The Emissions of a Compression-Ignition Engine Fuelled by a Mixture of Crude Oil and Biodiesel from the Lipids Accumulated in the Waste Glycerol-Fed Culture of Schizochytrium sp.
Abstract
:1. Introduction
1.1. Prospects of Biofuels
1.2. The Potential of Microalgae
1.3. Heterotrophic Microalgae
1.4. Biodiesel from the Biomass of Schizochytrium sp.
2. Materials and Methods
2.1. Organisation of the Experiment
2.2. Materials
2.2.1. Origin and Cultivation of Schizochytrium sp. Biomass
2.2.2. Glycerol
2.2.3. Diesel Oil
2.3. Schizochytrium sp. Culture Conditions
2.4. Biodiesel Production
2.5. Compression–Ignition Engine
2.6. Analytical Methods
2.7. Statistical Methods
3. Results and Discussion
3.1. Schizochytrium sp. Biomass Growth and Lipid Production
3.2. Bio-Oil Characteristics and Properties
3.3. Engine Emissions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nordin, I.; Elofsson, K.; Jansson, T. Cost-Effective Reductions in Greenhouse Gas Emissions: Reducing Fuel Consumption or Replacing Fossil Fuels with Biofuels. Energy Policy 2024, 190, 114138. [Google Scholar] [CrossRef]
- Shahzad, S.; Jasińska, E. Renewable Revolution: A Review of Strategic Flexibility in Future Power Systems. Sustainability 2024, 16, 5454. [Google Scholar] [CrossRef]
- Tekbıyık Ersoy, N. Renewable Energy Policies; Springer: Cham, Switzerland, 2024; pp. 51–75. [Google Scholar] [CrossRef]
- Nunes, L.J.R. Exploring the Present and Future of Biomass Recovery Units: Technological Innovation, Policy Incentives and Economic Challenges. Biofuels 2024, 15, 375–387. [Google Scholar] [CrossRef]
- Umar, M.; Tayyab, M.; Chaudhry, H.R.; Su, C.W. Navigating Epistemic Uncertainty in Third-Generation Biodiesel Supply Chain Management through Robust Optimization for Economic and Environmental Performance. Ann. Oper. Res. 2023, 1–40. [Google Scholar] [CrossRef]
- Wang, A.; Rauf, A.; Ozturk, I.; Wu, J.; Zhao, X.; Du, H. The Key to Sustainability: In-Depth Investigation of Environmental Quality in G20 Countries through the Lens of Renewable Energy, Economic Complexity and Geopolitical Risk Resilience. J. Environ. Manag. 2024, 352, 120045. [Google Scholar] [CrossRef]
- Lekavičius, V.; Balsiūnaitė, R.; Bobinaitė, V.; Konstantinavičiūtė, I.; Rimkūnaitė, K.; Štreimikienė, D.; Tarvydas, D. The Diversification of Energy Resources and Equipment Imports in the European Union. Energy 2024, 307, 132595. [Google Scholar] [CrossRef]
- Sarkar, O.; Modestra, J.A.; Rova, U.; Christakopoulos, P.; Matsakas, L. Waste-Derived Renewable Hydrogen and Methane: Towards a Potential Energy Transition Solution. Fermentation 2023, 9, 368. [Google Scholar] [CrossRef]
- Morone, P.; Cottoni, L.; Giudice, F. Biofuels: Technology, Economics, and Policy Issues. In Handbook of Biofuels Production; Woodhead Publishing: Sawston, UK, 2023; pp. 55–92. [Google Scholar] [CrossRef]
- Gil Bravo, A.; Founti, M.; Al Mubarak, F.; Rezaee, R.; Wood, D.A. Economic, Societal, and Environmental Impacts of Available Energy Sources: A Review. Eng 2024, 5, 1232–1265. [Google Scholar] [CrossRef]
- Hoang, A.T.; Sirohi, R.; Pandey, A.; Nižetić, S.; Lam, S.S.; Chen, W.H.; Luque, R.; Thomas, S.; Arıcı, M.; Pham, V.V. Biofuel Production from Microalgae: Challenges and Chances. Phytochem. Rev. 2022, 22, 1089–1126. [Google Scholar] [CrossRef]
- Marangon, B.B.; Magalhães, I.B.; Pereira, A.S.A.P.; Silva, T.A.; Gama, R.C.N.; Ferreira, J.; Castro, J.S.; Assis, L.R.; Lorentz, J.F.; Calijuri, M.L. Emerging Microalgae-Based Biofuels: Technology, Life-Cycle and Scale-Up. Chemosphere 2023, 326, 138447. [Google Scholar] [CrossRef]
- Alazaiza, M.Y.D.; Albahnasawi, A.; Al Maskari, T.; Abujazar, M.S.S.; Bashir, M.J.K.; Nassani, D.E.; Abu Amr, S.S. Biofuel Production Using Cultivated Algae: Technologies, Economics, and Its Environmental Impacts. Energies 2023, 16, 1316. [Google Scholar] [CrossRef]
- Chanana, I.; Kaur, P.; Kumar, L.; Kumar, P.; Kulshreshtha, S. Advancements in Microalgal Biorefinery Technologies and Their Economic Analysis and Positioning in Energy Resource Market. Fermentation 2023, 9, 202. [Google Scholar] [CrossRef]
- Hinduja, K.; Achar, R.; Vadiraj, K.T. Microalgae as a Source of Sustainable Energy Resource for Biofuels: A Review. In Handbook of Emerging Materials for Sustainable Energy; Elsevier: Amsterdam, The Netherlands, 2024; pp. 467–492. [Google Scholar] [CrossRef]
