PV Module Soiling Detection Using Visible Spectrum Imaging and Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Means of the Study
2.2. Methodology of the Study
- Preliminary filtering of the images is performed and those with inappropriate quality are removed;
- The original PV module images are manually classified as either dirty or clean.
- Furthermore, they are divided into training and validation datasets.
- From the created datasets, 500 × 500 px images of the photovoltaic surfaces are cropped. When extracting the image fragments, the following requirements are defined:
- a.
- They should contain the area of at least one PV cell.
- b.
- They should not contain areas not part of the PV surface.
- 5.
- The value of the image red channel is doubled.
- 6.
- The obtained image is converted to a multichannel format, where each channel (red, green, and blue) is represented with 256 shades of gray.
- 7.
- Finally, only the red channel (represented as gray with 256 shades) is saved for further analysis.
- Accuracy—measures the overall correctness of the model:
- Precision—measures the quality of positive predictions:
- Recall—measures the quality of false negative predictions:
- F1 score—balances between the precision and recall:
3. Results and Discussion
3.1. Conduction of the Experimental Study and Preprocessing of the Obtained Images
- -
- On 9 June 2024 a weather event occurred, creating dust soiling. Therefore, photos of all PV panels were taken on 10 June 2024.
- -
- On 21 July 2024 a storm occurred with 9 mm rainfall, measured with a Vantage Pro2 meteorological station by Davis Instruments (Hayward, Charlotte, CA, USA). Therefore, photos of all PV panels were taken on 22 July 2024.
3.2. Training and Validation of the Machine Learning Models
3.3. Testing of the Machine Learning Models with Previously Unused Images
- -
- The testing dataset was imbalanced, i.e., the ratio between clean and dirty panels was approximately 1 to 3.
- -
- The successful identification rate for dirty panels varied between 11% and 24% for the different models.
- -
- All four models deal well with the identification of clean panels (56–59 out of 61 correct identifications).
- -
- Their performance with dirty panels was different, though identifying dirty panels was their primary goal.
3.4. Case Studies after Specific Weather Events
- -
- By the time the photos were taken it was most likely not necessary to implement a cleaning procedure for the photovoltaic installation.
- -
- The relatively strong rainstorm reduced the soiling of the PV modules.
3.5. Applicability of the Obtained Results
- The UAV could be operated at a low height. This would allow appropriate image quality even with a lower-resolution camera.
- The UAV could be operated at medium height. This way more PV panels could be captured at once; however, this implies the need to use more expensive cameras with a higher resolution.
- The extent of the available PV modules on each photo is recognized. This could be implemented by training an object-based deep learning model for PV panel identification.
- A square fragment of the image is cropped from each identified PV module.
- The dimensions of each image fragment are reduced to 500 × 500 px.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Islam, M.; Rashel, M.R.; Ahmed, M.T.; Islam, A.K.M.K.; Tlemçani, M. Artificial Intelligence in Photovoltaic Fault Identification and Diagnosis: A Systematic Review. Energies 2023, 16, 7417. [Google Scholar] [CrossRef]
