Multi-Criteria Decision-Making Approach for Optimal Energy Storage System Selection and Applications in Oman
Abstract
:1. Introduction
- A tailored MCDM approach that incorporates Oman-specific criteria and expert evaluations.
- An in-depth assessment of ESS technologies in the context of Oman’s renewable energy goals and grid infrastructure.
- A framework for ESS selection that can guide policymakers and energy planners in similar developing economies transitioning to renewable energy.
2. An Overview of Energy Storage Technologies (Classifications and Characteristics)
3. Oman’s Current Power System Overview and Future Electricity Demand
3.1. Electricity Demand
3.2. Power Generation Resources
3.3. Renewable Energy Future in Oman
4. The Need (Motivations) for Energy Storage in Electrical Systems
4.1. Matching the Supply to the Demand
4.1.1. Economic Efficiency Improvement
4.1.2. Maintaining Grid Stability
4.2. Driving Factors for Energy Storage Systems in Oman’s Renewable Energy Transition
- Intermittency of Renewable Sources: Oman’s push towards solar and wind energy introduces variability in power generation due to the intermittent nature of these resources. ESSs can help smooth out this variability.
- Supply–Demand Balance: As the share of renewable energy increases, maintaining a balance between supply and demand becomes more challenging. ESSs can store excess energy during high production periods and release it during peak demand time.
- Grid Stability Concerns: The high penetration of renewable energy can lead to grid instability issues. ESSs can provide rapid response capabilities to maintain frequency and voltage stability.
- Alignment with Oman Vision 2040: The country’s long-term development plan emphasizes sustainable energy. ESSs are crucial for achieving the ambitious renewable energy targets set in this vision.
- Reduction in Fossil Fuel Dependency: Oman aims to diversify its energy mix and reduce reliance on fossil fuels. ESSs enable a greater integration of renewables, supporting this transition.
- Energy Security: By enabling greater renewable integration and providing backup power, ESSs enhance Oman’s overall energy security.
5. Methodology
5.1. Evaluation Criteria for Selection of Energy Storage Technologies
5.2. Proposed Approach and Methodology
- Collection of Technology Types and Characteristics: we conducted through a comprehensive literature analysis to identify alternatives and criteria.
- Weight Calculation: experts’ evaluations are utilized to calculate the weights of the criteria.
- Ranking of Alternatives: the VIKOR method is employed to rank the alternatives.
- Sensitivity Analysis: a thorough sensitivity analysis is conducted to assess the robustness of the results.
5.3. Hesitate Fuzzy Analytic Hierarchy Process (HF-AHP)
- Definition of Linguistic Term Set: the syntax and semantics of the linguistic term set S are defined.
- Preference Matrices: matrices for main criteria and sub-criteria preferences are built through linguistic assessments of experts in group decision-making.
- Transformation to Hesitate Fuzzy Linguistic Term Sets (HFLTS): preference relations are transformed into HFLTS, and the envelope for each HFLTS is obtained.
- Optimistic and Pessimistic Calculations: Collective preference relations are obtained for each criterion by using 2-tuple set. The 2-tuple set associated with S is defined as . The function is given by:
- Weight Calculation: by normalizing the calculated midpoints of the intervals, the criteria weights are determined.
5.4. Hesitate Fuzzy VIKOR Method
- Decision Matrix Establishment: a decision matrix is established for the alternatives:
- Normalization of Decision Matrix [21]: the normalized decision matrix is determined.
- Utility and Regret Measures Calculation [30]: utility and regret measures are calculated for each alternative.
- Q-Value Calculation: the Q-value is computed to determine the ranking of alternatives.