- Zieliński, M.; Dębowski, M.; Kazimierowicz, J.; Świca, I. Microalgal Carbon Dioxide (CO2) Capture and Utilization from the European Union Perspective. Energies 2023, 16, 1446. [Google Scholar] [CrossRef]
- Kholssi, R.; Lougraimzi, H.; Moreno-Garrido, I. Effects of Global Environmental Change on Microalgal Photosynthesis, Growth and Their Distribution. Mar. Environ. Res. 2023, 184, 105877. [Google Scholar] [CrossRef] [PubMed]
- Olabi, A.G.; Shehata, N.; Sayed, E.T.; Rodriguez, C.; Anyanwu, R.C.; Russell, C.; Abdelkareem, M.A. Role of Microalgae in Achieving Sustainable Development Goals and Circular Economy. Sci. Total Environ. 2023, 854, 158689. [Google Scholar] [CrossRef] [PubMed]
- Novoveská, L.; Nielsen, S.L.; Eroldoğan, O.T.; Haznedaroglu, B.Z.; Rinkevich, B.; Fazi, S.; Robbens, J.; Vasquez, M.; Einarsson, H. Overview and Challenges of Large-Scale Cultivation of Photosynthetic Microalgae and Cyanobacteria. Mar. Drugs 2023, 21, 445. [Google Scholar] [CrossRef]
- Amaro, H.M.; Salgado, E.M.; Nunes, O.C.; Pires, J.C.M.; Esteves, A.F. Microalgae Systems—Environmental Agents for Wastewater Treatment and Further Potential Biomass Valorisation. J. Environ. Manag. 2023, 337, 117678. [Google Scholar] [CrossRef] [PubMed]
- Tazkiaturrizki; Rinanti, A.; Fachrul, M.F.; Hendrawan, D.I.; Aphirta, S.; Marendra, S.M.P.; Sipahutar, N.O.L. Implementation of Algal Approach in Techno-Socio-Economical Aspect of Wastewater Treatment. In Algae As a Natural Solution for Challenges in Water-Food-Energy Nexus. Environmental Science and Engineering; Springer: Singapore, 2024; pp. 199–260. [Google Scholar] [CrossRef]
- Jahan, S.; Pruvost, J.; Titica, M.; Cogne, G.; Fallowfield, H. Synergy between Carbon Sources and Light in Microalgal Culture from the Perspective of Wastewater Treatment in High Rate Algal Ponds. Algal Res. 2024, 79, 103466. [Google Scholar] [CrossRef]
- Camarena-Bernard, C.; Pozzobon, V. Evolving Perspectives on Lutein Production from Microalgae—A Focus on Productivity and Heterotrophic Culture. Biotechnol. Adv. 2024, 73, 108375. [Google Scholar] [CrossRef]
- Demir, M.; Gündes, A.G. Single-Cell Oil Production by Mortierella Isabellina DSM 1414 Using Different Sugars as Carbon Source. Biotechnol. Prog. 2020, 36, e3050. [Google Scholar] [CrossRef]
- Korozi, E.; Kefalogianni, I.; Tsagou, V.; Chatzipavlidis, I.; Markou, G.; Karnaouri, A. Evaluation of Growth and Production of High-Value-Added Metabolites in Scenedesmus Quadricauda and Chlorella Vulgaris Grown on Crude Glycerol under Heterotrophic and Mixotrophic Conditions Using Monochromatic Light-Emitting Diodes (LEDs). Foods 2023, 12, 3068. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Lee, M.H.; Leong, Y.K.; Chang, J.S.; Lee, D.J. Biodiesel Production from Heterotrophic Oleaginous Microalga Thraustochytrium sp. BM2 with Enhanced Lipid Accumulation Using Crude Glycerol as Alternative Carbon Source. Bioresour. Technol. 2020, 306, 123113. [Google Scholar] [CrossRef] [PubMed]
- Chilakamarry, C.R.; Sakinah, A.M.M.; Zularisam, A.W.; Pandey, A. Glycerol Waste to Value Added Products and Its Potential Applications. Syst. Microbiol. Biomanufacturing 2021, 1, 378–396. [Google Scholar] [CrossRef]
- Bouras, S.; Antoniadis, D.; Kountrias, G.; Karapanagiotidis, I.T.; Katsoulas, N. Effect of PH on Schizochytrium Limacinum Production Grown Using Crude Glycerol and Biogas Digestate Effluent. Agronomy 2022, 12, 364. [Google Scholar] [CrossRef]
- Kujawska, N.; Talbierz, S.; Dębowski, M.; Kazimierowicz, J.; Zieliński, M. Cultivation Method Effect on Schizochytrium sp. Biomass Growth and Docosahexaenoic Acid (DHA) Production with the Use of Waste Glycerol as a Source of Organic Carbon. Energies 2021, 14, 2952. [Google Scholar] [CrossRef]
- Mizik, T.; Gyarmati, G. Economic and Sustainability of Biodiesel Production—A Systematic Literature Review. Clean Technol. 2021, 3, 19–36. [Google Scholar] [CrossRef]
- Polprasert, S.; Choopakar, O.; Elefsiniotis, P. Bioethanol Production from Pretreated Palm Empty Fruit Bunch (PEFB) Using Sequential Enzymatic Hydrolysis and Yeast Fermentation. Biomass Bioenergy 2021, 149, 106088. [Google Scholar] [CrossRef]
- Ju, J.H.; Ko, D.J.; Heo, S.Y.; Lee, J.J.; Kim, Y.M.; Lee, B.S.; Kim, M.S.; Kim, C.H.; Seo, J.W.; Oh, B.R. Regulation of Lipid Accumulation Using Nitrogen for Microalgae Lipid Production in Schizochytrium sp. ABC101. Renew. Energy 2020, 153, 580–587. [Google Scholar] [CrossRef]