- Bassi, H.; Salam, Z.; Ramli, M.Z.; Sindi, H.; Rawa, M. Hardware Approach to Mitigate the Effects of Module Mismatch in a Grid-connected Photovoltaic System: A Review. Energies 2019, 12, 4321. [Google Scholar] [CrossRef]
- Mariani, V.; Adinolfi, G.; Buonanno, A.; Ciavarella, R.; Ricca, A.; Sorrentino, V.; Graditi, G.; Valenti, M. A Survey on Anomalies and Faults That May Impact the Reliability of Renewable-Based Power Systems. Sustainability 2024, 16, 6042. [Google Scholar] [CrossRef]
- Bošnjaković, M.; Stojkov, M.; Katinić, M.; Lacković, I. Effects of Extreme Weather Conditions on PV Systems. Sustainability 2023, 15, 16044. [Google Scholar] [CrossRef]
- Hepp, D.; Hempelmann, S.; Behrens, G.; Friedrich, W. Detection of snow-coverage on PV-modules with images based on CNN-techniques. In EnviroInfo 2022; Gesellschaft für Informatik e.V.: Bonn, Germany, 2022. [Google Scholar]
- Yilmaz, M. Comparative Analysis of Hybrid Maximum Power Point Tracking Algorithms Using Voltage Scanning and Perturb and Observe Methods for Photovoltaic Systems under Partial Shading Conditions. Sustainability 2024, 16, 4199. [Google Scholar] [CrossRef]
- Celikel, R.; Yilmaz, M.; Gundogdu, A. A voltage scanning-based MPPT method for PV power systems under complex partial shading conditions. Renew. Energy 2022, 184, 361–373. [Google Scholar] [CrossRef]
- Winkel, P.; Wilbert, S.; Röger, M.; Krauth, J.J.; Algner, N.; Nouri, B.; Wolfertstetter, F.; Carballo, J.A.; Alonso-Garcia, M.C.; Polo, J.; et al. Cell-Resolved PV Soiling Measurement Using Drone Images. Remote Sens. 2024, 16, 2617. [Google Scholar] [CrossRef]
- Redondo, M.; Platero, C.A.; Moset, A.; Rodríguez, F.; Donate, V. Soiling Modelling in Large Grid-Connected PV Plants for Cleaning Optimization. Energies 2023, 16, 904. [Google Scholar] [CrossRef]
- Kam-Lum, E.; Meyers, B.E.; Cosme, D.; Aissa, B.; Scabbia, G. Soiling Rate Determination from Referenced Systems in Desert Climate using PVInsight Soiling Algorithm. In Proceedings of the 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), Fort Lauderdale, FL, USA, 20–25 June 2021. [Google Scholar] [CrossRef]
- Simal Pérez, N.; Alonso-Montesinos, J.; Batlles, F.J. Estimation of Soiling Losses from an Experimental Photovoltaic Plant Using Artificial Intelligence Techniques. Appl. Sci. 2021, 11, 1516. [Google Scholar] [CrossRef]
- Al-Ibrahim, E. Impact of Dust and Shade on Solar Panel Efficiency and Development of a Simple Method for Measuring the Impact of Dust in any Location. J. Sustain. Dev. Energy Water Environ. Syst. 2023, 30, 1–4. [Google Scholar] [CrossRef]
- Jung, D.; Gareis, G.H.; Staiger, A.; Salmon, A. Effects of soiling on agrivoltaic systems: Results of a case study in Chile. AIP Conf. Proc. 2022, 2635, 1. [Google Scholar] [CrossRef]
- Pareek, A.; Gupta, R. Analysis and insights into snail trail degradation in photovoltaic modules. Sol. Energy 2024, 275, 112613. [Google Scholar] [CrossRef]
- Liu, L.; Li, Q.; Liao, X.; Wu, W. Bird Droppings Defects Detection in Photovoltaic Modules Based on CA-YOLOv5. Processes 2024, 12, 1248. [Google Scholar] [CrossRef]
- Toth, S.; Hannigan, M.; Vance, M.; Deceglie, M. Enhanced photovoltaic soiling in an urban environment. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 2904–2907. [Google Scholar] [CrossRef]