6. An Application of the Proposed Approach in Oman
7. Results and Discussions
7.1. Ranking of Alternatives
7.2. Sensitivity Analysis
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Characteristics of Energy Storage Technologies
Storage Type | Technology | Energy Density (kWh/m3) | Power Density (kW/m3) | Energy Efficiency (%) | Self–Discharge Losses (%/Day) | Suitable Storage Duration | Storage Capacity (MW) | Technical Maturity | Charge Time | Response Time |
Mechanical Energy Storage (MSS) | Pumped hydro energy storage (PHES) | 0.1–0.2 [1] 0.5–1.5 [10,13,14] 0.01–0.1 [11] | 0.2–2 [1] 0.5–1.5 [10,13,14] 0.5–1.3 [11] | 70–80 [12] 75–80 [13] | 0.0001–0.0001 [13] | Hours–Months [10] Long Term [10] | 10.00–8,000.00 [13,14] 10–5,000 [15] | Very Mature/ Fully Commercialized [13,14] | hrs–Months [15] | 12 min [12] sec–min [15], sec–min [15], 1–2 min [15] |
Compressed air energy storage (CAES) | 0.2–0.6 [1] 0.5–2.0 [10,13,14] 0.04–10 [11] | 2–6 [1] 3–6 [10,13,14] 0.4–20 [11] | 90 [12] | 0.0001–0.0001 [13] | Hours–Months [10] Long Term [10] | 0.01–3,000.00 [13,14] 3–300 [15] | Proven/Commercializing [13,14] | hrs–Months [15] | 12 min [12] ≤15 min [15], 1–2 min [15] | |
Flywheel energy storage (FES) | 5000 [1] 1000–2000 [10,13,14] 40–2000 [11] | 20–80 [10,13,14] 0.3–400 [11] | 80–95 [12] | 100 [10], >=20% per hour [10] | Seconds–Minuts [10] Short Term [10] | 0.001–10.00 [13,14] 0.1–20 [15] | Proven/Commercializing [13,14] | Seconds–Minuts [15] | ≤10 millisec [15] <4 ms–sec [15] | |
Chemical Energy Storage (CES) | Hydrogen Energy Storage Fuel Cells | >500 [10,13,14] | 500–3000 [10,13,14] | 20–50 [10,13,14] 25–58 [15] | 0.5–2 [13] | Hours–Months [10] | 0–58.8 [15] 0.1–50 [15] | hrs–Months [15] | <1 s | |
Electrochemical Energy Storage (EcES) | Lead–acid | 90–700 [1] 10–400 [10,13,14] | 50–80 [10,13,14] 25–90 [11] | 65–80 [5] 75–90 [1] 63–90 [10] | 01–0.3 [13] | Minutes–days [10], short–to–med. Term | 0.00–50.00 [13,14] 0 –20 [15] | Very Mature/Fully Commercialized [13,14] | Min–Days [15] | milliseconds [8] 5–10 milli sec [15] |
Nickel–cadmium (NiCd) | 15–150 [13,14] | 37.66–141.05 [13,14] | 59–90 [13,14] | 0.07–0.71 | Minutes–days [10], short–to–med. Term | 0.00–50.00 [13,14] 0–40 [15] | Very Mature/Fully Commercialized [13,14] | Min–Days [15] | 20 ms–sec [15] | |
lithium–ion batteries (Li–Ion) | 1300–10,000 [1] 1500–10,000 [10,13,14] 60–800 [11] | 200–400 [1] 200–500 [10,13,14] 90–500 [11] | 85–98 [1] 90–97 [10,13,14] | 01–0.3 [13] | Minutes–days [10], short–to–med. Term | 0.00–3.00 [13,14] 0–0.1 [15] | Mature/ Commercialized [13,14] | Min–Days [15] | Seconds [15] | |
Electrical Energy Storage (ESS) | Superconducting | 0.20–13.80 [11] | 300–4000 [11] | 80–99 [11] | 10–15 [13,14,15] | Minutes–hours [10] short–term (<1 h) | 0.01–200.00 [13,14] 1–10 [15] | Proven/Commercializing [13,14] | Minuts–Hours [15] | milliseconds [13] ≤10 millisec [15], <100 ms [15] |
Supercapacitor | 1–35 [11] | 15–4500 [11] | 65 –99 [11] 84–97 [10] | 20–40 [13] | Seconds–hours [10] short–term (<1 h) | 0.00–5.00 [13,14] 0–0.3 [15] | Proven/Commercializing [13,14] | seconds–Hours [15] | milliseconds [13] | |