- Wang, Q.; Ye, H.; Sen, B.; Xie, Y.; He, Y.; Park, S.; Wang, G. Improved Production of Docosahexaenoic Acid in Batch Fermentation by Newly-Isolated Strains of Schizochytrium sp. and Thraustochytriidae sp. through Bioprocess Optimization. Synth. Syst. Biotechnol. 2018, 3, 121–129. [Google Scholar] [CrossRef]
- Chilakamarry, C.R.; Mimi Sakinah, A.M.; Zularisam, A.W.; Pandey, A.; Vo, D.V.N. Technological Perspectives for Utilisation of Waste Glycerol for the Production of Biofuels: A Review. Environ. Technol. Innov. 2021, 24, 101902. [Google Scholar] [CrossRef]
- Chang, M.; Zhang, T.; Guo, X.; Liu, Y.; Liu, R.; Jin, Q.; Wang, X. Optimization of Cultivation Conditions for Efficient Production of Carotenoid-Rich DHA Oil by Schizochytrium sp. S31. Process Biochem. 2020, 94, 190–197. [Google Scholar] [CrossRef]
- Kujawska, N.; Talbierz, S.; Dębowski, M.; Kazimierowicz, J.; Zieliński, M. Optimizing Docosahexaenoic Acid (DHA) Production by Schizochytrium sp. Grown on Waste Glycerol. Energies 2021, 14, 1685. [Google Scholar] [CrossRef]
- Awogbemi, O.; Von Kallon, D.V.; Onuh, E.I.; Aigbodion, V.S. An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications. Energies 2021, 14, 5687. [Google Scholar] [CrossRef]
- Altarazi, Y.S.M.; Abu Talib, A.R.; Yu, J.; Gires, E.; Abdul Ghafir, M.F.; Lucas, J.; Yusaf, T. Effects of Biofuel on Engines Performance and Emission Characteristics: A Review. Energy 2022, 238, 121910. [Google Scholar] [CrossRef]
- Cavalheiro, L.F.; Misutsu, M.Y.; Rial, R.C.; Viana, L.H.; Oliveira, L.C.S. Characterization of Residues and Evaluation of the Physico Chemical Properties of Soybean Biodiesel and Biodiesel: Diesel Blends in Different Storage Conditions. Renew. Energy 2020, 151, 454–462. [Google Scholar] [CrossRef]
- European Automobile Manufacturers’ Association (ACEA). Worldwide Fuel Charter 2019—Gasoline and Diesel Fuel; European Automobile Manufacturers’ Association: Brussels, Belgium, 2019. [Google Scholar]
- Atgur, V.; Manavendra, G.; Banapurmath, N.R.; Rao, B.N.; Rajhi, A.A.; Khan, T.M.Y.; Vadlamudi, C.; Krishnappa, S.; Sajjan, A.M.; Venkatesh, R. Essence of Thermal Analysis to Assess Biodiesel Combustion Performance. Energies 2022, 15, 6622. [Google Scholar] [CrossRef]
- Unglert, M.; Bockey, D.; Bofinger, C.; Buchholz, B.; Fisch, G.; Luther, R.; Müller, M.; Schaper, K.; Schmitt, J.; Schröder, O.; et al. Action Areas and the Need for Research in Biofuels. Fuel 2020, 268, 117227. [Google Scholar] [CrossRef]
- EN 590:2013/FprA1; Automotive Fuels—Diesel—Requirements and Test Methods. 2013. Available online: https://standards.iteh.ai/catalog/standards/cen/fec4714e-03a7-4ede-9f0f-5769bcb3d945/en-590-2013-fpra1?srsltid=AfmBOopaxJaTRuamA4BA-p0eL_992KKFyi85-HeDYw01OSX1WeFzZIqN (accessed on 25 September 2024).
- Kujawska, N.; Talbierz, S.; Dębowski, M.; Kazimierowicz, J.; Zieliński, M. Effect of the Concentration of Extracellular Polymeric Substances (EPS) and Aeration Intensity on Waste Glycerol Valorization by Docosahexaenoic Acid (DHA) Produced in Heterotrophic Culture of Schizochytrium sp. Appl. Sci. 2021, 11, 9573. [Google Scholar] [CrossRef]
- Chang, G.; Gao, N.; Tian, G.; Wu, Q.; Chang, M.; Wang, X. Improvement of Docosahexaenoic Acid Production on Glycerol by Schizochytrium sp. S31 with Constantly High Oxygen Transfer Coefficient. Bioresour. Technol. 2013, 142, 400–406. [Google Scholar] [CrossRef]
- EN 14104; Fat and Oil Derivates—Fatty Acid Methyl Ester (FAME)—Determination of Acid Value. European Standard. 2021. Available online: https://standards.iteh.ai/catalog/standards/cen/7a67b9de-1b54-4a80-bd13-c5db21ec455f/en-14104-2021 (accessed on 28 September 2024).
- DIN 51900; Testing of Solid and Liquid Fuels—Determination of Gross Calorific Value by the Bomb Calorimeter and Calculation of Net Calorific Value. European Standard. 2023. Available online: https://store.accuristech.com/standards/din-51900?product_id=2578000 (accessed on 28 September 2024).
- ISO 10370; Petroleum Products—Determination of Carbon Residue—Micro Method. International Organization for Standardization: Geneva, Switzerland, 2014. Available online: https://www.iso.org/standard/57081.html (accessed on 28 September 2024).
- ISO 3675; Crude Petroleum and Liquid Petroleum Products—Laboratory Determination of Density—Hydrometer Method. International Organization for Standardization: Geneva, Switzerland, 1998. Available online: https://www.iso.org/standard/26326.html (accessed on 28 September 2024).