- Jothi Venkatesh, K.; SankaraNarayanan, S.; Kannan, K.; Arjun, P. AI Based Solar Panel Cleaning Robot. Int. J. Eng. Technol. Manag. Sci. 2023, 7, 313–318. [Google Scholar] [CrossRef]
- Zahedi, R.; Ranjbaran, P.; Gharehpetian, G.B.; Mohammadi, F.; Ahmadiahangar, R. Cleaning of Floating Photovoltaic Systems: A Critical Review on Approaches from Technical and Economic Perspectives. Energies 2021, 14, 2018. [Google Scholar] [CrossRef]
- Najmi, N.; Rachid, A. A Review on Solar Panel Cleaning Systems and Techniques. Energies 2023, 16, 7960. [Google Scholar] [CrossRef]
- Abdallah, R.; Juaidi, A.; Abdel-Fattah, S.; Qadi, M.; Shadid, M.; Albatayneh, A.; Çamur, H.; García-Cruz, A.; Manzano-Agugliaro, F. The Effects of Soiling and Frequency of Optimal Cleaning of PV Panels in Palestine. Energies 2022, 15, 4232. [Google Scholar] [CrossRef]
- Abuzaid, H.; Awad, M.; Shamayleh, A. Enhancing Photovoltaic System Cleaning Using Machine Learning Algorithms. J. Propuls. Technol. 2024, 45, 2119–2124. [Google Scholar]
- Alfaris, F.E. A Sensorless Intelligent System to Detect Dust on PV Panels for Optimized Cleaning Units. Energies 2023, 16, 1287. [Google Scholar] [CrossRef]
- Yang, M.; Javed, W.; Guo, B.; Ji, J. Estimating PV Soiling Loss Using Panel Images and a Feature-Based Regression Model. IEEE J. Photovolt. 2024, 2, 1–8. [Google Scholar] [CrossRef]
- Song, Z.; Liu, J.; Yang, H. Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review. Appl. Energy 2021, 15, 117247. [Google Scholar] [CrossRef]
- Valerino, M.; Ratnaparkhi, A.; Ghoroi, C.; Bergin, M. Seasonal photovoltaic soiling: Analysis of size and composition of deposited particulate matter. Sol. Energy 2021, 227, 44–55. [Google Scholar] [CrossRef]
- Memon, S.A.; Javed, Q.; Kim, W.-G.; Mahmood, Z.; Khan, U.; Shahzad, M. A Machine-Learning-Based Robust Classification Method for PV Panel Faults. Sensors 2022, 22, 8515. [Google Scholar] [CrossRef] [PubMed]
- Al-Katheri, A.A.; Al-Ammar, E.A.; Alotaibi, M.A.; Ko, W.; Park, S.; Choi, H.-J. Application of Artificial Intelligence in PV Fault Detection. Sustainability 2022, 14, 13815. [Google Scholar] [CrossRef]
- Ali, M.U.; Khan, H.F.; Masud, M.; Kallu, K.D.; Zafar, A. A machine learning framework to identify the hotspot in photovoltaic module using infrared thermography. Sol. Energy 2020, 208, 643–651. [Google Scholar] [CrossRef]
- Benghanem, M.; Mellit, A.; Moussaoui, C. Embedded Hybrid Model (CNN–ML) for Fault Diagnosis of Photovoltaic Modules Using Thermographic Images. Sustainability 2023, 15, 7811. [Google Scholar] [CrossRef]
- Baltacı, Ö.; Kıral, Z.; Dalkılınç, K.; Karaman, O. Thermal Image and Inverter Data Analysis for Fault Detection and Diagnosis of PV Systems. Appl. Sci. 2024, 14, 3671. [Google Scholar] [CrossRef]
- Starzyński, J.; Zawadzki, P.; Harańczyk, D. Machine Learning in Solar Plants Inspection Automation. Energies 2022, 15, 5966. [Google Scholar] [CrossRef]
- Wang, J.; Bi, L.; Sun, P.; Jiao, X.; Ma, X.; Lei, X.; Luo, Y. Deep-Learning-Based Automatic Detection of Photovoltaic Cell Defects in Electroluminescence Images. Sensors 2023, 23, 297. [Google Scholar] [CrossRef]
- Faskari, S.A.; Ojim, G.; Falope, T.; Abdullahi, Y.B.; Abba, S.I. A novel machine learning based computing algorithm in modeling of soiled photovoltaic module. Knowl. Based Eng. Sci. 2022, 3, 28–36. [Google Scholar] [CrossRef]