Thermal Energy Storage (TES) | Sensible Heat | 25–120 [11] | 7–90 [11] | 0.5 [15], 0.05–1 [15] | Minutes–days minutes–months [10] | 0.001–10.00 [13,14] | Mature/Commercialized [13,14] | Not for Rapid | ||
Latent Heat | 100 –370 [11] | 75–90 [11] | 0.5–1 | Minutes–days minutes–months [10] | 0.001–300.00 [13,14] | Proven/Commercializing [13,14] | days–months [16], Short to long term [16] Not for Rapid | |||
Reaction Heat | 300 [11] | 75–100 [11] | Minutes–days minutes–months [10] | 0.01–1.00 [13,14] | Proven/Commercializing [13,14] | Not for Rapid |
Appendix B. Comparative Framework for Multi-Criteria Decision-Making (MCDM) in Energy Storage Technology Selection
C1: Technical | C2: Economical | C3: Environmental | C4: Social | |||||||||||||||
Alternatives | Energy Efficiency (%) | Energy Density (kWh/m3) | Response Time | Storage Capacity (MW) | Charge Time (Days) | Risk | Capital Cost (Power Based) ($/kW) | O&M Cost ($/kW/year) | Lifetime | CO2 intensity | Air & Water Pollution | Land Disruption | Social Acceptance | Political Acceptance | Job Creation | Government Incentive | Health & Safety | |
C11 | C12 | C13 | C14 | C15 | C16 | C21 | C22 | C23 | C31 | C32 | C33 | C34 | C35 | C41 | C42 | C45 | ||
A1 | Pumped hydro energy storage (PHES) | 80 | 1.5 | Long | 8000 | Long | Very Low | 4300 | 3 | 40 | Low | Low | Medium | Very High | Very High | Very High | High | Very High |
A2 | Compressed air energy storage (CAES) | 90 | 10 | Long | 3000 | Long | Low | 1628 | 25 | 30 | High | Low | Medium | Very High | Very High | High | Medium | Low |
A3 | Flywheel energy storage (FES) | 95 | 5000 | Medium | 20 | Very Short | Very Low | 350 | 20 | 18 | Low | High | High | Very High | Very High | Low | Low | High |
A4 | Hydrogen Energy Storage Fuel Cells | 58 | 500 | Medium | 58 | long | Very Low | 10000 | 0.0135 | 20 | Very Low | Medium | High | High | Very High | Very High | Very High | Very High |
A5 | Lead Acid Battey | 90 | 700 | Very Short | 50 | Short | Medium | 900 | 50 | 20 | Very Low | Very High | Low | Medium | Low | Low | Low | Very Low |
A6 | Nickel-cadmium (NiCd) | 90 | 150 | Short | 50 | Short | Medium | 1500 | 20 | 20 | Very Low | High | Low | Medium | Low | Low | Low | Low |
A7 | lithium-ion batteries (Li-Ion) | 98 | 10000 | Very Short | 3 | Short | Medium | 4000 | 25 | 20 | Very Low | High | Medium | Medium | Low | Low | Low | Medium |
A8 | Superconducting | 99 | 13.8 | Very Short | 200 | Very Short | Low | 10000 | 10 | 25 | Low | Medium | Low | Medium | Medium | Very Low | Medium | High |
A9 | Supercapacitor | 99 | 35 | Short | 5 | Very Short | Low | 300 | 6 | 18 | Low | Medium | Low | Medium | Medium | Very Low | Medium | High |
References
- Kebede, A.A.; Kalogiannis, T.; Van Mierlo, J.; Berecibar, M. A comprehensive review of stationary energy storage devices for large scale re-newable energy sources grid integration. Renew. Sustain. Energy Rev. 2022, 159, 112213. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). World Energy Outlook 2022. Revised Version. November 2022. Available online: https://www.iea.org/reports/world-energy-outlook-2022 (accessed on 10 December 2022).