- ISO 15267; Animal and Vegetable Fats and Oils—Flashpoint Limit Test Using Pensky-Martens Closed Cup Flash Tester. International Organization for Standardization: Geneva, Switzerland, 1998. Available online: https://www.iso.org/standard/27141.html (accessed on 28 September 2024).
- ISO 10540; Animal and Vegetable Fats and Oils—Determination of Phosphorus Content. International Organization for Standardization: Geneva, Switzerland, 2002. Available online: https://www.iso.org/standard/33121.html (accessed on 28 September 2024).
- EN 14111; Fat and Oil Derivatives—Fatty Acid Methyl Esters (FAME)—Determination of Iodine Value. European Standard. 2022. Available online: https://standards.iteh.ai/catalog/standards/cen/515ecaab-fec3-49e4-9d98-c2d20a515dda/en-14111-2022 (accessed on 28 September 2024).
- EN 14112; Fat and Oil Derivatives—Fatty Acid Methyl Esters (FAME)—Determination of Oxidation Stability (Accelerated Oxidation Test). European Standard. 2021. Available online: https://standards.iteh.ai/catalog/standards/cen/aa4b70be-e467-4a60-83ef-c2543b937f19/en-14112-2020 (accessed on 28 September 2024).
- ISO 3987; Petroleum Products—Determination of Sulfated Ash in Lubricating Oils and Additives. International Organization for Standardization: Geneva, Switzerland, 2010. Available online: https://www.iso.org/standard/44979.html (accessed on 28 September 2024).
- EN 12662; Liquid Petroleum Products—Determination of Total Contamination. European Standard. 2024. Available online: https://standards.iteh.ai/catalog/standards/cen/8dbff4b1-811d-426a-8197-f34e172273aa/en-12662-1-2024 (accessed on 28 September 2024).
- ISO 12937; Petroleum Products—Determination of Water—Coulometric Karl Fischer Titration Method. International Organization for Standardization: Geneva, Switzerland, 2000. Available online: https://www.iso.org/standard/2730.html (accessed on 28 September 2024).
- ISO 3104; Petroleum Products—Transparent and Opaque Liquids—Determination of Kinematic Viscosity and Calculation of Dynamic Viscosity. International Organization for Standardization: Geneva, Switzerland, 2023. Available online: https://www.iso.org/obp/ui/#iso:std:iso:3104:ed-4:v1:en (accessed on 28 September 2024).
- ISO 5165; Petroleum Products—Determination of the Ignition Quality of Diesel Fuels—Cetane Engine Method. Available online: https://www.iso.org/standard/76906.html (accessed on 28 September 2024).
- Diwan, B.; Parkhey, P.; Gupta, P. From Agro-Industrial Wastes to Single Cell Oils: A Step towards Prospective Biorefinery. Folia Microbiol. 2018, 63, 547–568. [Google Scholar] [CrossRef]
- Bailey, R.B. Enhanced Production of Lipids Containing Polyenoic Fatty Acid by Very High Density Cultures of Eukaryotic Microbes in Fermentors. U.S. Patent 6607900 B2, 26 January 2001. [Google Scholar]
- Chi, Z.; Liu, Y.; Frear, C.; Chen, S. Study of a Two-Stage Growth of DHA-Producing Marine Algae Schizochytrium Limacinum SR21 with Shifting Dissolved Oxygen Level. Appl. Microbiol. Biotechnol. 2009, 81, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Ratledge, C. Fatty Acid Biosynthesis in Microorganisms Being Used for Single Cell Oil Production. Biochimie 2004, 86, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.Y.; Chen, F. Application of Statistically-Based Experimental Designs for the Optimization of Eicosapentaenoic Acid Production by the Diatom Nitzschia Laevis. Biotechnol. Bioeng. 2001, 75, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhu, X.; Ye, H.; Wen, Y.; Sen, B.; Wang, G. Low Dissolved Oxygen Supply Functions as a Global Regulator of the Growth and Metabolism of Aurantiochytrium sp. PKU#Mn16 in the Early Stages of Docosahexaenoic Acid Fermentation. Microb. Cell Fact. 2023, 22, 1–13. [Google Scholar] [CrossRef]
- Richmond, A.E.; Soeder, C.J. Microalgaculture. Crit. Rev. Biotechnol. 1986, 4, 369–438. [Google Scholar] [CrossRef]
- EN 14214:2012+A2:2019; Liquid Petroleum Products—Fatty Acid Methyl Esters (FAME) for Use in Diesel Engines and Heating Applications—Requirements and Test Methods. 2019. Available online: https://standards.iteh.ai/catalog/standards/cen/0a2c5899-c226-479c-b277-5322cc71395d/en-14214-2012a2-2019?srsltid=AfmBOooNLTmRHdP3Xn-LrKLRkouQqDmcOkl5wp6OrT4jXw6g5HMhPHhP (accessed on 25 September 2024).