- Dassler, D.; Malik, S.; Kuppanna, S.B.; Jaeckel, B.; Ebert, M. Innovative Approach for Yield Evaluation of PV Systems Utilizing Machine Learning Methods. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019. [Google Scholar] [CrossRef]
- Tanyıldızı Ağır, T. Prediction of Losses Due to Dust in PV Using Hybrid LSTM-KNN Algorithm: The Case of Saruhanlı. Sustainability 2024, 16, 3581. [Google Scholar] [CrossRef]
- Fang, M.; Qian, W.; Qian, T.; Bao, Q.; Zhang, H.; Qiu, X. DGImNet: A deep learning model for photovoltaic soiling loss estimation. Appl. Energy 2024, 376, 124335. [Google Scholar] [CrossRef]
- Heinrich, M.; Meunier, S.; Samé, A.; Quéval, L.; Darga, A.; Oukhellou, L.; Multon, B. Detection of cleaning interventions on photovoltaic modules with machine learning. Appl. Energy 2020, 263, 114642. [Google Scholar] [CrossRef]
- Martin, J.; Jaskie, K.; Tofis, Y.; Spanias, A. PV array soiling detection using machine learning. In Proceedings of the 2021 12th International Conference on Information, Intelligence, Systems & Applications (IISA), Chania Crete, Greece, 12–14 July 2021; IEEE: New York, NY, USA; pp. 1–4. [Google Scholar] [CrossRef]
- Cruz-Rojas, T.; Franco, J.A.; Hernandez-Escobedo, Q.; Ruiz-Robles, D.; Juarez-Lopez, J.M. A novel comparison of image semantic segmentation techniques for detecting dust in photovoltaic panels using machine learning and deep learning. Renew. Energy 2023, 217, 119126. [Google Scholar] [CrossRef]
- Onim, M.S.H.; Sakif, Z.M.M.; Ahnaf, A.; Kabir, A.; Azad, A.K.; Oo, A.M.T.; Afreen, R.; Hridy, S.T.; Hossain, M.; Jabid, T.; et al. SolNet: A Convolutional Neural Network for Detecting Dust on Solar Panels. Energies 2023, 16, 155. [Google Scholar] [CrossRef]
- Pivem, T.; de Araujo, F.D.O.; de Araujo, L.D.O.; de Oliveira, G.S. Application of a computer vision method for soiling recognition in photovoltaic modules for autonomous cleaning robots. Signal Image Process. Int. J. 2019, 10, 43–59. [Google Scholar] [CrossRef]
- Selvi, S.; Devaraj, V.; PS, R.P.; Subramani, K. Detection of soiling on PV module using deep learning. Int. J. Electr. Electron. Eng. 2023, 10, 93–101. [Google Scholar] [CrossRef]
- Shaik, A.; Balasundaram, A.; Kakarla, L.S.; Murugan, N. Deep Learning-Based Detection and Segmentation of Damage in Solar Panels. Automation 2024, 5, 128–150. [Google Scholar] [CrossRef]
- El Yanboiy, N.; Khala, M.; Elabbassi, I.; Eloutassi, O.; El Hassouani, Y.; Messaoudi, C. Enhancing Surface Defect Detection in Solar Panels with AI-Driven VGG Models. Data Metadata 2023, 2, 81. [Google Scholar] [CrossRef]
- Cavieres, R.; Barraza, R.; Estay, D.; Bilbao, J.; Valdivia-Lefort, P. Automatic soiling and partial shading assessment on PV modules through RGB images analysis. Appl. Energy 2022, 15, 117964. [Google Scholar] [CrossRef]
- Dalagan, A.G.; Principe, J.A. Spatial Inventory of Solar Photovoltaic (PV) Installations Using Remote Sensing and Machine Learning: Case of Pampanga Province, Philippines. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, 48, 115–123. [Google Scholar] [CrossRef]
- Giussani, F.; Wilczynski, E.; Zandonella Callegher, C.; Dalle Nogare, G.; Pozza, C.; Novelli, A.; Pezzutto, S. Use of Machine Learning Techniques on Aerial Imagery for the Extraction of Photovoltaic Data within the Urban Morphology. Sustainability 2024, 16, 2020. [Google Scholar] [CrossRef]
- Meteoblue. Available online: https://www.meteoblue.com (accessed on 2 October 2024).