- Remap 2030. A Renewable Energy Roadmap; Summary of Findings; International Renewable Energy Agency (IRENA): Masdar City, United Arab Emirates, 2014.
- Giannelos, S.; Djapic, P.; Pudjianto, D.; Strbac, G. Quantification of the Energy Storage Contribution to Security of Supply through the F-Factor Methodology. Energies 2020, 13, 826. [Google Scholar] [CrossRef]
- Darma, I.D.; Indra, Y.S.; Purwadi, A. Energy storage systems for renewable energy power sector integration and mitigation of intermittency. Appl. Energy 2019, 236, 1140–1158. [Google Scholar]
- International Energy Agency (IEA), Grid-Scale Storage. Available online: https://www.iea.org/energy-system/electricity/grid-scale-storage (accessed on 20 December 2023).
- International Renewable Energy Agency, Electricity Storage and Renewables: Costs and Markets to 2030. Available online: https://www.irena.org/publications/2017/Oct/Electricity-storage-and-renewables-costs-and-markets (accessed on 20 December 2023).
- European Association for Storage of Energy (EASE). Energy Storage Targets 2030 and 2050 Ensuring Europe’s Energy Security in a Renewable Energy System; European Association for Storage of Energy: Brussels, Belgium, 2022. [Google Scholar]
- Mitali, J.; Dhinakaran, S.; Mohamad, A.A. Energy storage systems: A review. Energy Storage Sav. 2022, 1, 166–216. [Google Scholar] [CrossRef]
- Bullich-Massagué, E.; Cifuentes-García, F.-J.; Glenny-Crende, I.; Cheah-Mañé, M.; Aragüés-Peñalba, M.; Díaz-González, F.; Gomis-Bellmunt, O. A review of energy storage technologies for large scale photovoltaic power plants. Appl. Energy 2020, 274, 115213. [Google Scholar] [CrossRef]
- Faisal, M.; Hannan, M.A.; Ker, P.J.; Hussain, A.; Mansor, M.B.; Blaabjerg, F. Review of Energy Storage System Technologies in Microgrid Applications: Issues and Challenges. IEEE Access 2018, 6, 35143–35164. [Google Scholar] [CrossRef]
- Hossain, E.; Faruque, H.M.R.; Sunny, M.S.H.; Mohammad, N.; Nawar, N. A Comprehensive Review of Energy Storage Systems: Types, Comparison, Current Scenario, Applications, Barriers, and Potential Solutions, Policies, and Future Prospects. Energies 2020, 13, 3651. [Google Scholar] [CrossRef]
- Koohi-Fayegh, S.; Rosen, M.A. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047. [Google Scholar] [CrossRef]
- Sabihuddin, S.; Kiprakis, A.E.; Mueller, M. A Numerical and Graphical Review of Energy Storage Technologies. Energies 2015, 8, 172–216. [Google Scholar] [CrossRef]
- Nikolaidis, P.; Poullikkas, A. A comparative review of electrical energy storage systems for better sustainability. J. Power Technol. 2017, 97, 220–245. [Google Scholar]
- Bradbury, K.; Pratson, L.; Patino-Echeverri, D. Economic viability of energy storage systems based on price arbitrage potential in real-time U.S. electricity markets. Appl. Energy 2014, 114, 512–519. [Google Scholar] [CrossRef]
- Chowdhury, J.I.; Balta-Ozkan, N.; Goglio, P.; Hu, Y.; Varga, L.; McCabe, L. Techno-environmental analysis of battery storage for grid level energy services. Renew. Sustain. Energy Rev. 2020, 131, 110018. [Google Scholar] [CrossRef]
- 2040 Oman Vision. Available online: https://www.national-day-of-oman.info/wp-content/uploads/2020/11/OmanVision2040-Preliminary-Vision-Document.pdf (accessed on 10 December 2022).
- The Oman Power and Water Procurement Company (OPWP), 7 Year Statement 2021–2027. Issue 15. Available online: https://omanpwp.om/PDF/7%20Year%20Statement%20Issue%2015%202021%20-%202027.pdf (accessed on 13 October 2022).
