Outage Scenarios. IEEE Trans. Power Deliv. 2019, 34, 1098–1108. [Google Scholar] [CrossRef]
- Badesa, L.; O’Malley, C.; Parajeles, M.; Strbac, G. Chance-constrained allocation of UFLS candidate feeders under high penetration of distributed generation. Int. J. Electr. Power Energy Syst. 2023, 147, 108782. [Google Scholar] [CrossRef]
- Masood, N.A.; Jawad, A.; Banik, S. A RoCoF-constrained underfrequency load shedding scheme with static voltage stability-based zoning approach. Sustain. Energy Grids Netw. 2023, 35, 101080. [Google Scholar] [CrossRef]
- Cai, G.; Zhou, S.; Liu, C.; Zhang, Y.; Guo, S.; Cao, Z. Hierarchical under frequency load shedding scheme for inter-connected power systems. Prot. Control. Mod. Power Syst. 2023, 8, 34. [Google Scholar] [CrossRef]
- Haes Alhelou, H.; Hamedani Golshan, M.E.; Njenda, T.C.; Hatziargyriou, N.D. An Overview of UFLS in Conventional, Modern, and Future Smart Power Systems: Challenges and Opportunities. Electr. Power Syst. Res. 2020, 179, 106054. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.; Zhou, Y. Intelligent Under Frequency and Under Voltage Load Shedding Method Based on the Active Participation of Smart Appliances. IEEE Trans. Smart Grid 2017, 8, 353–361. [Google Scholar] [CrossRef]
- Huang, B.; Du, Z.; Liu, Y.; Zhao, F. Study on online under-frequency load shedding strategy with virtual inertia control of wind turbines. J. Eng. 2017, 2017, 1819–1823. [Google Scholar] [CrossRef]
- Gonzalez-Longatt, F.; Chikuni, E.; Stemmet, W.; Folly, K. Effects of the synthetic inertia from wind power on the total system inertia after a frequency disturbance. In Proceedings of the IEEE Power and Energy Society Conference and Exposition in Africa: Intelligent Grid Integration of Renewable Energy Resources (PowerAfrica), Johannesburg, South Africa, 9–13 July 2012; pp. 1–7. [Google Scholar] [CrossRef]
- Kundur, P. Power System Stability and Control; McGraw-Hill: New Delhi, India, 1994; p. 1167. [Google Scholar]
- Johnson, A. System Technical Performance-Simulated Inertia 2010. Available online: https://www.nationalgrideso.com/document/10376/download (accessed on 30 April 2023).
- Yu, M.; Dyśko, A.; Booth, C.D.; Roscoe, A.J.; Zhu, J. A review of control methods for providing frequency response in VSC-HVDC transmission systems. In Proceedings of the 2014 49th International Universities Power Engineering Conference (UPEC), Cluj-Napoca, Romania, 2–5 September 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Zhu, J.; Booth, C.D.; Adam, G.P.; Roscoe, A.J.; Bright, C.G. Inertia Emulation Control Strategy for VSC-HVDC Transmission Systems. IEEE Trans. Power Syst. 2013, 28, 1277–1287. [Google Scholar] [CrossRef]
- Haileselassie, T.M.; Torres-Olguin, R.E.; Vrana, T.K.; Uhlen, K.; Undeland, T. Main grid frequency support strategy for VSC-HVDC connected wind farms with variable speed wind turbines. In Proceedings of the 2011 IEEE Trondheim PowerTech, Trondheim, Norway, 19–23 June 2011. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Yang, Y.; Li, Y.; Chen, H.; Xu, Z. Coordinated control of wind farm and VSC-HVDC system using capacitor energy and kinetic energy to improve inertia level of power systems. Int. J. Electr. Power Energy Syst. 2014, 59, 79–92. [Google Scholar] [CrossRef]
- Pérez Posada, A.F.; Villegas, J.G.; López-Lezama, J.M. A Scatter Search Heuristic for the Optimal Location, Sizing and Contract Pricing of Distributed Generation in Electric Distribution Systems. Energies 2017, 10, 1449. [Google Scholar] [CrossRef]