- Fernandez-Anez, N.; Castells Somoza, B.; Amez Arenillas, I.; Garcia-Torrent, J. Explosion Risk of Solid Biofuels; SpringerBriefs in Energy; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Mehra, K.S.; Pal, J.; Goel, V. A Comprehensive Review on the Atomization and Spray Characteristics of Renewable Biofuels. Sustain. Energy Technol. Assess. 2023, 56, 103106. [Google Scholar] [CrossRef]
- Kesieme, U.; Pazouki, K.; Murphy, A.; Chrysanthou, A. Biofuel as an Alternative Shipping Fuel: Technological, Environmental and Economic Assessment. Sustain. Energy Fuels 2019, 3, 899–909. [Google Scholar] [CrossRef]
- Masudi, A.; Muraza, O.; Jusoh, N.W.C.; Ubaidillah, U. Improvements in the Stability of Biodiesel Fuels: Recent Progress and Challenges. Environ. Sci. Pollut. Res. 2022, 30, 14104–14125. [Google Scholar] [CrossRef]
- Suraj, C.K.; Anand, K.; Sundararajan, T. Investigation of Biodiesel Production Methods by Altering Free Fatty Acid Content in Vegetable Oils. Biofuels 2020, 11, 587–595. [Google Scholar] [CrossRef]
- Longanesi, L.; Pereira, A.P.; Johnston, N.; Chuck, C.J. Oxidative Stability of Biodiesel: Recent Insights. Biofuels Bioprod. Biorefining 2022, 16, 265–289. [Google Scholar] [CrossRef]
- Doppalapudi, A.T.; Azad, A.K.; Khan, M.M.K. Advanced Strategies to Reduce Harmful Nitrogen-Oxide Emissions from Biodiesel Fueled Engine. Renew. Sustain. Energy Rev. 2023, 174, 113123. [Google Scholar] [CrossRef]
- Das, S.; Chowdhury, A. An Exploration of Biodiesel for Application in Aviation and Automobile Sector. Energy Nexus 2023, 10, 100204. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, V.P.; Srivastava, A. Quality Biodiesel via Biotransesterification from Inedible Renewable Sources. J. Clean. Prod. 2022, 379, 134653. [Google Scholar] [CrossRef]
- Caetano, N.S.; Ribeiro, V.; Ribeiro, L.; Baptista, A.; Monteiro, J. Biodiesel Production Systems: Operation, Process Control and Troubleshooting. In Biodiesel. Biofuel and Biorefinery Technologies; Tabatabaei, M., Aghbashlo, M., Eds.; Springer: Cham, Switzerland, 2019; Volume 8, pp. 27–56. [Google Scholar] [CrossRef]
- Rizzo, G.; Baroni, L.; Lombardo, M. Promising Sources of Plant-Derived Polyunsaturated Fatty Acids: A Narrative Review. Int. J. Environ. Res. Public Health 2023, 20, 1683. [Google Scholar] [CrossRef]
- Ananthi, V.; Brindhadevi, K.; Pugazhendhi, A.; Arun, A. Impact of Abiotic Factors on Biodiesel Production by Microalgae. Fuel 2021, 284, 118962. [Google Scholar] [CrossRef]
- Moraes, P.S.; Igansi, A.V.; Cadaval, T.R.S.; Pinto, L.A.A. Biodiesel Produced from Crude, Degummed, Neutralized and Bleached Oils of Nile Tilapia Waste: Production Efficiency, Physical-Chemical Quality and Economic Viability. Renew. Energy 2020, 161, 110–119. [Google Scholar] [CrossRef]
- Shen, Y.; Lu, T.; Liu, X.Y.; Zhao, M.T.; Yin, F.W.; Rakariyatham, K.; Zhou, D.Y. Improving the Oxidative Stability and Lengthening the Shelf Life of DHA Algae Oil with Composite Antioxidants. Food Chem. 2020, 313, 126139. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wahab, M.A.; El-Samawaty, A.E.R.M.A.; Elgorban, A.M.; Bahkali, A.H. Utilization of Low-Cost Substrates for the Production of High Biomass, Lipid and Docosahexaenoic Acid (DHA) Using Local Native Strain Aurantiochytrium sp. YB-05. J. King Saud Univ. Sci. 2022, 34, 102224. [Google Scholar] [CrossRef]
- Abdullah, M.A.; Hussein, H.A. Integrated Algal and Oil Palm Biorefinery as a Model System for Bioenergy Co-Generation with Bioproducts and Biopharmaceuticals. Bioresour. Bioprocess. 2021, 8, 1–29. [Google Scholar] [CrossRef]
- Innis, S.M. Palmitic Acid in Early Human Development. Crit. Rev. Food Sci. Nutr. 2016, 56, 1952–1959. [Google Scholar] [CrossRef]
- Ai, W.; Cho, H.M.; Mahmud, M.I. The Impact of Various Factors on Long-Term Storage of Biodiesel and Its Prevention: A Review. Energies 2024, 17, 3449. [Google Scholar] [CrossRef]
- Sia, C.B.; Kansedo, J.; Tan, Y.H.; Lee, K.T. Evaluation on Biodiesel Cold Flow Properties, Oxidative Stability and Enhancement Strategies: A Review. Biocatal. Agric. Biotechnol. 2020, 24, 101514. [Google Scholar] [CrossRef]
- Brahma, S.; Nath, B.; Basumatary, B.; Das, B.; Saikia, P.; Patir, K.; Basumatary, S. Biodiesel Production from Mixed Oils: A Sustainable Approach towards Industrial Biofuel Production. Chem. Eng. J. Adv. 2022, 10, 100284. [Google Scholar] [CrossRef]