- Yavuz, M.; Oztaysib, B.; Onarb, S.C.; Kahraman, C. Multi-criteria evaluation of alternative fuel vehicles via a hierarchical hesitant fuzzy linguistic model. Expert Syst. Appl. 2015, 42, 2835–2848. [Google Scholar] [CrossRef]
- Yıldıza, N.; Tüysüzb, F. A hybrid multi-criteria decision-making approach for strategic retail location investment: Application to Turkish food retailing. Socio-Econ. Plan. Sci. 2019, 68, 100619. [Google Scholar] [CrossRef]
- Cristóbal, J.R.S. Multi-criteria decision-making in the selection of a renewable energy project in Spain: The Vikor method. Renew. Energy 2011, 36, 498–502. [Google Scholar] [CrossRef]
- Estévez, R.A.; Espinoza, V.; Ponce Oliva, R.D.; Vásquez-Lavín, F.; Gelcich, S. Multi-Criteria Decision Analysis for Renewable Energies: Research Trends, Gaps and the Challenge of Improving Participation. Sustainability 2021, 13, 3515. [Google Scholar] [CrossRef]
- Shao, M.; Han, Z.; Sun, J.; Xiao, C.; Zhang, S.; Zhao, Y. A review of multi-criteria decision making applications for renewable energy site selection. Renew. Energy 2020, 157, 377–403. [Google Scholar] [CrossRef]
- Balezentis, T.; Streimikiene, D.; Siksnelyte-Butkiene, I. Energy storage selection for sustainable energy development: The multi-criteria utility analysis based on the ideal solutions and integer geometric programming for coordination degree. Environ. Impact Assess. Rev. 2021, 91, 106675. [Google Scholar] [CrossRef]
- Qie, X.; Zhang, R.; Hu, Y.; Sun, X.; Chen, X. A Multi-Criteria Decision-Making Approach for Energy Storage Technology Selection Based on Demand. Energies 2021, 14, 6592. [Google Scholar] [CrossRef]
- Barin, A.; Canha, L.N.; Abaide, A.R.; Magnago, K.F.; Wottrich, B.; Machado, R.Q. Multiple Criteria Analysis for Energy Storage Selection. Energy Power Eng. 2011, 3, 557–564. [Google Scholar] [CrossRef]
- Zubir Zubiria, A.; Menéndez, Á.; Grande, H.-J.; Fernández Aznar, G.; Sañudo, R. Multi-Criteria Decision-Making Problem for Energy Storage Technology Selection for Different Grid Applications. Energies 2022, 15, 7612. [Google Scholar] [CrossRef]
- Colak, M.; Kaya, I. Multi-criteria evaluation of energy storage technologies based on hesitant fuzzy information: A case study for Turkey. J. Energy Storage 2020, 28, 101211. [Google Scholar] [CrossRef]
- Ghadikolaei, A.S.; Madhoushi, M.; Divsalar, M. Extension of the VIKOR method for group decision making with extended hesitant fuzzy linguistic information. Neural Comput. Appl. 2018, 30, 3589–3602. [Google Scholar] [CrossRef]
2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | |
---|---|---|---|---|---|---|---|
Net MW | |||||||
Al Kamil IPP | 291 | - | - | - | - | - | - |
Barka IWPP | 397 | - | - | - | - | - | - |
Rusail IPP | 694 | - | - | - | - | - | - |
Sohar IWPP | 597 | - | - | - | - | - | - |
Barka II IPP | 688 | 688 | 688 | - | - | - | - |