- Sanin-Villa, D.; Montoya, O.D.; Grisales-Noreña, L.F. Material Property Characterization and Parameter Estimation of Thermoelectric Generator by Using a Master—Slave Strategy Based on Metaheuristics Techniques. Mathematics 2023, 11, 1326. [Google Scholar] [CrossRef]
- Swaminathan, D.; Rajagopalan, A.; Montoya, O.D.; Arul, S.; Grisales-Noreña, L.F. Distribution Network Reconfiguration Based on Hybrid Golden Flower Algorithm for Smart Cities Evolution. Energies 2023, 16, 2454. [Google Scholar] [CrossRef]
- Agudelo, L.; López-Lezama, J.M.; Muñoz-Galeano, N. Vulnerability assessment of power systems to intentional attacks using a specialized genetic algorithm. Dyna 2015, 82, 78–84. [Google Scholar] [CrossRef]
- Almazrouei, O.S.M.B.H.; Magalingam, P.; Hasan, M.K.; Shanmugam, M. A Review on Attack Graph Analysis for IoT Vulnerability Assessment: Challenges, Open Issues, and Future Directions. IEEE Access 2023, 11, 44350–44376. [Google Scholar] [CrossRef]
- Saldarriaga-Zuluaga, S.D.; López-Lezama, J.M.; Muñoz-Galeano, N. Adaptive protection coordination scheme in microgrids using directional over-current relays with non-standard characteristics. Heliyon 2021, 7, e06665. [Google Scholar] [CrossRef]
- Castillo Salazar, C.A.; Conde Enriquez, A. Coordination of Overcurrent Relays Using Genetic Algorithms and Unconventional Curves. IEEE Lat. Am. Trans. 2014, 12, 1449–1455. [Google Scholar] [CrossRef]
- Jiménez, J.; Guardado, J.L.; Cabrera, N.G.; Rodriguez, J.R.; Figueroa, F. Transmission expansion planning systems using algorithm genetic with multi-objective criterion. IEEE Lat. Am. Trans. 2017, 15, 563–568. [Google Scholar] [CrossRef]
- Huamannahui Huanca, D.; Gallego Pareja, L.A. Chu and Beasley Genetic Algorithm to Solve the Transmission Network Expansion Planning Problem Considering Active Power Losses. IEEE Lat. Am. Trans. 2021, 19, 1967–1975. [Google Scholar] [CrossRef]
- Hong, Y.Y.; Wei, S.F. Multiobjective underfrequency load shedding in an autonomous system using hierarchical genetic algorithms. IEEE Trans. Power Deliv. 2010, 25, 1355–1362. [Google Scholar] [CrossRef]
- Sanaye-Pasand, M.; Davarpanah, M. A new adaptive multidimensioanal load shedding scheme using genetic algorithm. In Proceedings of the 2005 Canadian Conference on Electrical and Computer Engineering, Saskatoon, SK, Canada, 1–4 May 2005; pp. 1974–1977. [Google Scholar] [CrossRef]
- Fan, Y.; Zi, X.; Jun, L.; Bingbing, L. Research on optimal load shedding for active distribution network based on genetic algorithm. In Proceedings of the 2017 2nd International Conference on Power and Renewable Energy, ICPRE 2017, Chengdu, China, 20–23 September 2017; pp. 510–514. [Google Scholar] [CrossRef]
- Saldarriaga-Zuluaga, S.D.; López-Lezama, J.M.; Muñoz-Galeano, N. Optimal coordination of overcurrent relays in microgrids considering a non-standard characteristic. Energies 2020, 13, 922. [Google Scholar] [CrossRef]
- Wu, X.; Xue, F.; Dai, J.; Tang, Y. Adaptive Under-Frequency Load Shedding Control Strategy of Power Systems With Wind Turbines and UHVDC Participating in Frequency Regulation. Front. Energy Res. 2022, 10, 875785. [Google Scholar] [CrossRef]
- Tang, G.; Xu, Z.; Dong, H.; Xu, Q. Sliding Mode Robust Control Based Active-Power Modulation of Multi-Terminal HVDC Transmissions. IEEE Trans. Power Syst. 2016, 31, 1614–1623. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y. Research on interval multi-objective optimal power flow in AC-DC systems considering wind power fluctuation. Wind Eng. 2021, 45, 1587–1600. [Google Scholar] [CrossRef]