- Hendro, J.; Zahra, H.S. Biodiesel Production from Crude Palm Oil (CPO) through Variation Steps of Esterification-Transesterification and Its Evaluations. AIP Conf. Proc. 2024, 3071, 020011. [Google Scholar]
- Hu, Q.; Sommerfeld, M.; Jarvis, E.; Ghirardi, M.; Posewitz, M.; Seibert, M.; Darzins, A. Microalgal Triacylglycerols as Feedstocks for Biofuel Production: Perspectives and Advances. Plant J. 2008, 54, 621–639. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Yan, X.; Pei, L.; Luo, Q.; Xu, J. Changes in Fatty Acids and Sterols during Batch Growth of Pavlova Viridis in Photobioreactor. J. Appl. Phycol. 2008, 20, 237–243. [Google Scholar] [CrossRef]
- Patel, A.; Karageorgou, D.; Rova, E.; Katapodis, P.; Rova, U.; Christakopoulos, P.; Matsakas, L. An Overview of Potential Oleaginous Microorganisms and Their Role in Biodiesel and Omega-3 Fatty Acid-Based Industries. Microorganisms 2020, 8, 434. [Google Scholar] [CrossRef]
- Aydın, F.; Öğüt, H. Effects of Using Ethanol-Biodiesel-Diesel Fuel in Single Cylinder Diesel Engine to Engine Performance and Emissions. Renew. Energy 2017, 103, 688–694. [Google Scholar] [CrossRef]
- Sanjid, A.; Masjuki, H.H.; Kalam, M.A.; Rahman, S.M.A.; Abedin, M.J.; Palash, S.M. Production of Palm and Jatropha Based Biodiesel and Investigation of Palm-Jatropha Combined Blend Properties, Performance, Exhaust Emission and Noise in an Unmodified Diesel Engine. J. Clean. Prod. 2014, 65, 295–303. [Google Scholar] [CrossRef]
- Namitha, B.; Sathish, A.; Senthil Kumar, P.; Nithya, K.; Sundar, S. Micro Algal Biodiesel Synthesized from Monoraphidium sp., and Chlorella Sorokiniana: Feasibility and Emission Parameter Studies. Fuel 2021, 301, 121063. [Google Scholar] [CrossRef]
- Kilic, G.; Sungur, B.; Topaloglu, B.; Ozcan, H. Experimental Analysis on the Performance and Emissions of Diesel/Butanol/Biodiesel Blended Fuels in a Flame Tube Boiler. Appl. Therm. Eng. 2018, 130, 195–202. [Google Scholar] [CrossRef]
- Abed, K.A.; Gad, M.S.; El Morsi, A.K.; Sayed, M.M.; Elyazeed, S.A. Effect of Biodiesel Fuels on Diesel Engine Emissions. Egypt. J. Pet. 2019, 28, 183–188. [Google Scholar] [CrossRef]
- Bazooyar, B.; Hallajbashi, N.; Shariati, A.; Ghorbani, A. An Investigation of the Effect of Input Air Upon Combustion Performance and Emissions of Biodiesel and Diesel Fuel in an Experimental Boiler. Energy Sources Part A Recover. Util. Environ. Eff. 2014, 36, 383–392. [Google Scholar] [CrossRef]
- Dębowski, M.; Michalski, R.; Zieliński, M.; Kazimierowicz, J. A Comparative Analysis of Emissions from a Compression–Ignition Engine Powered by Diesel, Rapeseed Biodiesel, and Biodiesel from Chlorella Protothecoides Biomass Cultured under Different Conditions. Atmosphere 2021, 12, 1099. [Google Scholar] [CrossRef]
- Gad, M.S.; El-Araby, R.; Abed, K.A.; El-Ibiari, N.N.; El Morsi, A.K.; El-Diwani, G.I. Performance and Emissions Characteristics of C.I. Engine Fueled with Palm Oil/Palm Oil Methyl Ester Blended with Diesel Fuel. Egypt. J. Pet. 2018, 27, 215–219. [Google Scholar] [CrossRef]
- Wu, G.; Ge, J.C.; Choi, N.J. A Comprehensive Review of the Application Characteristics of Biodiesel Blends in Diesel Engines. Appl. Sci. 2020, 10, 8015. [Google Scholar] [CrossRef]
- Gharehghani, A.; Mirsalim, M.; Hosseini, R. Effects of Waste Fish Oil Biodiesel on Diesel Engine Combustion Characteristics and Emission. Renew. Energy 2017, 101, 930–936. [Google Scholar] [CrossRef]
- Perumal, V.; Ilangkumaran, M. Experimental Analysis of Engine Performance, Combustion and Emission Using Pongamia Biodiesel as Fuel in CI Engine. Energy 2017, 129, 228–236. [Google Scholar] [CrossRef]
- Arunkumar, M.; Kannan, M.; Murali, G. Experimental Studies on Engine Performance and Emission Characteristics Using Castor Biodiesel as Fuel in CI Engine. Renew. Energy 2019, 131, 737–744. [Google Scholar] [CrossRef]
- Rajak, U.; Nashine, P.; Verma, T.N. Assessment of Diesel Engine Performance Using Spirulina Microalgae Biodiesel. Energy 2019, 166, 1025–1036. [Google Scholar] [CrossRef]
- Azad, A.K.; Adhikari, J.; Halder, P.; Rasul, M.G.; Hassan, N.M.S.; Khan, M.M.K.; Naqvi, S.R.; Viswanathan, K. Performance, Emission and Combustion Characteristics of a Diesel Engine Powered by Macadamia and Grapeseed Biodiesels. Energies 2020, 13, 2748. [Google Scholar] [CrossRef]