Sohar II IPP | 766 | 766 | 766 | 766 | 766 | 766 | 766 |
Barka III IPP | 766 | 766 | 766 | 766 | 766 | 766 | 766 |
Sur IPP | 2018 | 2018 | 2018 | 2018 | 2018 | 2018 | 2018 |
Ibri IPP | 1537 | 1535 | 1535 | 1535 | 1535 | 1535 | 1535 |
Sohar III IPP | 1741 | 1738 | 1738 | 1738 | 1738 | 1738 | 1738 |
Total | 9495 | 7511 | 7511 | 6823 | 6823 | 6823 | 6823 |
Year | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 |
---|---|---|---|---|---|---|---|
Non-Renewable Contracted Capacity (MW) | 9495 | 7511 | 7511 | 6823 | 6823 | 6823 | 6823 |
Non-Firm Contracted Capacity (MW) | 380 | 380 | 380 | 380 | 380 | 380 | 380 |
Total Non-Renewable Contracted Capacity (MW) | 9875 | 7891 | 7891 | 7203 | 7203 | 7203 | 7203 |
Renewable Contracted and Planned Capacity (MW) | 0 | 500 | 500 | 1000 | 2000 | 2100 | 2700 |
Total Renewable Capacity Contributions (Contracted and Planned) During Demand Requirement | 0 | 180 | 180 | 225 | 280 | 330 | 330 |
Total Capacity Available | 9875 | 8391 | 8391 | 8203 | 9203 | 9303 | 9903 |
% Renewable Capacity from Total Capacity | 0% | 5% | 5% | 12% | 21% | 22% | 27% |
Type of MCDM Problem | Method(s) |
---|---|
Project evaluation | VIKOR/TOPSIS |
Service quality evaluation of domestic airlines | VIKOR |
Project evaluation | VIKOR/TOPSIS |
Energy policy selection | VIKOR |
Numerical examples | VIKOR |
Evaluation of people’s livelihood projects | VIKOR |
Evaluation of emergence response solutions | VIKOR/TOPSIS |
Inpatient admission assessment | VIKOR |
Personnel selection | VIKOR |
Electric vehicle design | DEMATEL/VIKOR |
Intelligent transport system selection | VIKOR |
Investment selection | VIKOR |
Accessory supplier selection | VIKOR |
Telecommunication service provider selection | VIKOR |
Multi-criteria evaluation of energy storage technologies based on hesitant fuzzy information: A case study for Turkey | AHP-VIKOR |
A Multi-Criteria Decision-Making Approach for Energy Storage Technology Selection Based on Demand | AHP-VIKOR |
C1 | C2 | C3 | C4 | ||||||
---|---|---|---|---|---|---|---|---|---|
Linguistic Evaluations of Expert 1 | C1 | mi | mi | hi | hi | vli | vli | ||
C2 | ai | ai | hi | hi | mi | mi | |||
C3 | hi | hi | mi | mi | vli | vli | |||
C4 | vhi | vhi | mi | mi | mi | mi | |||
Linguistic Evaluations of Expert 2 | C1 | mi | mi | mi | mi | ni | ni | ||
C2 | ni | ni | mi | mi | ni | ni | |||
C3 | ni | ni | vli | vli | ni | li | |||
C4 | vhi | vhi | mi | mi | mi | mi | |||
Linguistic Evaluations of Expert 3 | C1 | li | li | vli | vli | mi | vhi | ||
C2 | mi | mi | hi | hi | ai | ai | |||
C3 | vhi | vhi | vhi | vhi | li | li | |||
C4 | li | li | li | li | mi | mi | |||
Linguistic Evaluations of Expert 4 | C1 | hi | hi | li | li | li | li | ||
C2 | hi | hi | hi | hi | vli | vli | |||
C3 | vhi | vhi | vhi | vhi | li | li | |||
C4 | vhi | vhi | vhi | vhi | vhi | vhi | |||