- Demsar, J.; Curk, T.; Erjavec, A.; Gorup, C.; Hocevar, T.; Milutinovic, M.; Mozina, M.; Polajnar, M.; Toplak, M.; Staric, A.; et al. Orange: Data Mining Toolbox in Python. J. Mach. Learn. Res. 2013, 14, 2349–2353. [Google Scholar]
- Yang, M.; Ji, J.; Guo, B. Soiling Quantification Using an Image-Based Method: Effects of Imaging Conditions. IEEE J. Photovolt. 2020, 10, 1780–1787. [Google Scholar] [CrossRef]
- Marinov, M.; Kalmukov, Y.; Valova, I. Applying Object Recognition to Improve Image Retrieval by Color Features. In Proceedings of the 2024 23rd International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and Herzegovina, 20–22 March 2024. [Google Scholar] [CrossRef]
- Mladenova, T.; Valova, I. Comparative analysis between the traditional K-Nearest Neighbor and Modifications with Weight-Calculation. In Proceedings of the 2022 International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 20–22 October 2022; pp. 961–965. [Google Scholar] [CrossRef]
No. | Date | Star Time | Action |
---|---|---|---|
1 | 7 June 2024 | 7:00 | PV panels cleaning |
2 | 8:00 | Make photos of all PV panels | |
3 | 9:00 | Make photos of all PV panels | |
4 | 10:00 | Make photos of all PV panels | |
5 | 11:00 | Make photos of all PV panels | |
6 | 13:00 | Make photos of all PV panels | |
7 | 14:00 | Make photos of all PV panels | |
8 | 15:00 | Make photos of all PV panels | |
9 | 16:00 | Make photos of all PV panels | |
10 | 17:00 | Make photos of all PV panels | |
11 | 18:00 | Make photos of all PV panels | |
12 | 19:00 | Make photos of all PV panels | |
13 | 10 June 2024 | 08:00 | Make photos of all PV panels |
14 | 4 July 2024 | 18:00 | PV panels cleaning |
15 | 19:00 | Make photos of all PV panels | |
16 | 5 July 2024 | 8:00 | Make photos of all PV panels |
17 | 12:00 | Make photos of all PV panels | |
18 | 18:00 | Make photos of all PV panels | |
19 | 6 July 2024 | 8:00 | Make photos of all PV panels |
20 | 12:00 | Make photos of all PV panels | |
21 | 18:00 | Make photos of all PV panels | |
22 | 8 July 2024 | 8:00 | Make photos of all PV panels |
23 | 12:00 | Make photos of all PV panels | |
24 | 18:00 | Make photos of the cleaned PV panels | |
25 | 22 July 2024 | 16:00 | Make photos of all PV panels |
No. | Algorithm | Parameters |
---|---|---|
1 | CNN | Neurons in hidden layers—200 Activation—ReLu Solver—L-BFGS-B Regularization—0 Maximal number of iterations—200 Replicable training—Checked |
2 | SVM | SVM type—SVM Cost (C)—0.50 Regression loss epsilon (ε)—0.20 Kernel—Polynomial g—auto c—3.00 d—3.0 Numerical tolerance—0.0010 Iteration limit—200 |
3 | kNN | Number of neighbors—8 Metric—Euclidean Weight—Uniform |
4 | RF | Number of trees—23 Replicable training—checked Do not split subsets smaller than—5 |
5 | DT | Induce binary tree—checked Min. number of instances in leaves—12 Do not split subsets smaller than—10 Limit the maximal tree depth to—100 Step when majority reaches—95% |
6 | NB | N/A |
Model | Classification Accuracy | Average Precision | Average Recall | F1 Score |
---|---|---|---|---|
Without “hour of the day” as an additional feature | ||||
RF | 0.935 | 0.936 | 0.935 | 0.935 |
SVM | 0.933 | 0.933 | 0.933 | 0.933 |
CNN | 0.928 | 0.928 | 0.928 | 0.928 |