- Al-lwayzy, S.H.; Yusaf, T. Diesel Engine Performance and Exhaust Gas Emissions Using Microalgae Chlorella Protothecoides Biodiesel. Renew. Energy 2017, 101, 690–701. [Google Scholar] [CrossRef]
- Miri, S.M.R.; Seyedi, S.R.M.; Ghobadian, B. Effects of Biodiesel Fuel Synthesized from Non-Edible Rapeseed Oil on Performance and Emission Variables of Diesel Engines. J. Clean. Prod. 2017, 142, 3798–3808. [Google Scholar] [CrossRef]
- Özener, O.; Yüksek, L.; Ergenç, A.T.; Özkan, M. Effects of Soybean Biodiesel on a DI Diesel Engine Performance, Emission and Combustion Characteristics. Fuel 2014, 115, 875–883. [Google Scholar] [CrossRef]
- Geng, P.; Mao, H.; Zhang, Y.; Wei, L.; You, K.; Ju, J.; Chen, T. Combustion Characteristics and NOx Emissions of a Waste Cooking Oil Biodiesel Blend in a Marine Auxiliary Diesel Engine. Appl. Therm. Eng. 2017, 115, 947–954. [Google Scholar] [CrossRef]
- Zahan, K.A.; Kano, M. Biodiesel Production from Palm Oil, Its By-Products, and Mill Effluent: A Review. Energies 2018, 11, 2132. [Google Scholar] [CrossRef]
- Wahlen, B.D.; Morgan, M.R.; McCurdy, A.T.; Willis, R.M.; Morgan, M.D.; Dye, D.J.; Bugbee, B.; Wood, B.D.; Seefeldt, L.C. Biodiesel from Microalgae, Yeast, and Bacteria: Engine Performance and Exhaust Emissions. Energy Fuels 2013, 27, 220–228. [Google Scholar] [CrossRef]
- Chen, H.; Xie, B.; Ma, J.; Chen, Y. NOx Emission of Biodiesel Compared to Diesel: Higher or Lower? Appl. Therm. Eng. 2018, 137, 584–593. [Google Scholar] [CrossRef]
- Hussain, F.; Soudagar, M.E.M.; Afzal, A.; Mujtaba, M.A.; Rizwanul Fattah, I.M.; Naik, B.; Mulla, M.H.; Badruddin, I.A.; Yunus Khan, T.M.; Raju, V.D.; et al. Enhancement in Combustion, Performance, and Emission Characteristics of a Diesel Engine Fueled with Ce-ZnO Nanoparticle Additive Added to Soybean Biodiesel Blends. Energies 2020, 13, 4578. [Google Scholar] [CrossRef]
- Zahos-Siagos, I.; Karathanassis, V.; Karonis, D. Exhaust Emissions and Physicochemical Properties of N-Butanol/Diesel Blends with 2-Ethylhexyl Nitrate (EHN) or Hydrotreated Used Cooking Oil (HUCO) as Cetane Improvers. Energies 2018, 11, 3413. [Google Scholar] [CrossRef]
- Han, D.; Ickes, A.M.; Bohac, S.V.; Huang, Z.; Assanis, D.N. HC and CO Emissions of Premixed Low-Temperature Combustion Fueled by Blends of Diesel and Gasoline. Fuel 2012, 99, 13–19. [Google Scholar] [CrossRef]
- Palash, S.M.; Masjuki, H.H.; Kalam, M.A.; Atabani, A.E.; Rizwanul Fattah, I.M.; Sanjid, A. Biodiesel Production, Characterization, Diesel Engine Performance, and Emission Characteristics of Methyl Esters from Aphanamixis Polystachya Oil of Bangladesh. Energy Convers. Manag. 2015, 91, 149–157. [Google Scholar] [CrossRef]
- Nabi, M.N.; Rahman, M.M.; Islam, M.A.; Hossain, F.M.; Brooks, P.; Rowlands, W.N.; Tulloch, J.; Ristovski, Z.D.; Brown, R.J. Fuel Characterisation, Engine Performance, Combustion and Exhaust Emissions with a New Renewable Licella Biofuel. Energy Convers. Manag. 2015, 96, 588–598. [Google Scholar] [CrossRef]
- Kim, H.Y.; Ge, J.C.; Choi, N.J. Effects of Fuel Injection Pressure on Combustion and Emission Characteristics under Low Speed Conditions in a Diesel Engine Fueled with Palm Oil Biodiesel. Energies 2019, 12, 3264. [Google Scholar] [CrossRef]
- Gavhane, R.S.; Kate, A.M.; Soudagar, M.E.M.; Wakchaure, V.D.; Balgude, S.; Rizwanul Fattah, I.M.; Nik-Ghazali, N.N.; Fayaz, H.; Yunus Khan, T.M.; Mujtaba, M.A.; et al. Influence of Silica Nano-Additives on Performance and Emission Characteristics of Soybean Biodiesel Fuelled Diesel Engine. Energies 2021, 14, 1489. [Google Scholar] [CrossRef]
- Niculescu, R.; Clenci, A.; Iorga-Siman, V. Review on the Use of Diesel–Biodiesel–Alcohol Blends in Compression Ignition Engines. Energies 2019, 12, 1194. [Google Scholar] [CrossRef]
- Teoh, Y.H.; How, H.G.; Le, T.D.; Nguyen, H.T. Study of Performance, Emissions, and Combustion of a Common-Rail Injection Engine Fuelled with Blends of Cocos nucifera Biodiesel with Diesel Oil. Processes 2020, 8, 1287. [Google Scholar] [CrossRef]
Parameter | Unit | Value | EN 14214 Standard |
---|---|---|---|
Density at 15 °C | kg/m3 | 873 ± 39 | 860–900 |