Linguistic Evaluations of Expert 5 | C1 | hi | hi | hi | hi | mi | mi | ||
C2 | hi | hi | hi | hi | li | li | |||
C3 | hi | hi | hi | hi | mi | mi | |||
C4 | vli | vli | li | li | hi | hi | |||
Linguistic Evaluations of Expert 6 | C1 | hi | hi | hi | hi | vli | vli | ||
C2 | hi | hi | hi | hi | li | li | |||
C3 | hi | hi | hi | hi | mi | mi | |||
C4 | vli | vli | li | li | mi | mi | |||
Linguistic Evaluations of Expert 7 | C1 | mi | mi | hi | hi | mi | mi | ||
C2 | vhi | vhi | hi | hi | li | li | |||
C3 | hi | hi | vhi | vhi | mi | mi | |||
C4 | vhi | vhi | hi | hi | vhi | vhi | |||
Linguistic Evaluations of Expert 8 | C1 | vhi | vhi | li | li | ni | ni | ||
C2 | mi | mi | li | li | vhi | vhi | |||
C3 | vhi | vhi | li | li | vhi | vhi | |||
C4 | vli | vli | mi | mi | hi | hi | |||
Linguistic Evaluations of Expert 9 | C1 | mi | mi | vhi | vhi | hi | hi | ||
C2 | hi | hi | li | li | mi | mi | |||
C3 | li | li | hi | hi | hi | hi | |||
C4 | mi | mi | vhi | vhi | hi | hi | |||
Linguistic Evaluations of Expert 10 | C1 | hi | hi | ni | ni | li | li | ||
C2 | vli | vli | mi | mi | hi | hi | |||
C3 | vhi | vhi | li | li | vhi | vhi | |||
C4 | hi | hi | vli | vli | mi | mi | |||
Linguistic Evaluations of Expert 11 | C1 | hi | hi | mi | mi | li | li | ||
C2 | vhi | vhi | hi | hi | mi | mi | |||
C3 | hi | hi | mi | mi | li | li | |||
C4 | hi | hi | mi | mi | vhi | vhi | |||
Linguistic Evaluations of Expert 12 | C1 | mi | mi | mi | mi | ni | ni | ||
C2 | hi | hi | vhi | vhi | mi | mi | |||
C3 | ni | ni | vli | vli | ni | li | |||
C4 | vhi | vhi | hi | hi | mi | mi | |||
Linguistic Evaluations of Expert 13 | C1 | li | li | vli | vli | mi | vhi | ||
C2 | vhi | vhi | mi | mi | ai | ai | |||
C3 | ai | ai | hi | hi | hi | hi | |||
C4 | mi | mi | hi | hi | vhi | vhi | |||
Linguistic Evaluations of Expert 14 | C1 | mi | mi | vhi | vhi | mi | mi | ||
C2 | mi | mi | mi | vhi | hi | hi | |||
C3 | hi | hi | mi | mi | hi | hi | |||
C4 | vhi | vhi | hi | hi | hi | hi |
Linguistic Term | Number | |
---|---|---|
No Importance (ni) | ni | 0 |
Very Low Importance (vli) | vli | 1 |
Low Importance (li) | li | 2 |
Medium Importance (mi) | mi | 3 |
High Importance (hi) | hi | 4 |
Very High Importance (vhi) | vhi | 5 |
Absolute Importance (ai) | ai | 6 |
Pessimistic Collective Preference Values | ||||
---|---|---|---|---|
Technical | Economic | Environmental | Socio-Political | |
Technical | 3.07 | 2.93 | 1.93 | |
Economic | 3.64 | 3.50 | 3.14 | |
Environmental | 3.71 | 3.29 | 2.71 | |
Socio-political | 3.50 | 3.21 | 3.86 | |
Optimistic Collective Preference Values | ||||
Technical | Economic | Environmental | Socio-political | |
Technical | 3.36 | 2.93 | 2.21 | |
Economic | 3.64 | 3.64 | 3.14 | |
Environmental | 3.71 | 3.29 | 3.00 | |
Socio-political | 3.50 | 3.21 | 3.86 |
Main Criteria | Linguistic Intervals | Interval Utilities | Midpoints | Weights | |||