- Xiao, L.; Xu, Z.; Xiao, H.; Zhang, Z.; Wang, G.; Xu, Y. Electro-mechanical transient modeling of MMC based multi-terminal HVDC system with DC faults considered. Int. J. Electr. Power Energy Syst. 2019, 113, 1002–1013. [Google Scholar] [CrossRef]
- Tan, B.; Zhao, J.; Duan, N.; Maldonado, D.A.; Zhang, Y.; Zhang, H.; Anitescu, M. Distributed Frequency Divider for Power System Bus Frequency Online Estimation Considering Virtual Inertia From DFIGs. IEEE J. Emerg. Sel. Top. Circuits Syst. 2022, 12, 161–171. [Google Scholar] [CrossRef]
- Abu Talib, D.N.; Mokhlis, H.; Abu Talip, M.S.; Naidu, K.; Suyono, H. Power System Restoration Planning Strategy Based on Optimal Energizing Time of Sectionalizing Islands. Energies 2018, 11, 1316. [Google Scholar] [CrossRef]
Name | Bus Type | Nominal Apparent Power (MVA) | Active Power (MW) | Reactive Power (MVAR) |
---|---|---|---|---|
G 01 | PV | 10,000 | 1000 | 96.89808 |
G 02 | SL | 700 | 217.8205 | 174.5153 |
G 03 | PV | 800 | 650 | 215.5386 |
G 04 | PV | 800 | 632 | 130.7027 |
G 05 | PV | 300 | 508 | 175.3939 |
G 06 | PV | 800 | 650 | 235.7521 |
G 07 | PV | 700 | 560 | 114.4111 |
G 08 | PV | 700 | 540 | 15.10529 |
G 09 | PV | 1000 | 630 | −8.693133 |
G 10 | PV | 1000 | 450 | 159.7332 |
Name | Connection Bus | Active Power (MW) | Reactive Power (MVAR) |
---|---|---|---|
LOAD 23 | Bus 23 | 247.5 | 84.6 |
LOAD 31 | Bus 31 | 9.2 | 4.6 |
LOAD 39 | Bus 39 | 1104 | 250 |
LOAD 03 | Bus 03 | 322 | 2.4 |
LOAD 04 | Bus 04 | 500 | 184 |
LOAD 07 | Bus 07 | 233.8 | 84 |
LOAD 08 | Bus 08 | 522 | 176 |
LOAD 12 | Bus 12 | 7.5 | 88 |
LOAD 15 | Bus 15 | 320 | 153 |
LOAD 16 | Bus 16 | 329 | 32.3 |
LOAD 18 | Bus 18 | 158 | 30 |
LOAD 20 | Bus 20 | 628 | 103 |
LOAD 21 | Bus 21 | 274 | 115 |
LOAD 24 | Bus 24 | 308.6 | −92.2 |
LOAD 25 | Bus 25 | 224 | 47.2 |
LOAD 26 | Bus 26 | 139 | 17 |
LOAD 27 | Bus 27 | 281 | 75.5 |
LOAD 28 | Bus 28 | 206 | 27.6 |
LOAD 29 | Bus 29 | 283.5 | 26.9 |
Stage | Frequency Threshold (Hz) | Load Shedding Percentage (%) | Delay (s) |
---|---|---|---|
1 | 59.4 | 6.7 | 0.2 |
2 | 59.2 | 6.7 | 0.2 |
3 | 59 | 6.7 | 0.4 |
4 | 58.8 | 6.7 | 0.4 |
5 | 58.6 | 6.7 | 0.6 |
6 | 58.4 | 6.7 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bustamante-Mesa, S.; Gonzalez-Sanchez, J.W.; Saldarriaga-Zuluaga, S.D.; López-Lezama, J.M.; Muñoz-Galeano, N. Optimal Estimation of Under-Frequency Load Shedding Scheme Parameters by Considering Virtual Inertia Injection. Energies 2024, 17, 279. https://doi.org/10.3390/en17020279
Bustamante-Mesa S, Gonzalez-Sanchez JW, Saldarriaga-Zuluaga SD, López-Lezama JM, Muñoz-Galeano N. Optimal Estimation of Under-Frequency Load Shedding Scheme Parameters by Considering Virtual Inertia Injection. Energies. 2024; 17(2):279. https://doi.org/10.3390/en17020279
Chicago/Turabian StyleBustamante-Mesa, Santiago, Jorge W. Gonzalez-Sanchez, Sergio D. Saldarriaga-Zuluaga, Jesús M. López-Lezama, and Nicolás Muñoz-Galeano. 2024. "Optimal Estimation of Under-Frequency Load Shedding Scheme Parameters by Considering Virtual Inertia Injection" Energies 17, no. 2: 279. https://doi.org/10.3390/en17020279
APA StyleBustamante-Mesa, S., Gonzalez-Sanchez, J. W., Saldarriaga-Zuluaga, S. D., López-Lezama, J. M., & Muñoz-Galeano, N. (2024). Optimal Estimation of Under-Frequency Load Shedding Scheme Parameters by Considering Virtual Inertia Injection. Energies, 17(2), 279. https://doi.org/10.3390/en17020279