Viscosity at 40 °C | mm2/s | 4.3 ± 1.3 | 3.5–5.0 |
Flash point | °C | 139 ± 4 | >101 |
Total contamination | mg/kg | 6.7 ± 0.5 | <24 |
Oxidative stability, 110 °C | hours | 8.9 ± 0.5 | >8 |
Acid value | mgKOH/g | 0.38 ± 0.11 | <0.5 |
Iodine value | gI/100 g | 98.4 ± 3.8 | <120 |
Cetane number | - | 55.2 ± 0.3 | >51 |
Water content | mg/kg | 82.1 ± 4.3 | <500 |
Sulphur content | mg/kg | 3.9 ± 0.8 | <10 |
Phosphorus content | mg/kg | 2.4 ± 0.9 | <4 |
Fatty acid | Unit | Value | Numerical symbol |
Myristic acid | % Total Fatty Acids | 3.1 ± 0.4 | C14:0 |
Palmitic acid | 40.4 ± 2.8 | C16:0 | |
Stearic acid | 4.6 ± 1.1 | C18:0 | |
Eicosapentaenoic acid | 6.7 ± 0.9 | C22:5 | |
Docosahexaenoic acid | 43.8 ± 2.3 | C22:6 |
Fuel | Engine Load [%] | CO2 [%] | Ref. |
---|---|---|---|
Diesel and biodiesel blend from Schizochytrium sp. lipids | 0 | 2.7 ± 0.4 | current results |
25 | 3.9 ± 0.9 | ||
50 | 5.3 ± 1.3 | ||
75 | 6.1 ± 1.7 | ||
100 | 6.7 ± 1.2 | ||
Diesel | 0 | 2.1 ± 0.5 | [97] |
25 | 2.9 ± 0.3 | ||
50 | 4.1 ± 0.2 | ||
75 | 5.2 ± 0.3 | ||
100 | 5.9 ± 0.2 | ||
Rapeseed oil biodiesel | 0 | 2.4 ± 0.1 | |
25 | 3.3 ± 0.2 | ||
50 | 4.9 ± 0.4 | ||
75 | 5.7 ± 0.1 | ||
100 | 6.3 ± 0.3 |
Fuel | Engine Load [%] | CO [ppm] | Ref. |
---|---|---|---|
Diesel and biodiesel blend from Schizochytrium sp. lipids | 0 | 850 ± 70 | current results |
25 | 830 ± 98 | ||
50 | 640 ± 112 | ||
75 | 540 ± 46 | ||
100 | 490 ± 31 | ||
Diesel | 0 | 700 ± 78 | [97] |
25 | 840 ± 46 | ||
50 | 570 ± 38 | ||
75 | 490 ± 25 | ||
100 | 360 ± 41 | ||
Rapeseed oil biodiesel | 0 | 1040 ± 82 | |
25 | 1200 ± 77 | ||
50 | 930 ± 50 | ||
75 | 670 ± 29 | ||
100 | 510 ± 25 |
Fuel | Engine Load [%] | NOx [ppm] | Ref. |
---|---|---|---|
Diesel and biodiesel blend from Schizochytrium sp. lipids | 0 | 91 ± 12 | current results |
25 | 166 ± 21 | ||
50 | 319 ± 19 | ||
75 | 370 ± 33 | ||
100 | 397 ± 37 | ||
Diesel | 0 | 111 ± 21 | [97] |
25 | 169 ± 18 | ||
50 | 332 ± 32 | ||
75 | 390 ± 15 | ||
100 | 457 ± 31 | ||
Rapeseed oil biodiesel | 0 | 96 ± 17 | |
25 | 147 ± 31 | ||
50 | 272 ± 9 | ||
75 | 301 ± 20 | ||
100 | 376 ± 32 |
Fuel | Engine Load [%] | HC [ppm] | Ref. |
---|---|---|---|
Diesel and biodiesel blend from Schizochytrium sp. lipids | 0 | 33 ± 2 | current results |
25 | 34 ± 3 | ||
50 | 39 ± 5 | ||
75 | 38 ± 3 | ||
100 | 38 ± 7 | ||
Diesel | 0 | 44 ± 7 | [97] |
25 | 46 ± 6 | ||
50 | 40 ± 4 | ||
75 | 42 ± 8 | ||
100 | 42 ± 2 | ||
Rapeseed oil biodiesel | 0 | 27 ± 2 | |
25 | 32 ± 1 | ||
50 | 35 ± 6 | ||
75 | 33 ± 2 | ||
100 | 30 ± 5 |
Fuel | Engine Load [%] | Smoke [%] | Ref. |
---|---|---|---|
Diesel and biodiesel blend from Schizochytrium sp. lipids | 0 | 13 ± 2 | current results |
25 | 15 ± 2 | ||
50 | 23 ± 4 | ||
75 | 36 ± 6 | ||
100 | 53 ± 8 | ||
Diesel | 0 | 3 ± 1 | [78] |
25 | 12 ± 4 | ||
50 | 31 ± 3 | ||
75 | 44 ± 6 | ||
100 | 66 ± 10 | ||
Rapeseed oil biodiesel | 0 | 9 ± 2 | |
25 | 13 ± 1 | ||
50 | 25 ± 3 | ||
75 | 36 ± 5 | ||
100 | 59 ± 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zieliński, M.; Dębowski, M.; Kazimierowicz, J.; Michalski, R. The Emissions of a Compression-Ignition Engine Fuelled by a Mixture of Crude Oil and Biodiesel from the Lipids Accumulated in the Waste Glycerol-Fed Culture of Schizochytrium sp. Energies 2024, 17, 5193. https://doi.org/10.3390/en17205193
Zieliński M, Dębowski M, Kazimierowicz J, Michalski R. The Emissions of a Compression-Ignition Engine Fuelled by a Mixture of Crude Oil and Biodiesel from the Lipids Accumulated in the Waste Glycerol-Fed Culture of Schizochytrium sp. Energies. 2024; 17(20):5193. https://doi.org/10.3390/en17205193
Chicago/Turabian StyleZieliński, Marcin, Marcin Dębowski, Joanna Kazimierowicz, and Ryszard Michalski. 2024. "The Emissions of a Compression-Ignition Engine Fuelled by a Mixture of Crude Oil and Biodiesel from the Lipids Accumulated in the Waste Glycerol-Fed Culture of Schizochytrium sp." Energies 17, no. 20: 5193. https://doi.org/10.3390/en17205193
APA StyleZieliński, M., Dębowski, M., Kazimierowicz, J., & Michalski, R. (2024). The Emissions of a Compression-Ignition Engine Fuelled by a Mixture of Crude Oil and Biodiesel from the Lipids Accumulated in the Waste Glycerol-Fed Culture of Schizochytrium sp. Energies, 17(20), 5193. https://doi.org/10.3390/en17205193