---|---|---|---|---|---|---|---|
C1: Technical | [li, 000, mi, −0.133] | [ | 2.643 | 2.833 | ] | 2.738 | 0.211 |
C2: Economic | [mi, 4, hvi, −0.200] | [ | 3.429 | 3.476 | ] | 3.452 | 0.266 |
C3: Environmental | [li, 000, mi, −0.267] | [ | 3.238 | 3.333 | ] | 3.286 | 0.253 |
C4: Socio-political | [li, 0.467, mi, 0.400] | [ | 3.524 | 3.524 | ] | 3.524 | 0.271 |
Criteria | Sub-Criteria | Weights | Local Weights | Global Weights |
---|---|---|---|---|
C1 | C11 | 0.211 | 0.157 | 0.0331 |
C12 | 0.210 | 0.0443 | ||
C13 | 0.155 | 0.0326 | ||
C14 | 0.156 | 0.0328 | ||
C15 | 0.161 | 0.0338 | ||
C16 | 0.192 | 0.0405 | ||
C2 | C21 | 0.266 | 0.359 | 0.0952 |
C22 | 0.290 | 0.0769 | ||
C23 | 0.352 | 0.0934 | ||
C3 | C31 | 0.253 | 0.187 | 0.0473 |
C32 | 0.195 | 0.0492 | ||
C33 | 0.204 | 0.0514 | ||
C34 | 0.197 | 0.0498 | ||
C35 | 0.218 | 0.0550 | ||
C4 | C41 | 0.271 | 0.205 | 0.0555 |
C42 | 0.185 | 0.0501 | ||
C43 | 0.200 | 0.0542 | ||
C44 | 0.187 | 0.0506 | ||
C45 | 0.224 | 0.0607 |
Technology | Alternatives | Si | Ri | Qi (v = 0.5) | Rank (v = 0.5) | Final Rank |
---|---|---|---|---|---|---|
Pumped hydro energy storage (PHES) | A1 | 0.260101 | 0.0497752 | 0.026 | 9 | 1 |
Compressed air energy storage (CAES) | A2 | 0.459393 | 0.0472864 | 0.207 | 8 | 2 |
Flywheel energy storage (FES) | A3 | 0.436801 | 0.0934405 | 0.665 | 7 | 3 |
Hydrogen energy storage fuel cells | A4 | 0.482315 | 0.0952288 | 0.730 | 5 | 4 |
Lead-acid battery | A5 | 0.742303 | 0.0849459 | 0.893 | 1 | 9 |
Nickel-cadmium (NiCd) | A6 | 0.662071 | 0.0849459 | 0.810 | 4 | 7 |
lithium-ion batteries (Li-Ion) | A7 | 0.667623 | 0.0849459 | 0.815 | 3 | 8 |
Superconducting | A8 | 0.56729 | 0.0952288 | 0.819 | 2 | 6 |
Supercapacitor | A9 | 0.48552 | 0.0934405 | 0.715 | 6 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Abri, Z.M.; Alawasa, K.M.; Al-Abri, R.S.; Al-Hinai, A.S.; Awad, A.S.A. Multi-Criteria Decision-Making Approach for Optimal Energy Storage System Selection and Applications in Oman. Energies 2024, 17, 5197. https://doi.org/10.3390/en17205197
Al-Abri ZM, Alawasa KM, Al-Abri RS, Al-Hinai AS, Awad ASA. Multi-Criteria Decision-Making Approach for Optimal Energy Storage System Selection and Applications in Oman. Energies. 2024; 17(20):5197. https://doi.org/10.3390/en17205197
Chicago/Turabian StyleAl-Abri, Zayid M., Khaled M. Alawasa, Rashid S. Al-Abri, Amer S. Al-Hinai, and Ahmed S. A. Awad. 2024. "Multi-Criteria Decision-Making Approach for Optimal Energy Storage System Selection and Applications in Oman" Energies 17, no. 20: 5197. https://doi.org/10.3390/en17205197
APA StyleAl-Abri, Z. M., Alawasa, K. M., Al-Abri, R. S., Al-Hinai, A. S., & Awad, A. S. A. (2024). Multi-Criteria Decision-Making Approach for Optimal Energy Storage System Selection and Applications in Oman. Energies, 17(20), 5197. https://doi.org/10.3390/en17205197