kNN | 0.920 | 0.922 | 0.920 | 0.921 |
Tree | 0.871 | 0.872 | 0.871 | 0.871 |
NB | 0.856 | 0.860 | 0.856 | 0.856 |
With “hour of the day” as an additional feature | ||||
CNN | 0.938 | 0.938 | 0.938 | 0.938 |
SVM | 0.933 | 0.933 | 0.933 | 0.933 |
RF | 0.915 | 0.916 | 0.915 | 0.915 |
kNN | 0.903 | 0.905 | 0.903 | 0.903 |
Tree | 0.871 | 0.872 | 0.871 | 0.871 |
NB | 0.856 | 0.860 | 0.856 | 0.856 |
Study | Model | Accuracy | F1 Score |
---|---|---|---|
Cruz-Rojas et al. [39] | U-net-based CNN | 95.81% 98.10% | 85.48% 84.05% |
Selvi et al. [42] | MobileNetV2 CNN | 97% | N/A |
Onim et al. [40] | SolNet CNN | 98.2% | N/A |
Shaik et al. [43] | VGG19-based CNN | 98.6% | 99% |
Yanboiy et al. [44] | VGG19 based CNN | 99% | 89% |
Cavieres et al. [45] | Custom CNN | 73% | N/A |
Ours | Interception v3 + RF Interception v3 + SVM Interception v3 + CNN Interception v3 + kNN | 93.5% 93.3% 92.8% 92.0% | 93.5% 93.3% 92.8% 92.1% |
Predicted | Metrics | ||||||
---|---|---|---|---|---|---|---|
Actual | Clean | Dirty | ∑ | Precision | Recall | F1 | |
Clean | 59 | 2 | 61 | 0.776 | 0.967 | 0.861 | |
Dirty | 17 | 134 | 151 | 0.985 | 0.887 | 0.934 | |
∑ | 76 | 136 | 212 | 0.925 | 0.910 | 0.913 |
Predicted | Metrics | ||||||
---|---|---|---|---|---|---|---|
Actual | Clean | Dirty | ∑ | Precision | Recall | F1 | |
Clean | 59 | 2 | 61 | 0.738 | 0.967 | 0.837 | |
Dirty | 21 | 130 | 151 | 0.985 | 0.861 | 0.919 | |
∑ | 80 | 132 | 212 | 0.914 | 0.892 | 0.895 |
Predicted | Metrics | ||||||
---|---|---|---|---|---|---|---|
Actual | Clean | Dirty | ∑ | Precision | Recall | F1 | |
Clean | 56 | 5 | 61 | 0.659 | 0.918 | 0.767 | |
Dirty | 29 | 122 | 151 | 0.961 | 0.808 | 0.878 | |
∑ | 85 | 127 | 212 | 0.874 | 0.840 | 0.846 |
Predicted | Metrics | ||||||
---|---|---|---|---|---|---|---|
Actual | Clean | Dirty | ∑ | Precision | Recall | F1 | |
Clean | 59 | 2 | 61 | 0.615 | 0.967 | 0.752 | |
Dirty | 37 | 114 | 151 | 0.983 | 0.755 | 0.854 | |
∑ | 96 | 116 | 212 | 0.877 | 0.816 | 0.824 |
Case Study | Number of Classified Images | Clean PV Panels Ratio, % | ||
---|---|---|---|---|
As Clean | As Dirty | Total | ||
1 | 2 | 31 | 33 | 6.1% |
2 | 32 | 4 | 36 | 89% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evstatiev, B.I.; Trifonov, D.T.; Gabrovska-Evstatieva, K.G.; Valov, N.P.; Mihailov, N.P. PV Module Soiling Detection Using Visible Spectrum Imaging and Machine Learning. Energies 2024, 17, 5238. https://doi.org/10.3390/en17205238
Evstatiev BI, Trifonov DT, Gabrovska-Evstatieva KG, Valov NP, Mihailov NP. PV Module Soiling Detection Using Visible Spectrum Imaging and Machine Learning. Energies. 2024; 17(20):5238. https://doi.org/10.3390/en17205238
Chicago/Turabian StyleEvstatiev, Boris I., Dimitar T. Trifonov, Katerina G. Gabrovska-Evstatieva, Nikolay P. Valov, and Nicola P. Mihailov. 2024. "PV Module Soiling Detection Using Visible Spectrum Imaging and Machine Learning" Energies 17, no. 20: 5238. https://doi.org/10.3390/en17205238
APA StyleEvstatiev, B. I., Trifonov, D. T., Gabrovska-Evstatieva, K. G., Valov, N. P., & Mihailov, N. P. (2024). PV Module Soiling Detection Using Visible Spectrum Imaging and Machine Learning. Energies, 17(20), 5238. https://doi.org/10.3390/en17205238