Innovative Microgrid Services and Applications in Electric Grids: Enhancing Energy Management and Grid Integration
Abstract
:1. Introduction
- Increase access to electricity, ensuring access for vulnerable populations.
- Improve energy efficiency by bringing generation closer to the point of consumption, thus, reducing losses.
- Democratize energy services through the participation of users and potential users.
- Decentralize the generation, distribution, storage, and consumption of energy within communities.
- Decarbonize the economy using non-conventional renewable energy sources.
- Develop the local and regional economy through activities related to energy services.
- Increase system reliability using non-conventional renewable energy sources and distributed energy resources.
- Provide affordable economic conditions for electric energy services to communities.
- The investigation into and characterization of new services offered by MGs.
- The qualification of the significant impact of services on electrical grid indicators.
- The technical evaluation of the benefits offered by MG services.
- New guidelines for the potential use of energy services provided by MGs in the Colombian electric power system.
2. Analysis of Global Trends and Colombian Market Integration
2.1. Current Status of Microgrid Services
- DS-oriented services:
- a.
- Voltage regulation.
- b.
- Voltage unbalance mitigation.
- c.
- Congestion management.
- d.
- Power smoothing.
- TS-oriented services:
- a.
- Reactive power support.
- b.
- Inertial response.
- c.
- Power smoothing for grid stability.
- d.
- Frequency response.
2.2. Colombian Context
3. Results
3.1. Services Offered by Microgrids
3.1.1. Conventional Ancillary Services
- Voltage regulation: increasing or decreasing the amount of reactive power injected into the system directly affects the voltage level at the PCC.
- Power quality: it is possible to maximize the transmission capacity of the system, minimizing losses and allowing greater active power transfer.
- Grid support: MGs have the versatility to inject or absorb reactive power as required.
3.1.2. Pilot Services
- Improved power quality.
- Energy efficiency.
- Reduction in energy losses.
- RES integration.
- Reliability.
- Reactive power support.
- Efficient use of distribution and transmission systems.
- Replacement of expensive generators.
- Reduction in storage capacity costs.
- Reduced fuel costs.
- Prolonged grid infrastructure upgrade costs.
3.1.3. Services Under Development
- Disconnecting generation units during overvoltage events.
- Setting generation limits.
- Implementing W/V (active power vs. voltage) control.
- Applying a percentage reduction to total generation.
3.2. Case Studies
4. Discussion
4.1. Identification of the Impact of Services to the NIS and NIZs
4.2. Analysis of Indicator Improvement for Electric Grids
4.3. Case Study Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carvajal, M.I.; Gómez-Luna, E.; Sáenz, E.M. Methodology for Technical Feasibility Analysis in the Installation of Microgrids. J. Eng. Sci. Technol. Rev. 2019, 12, 176–187. [Google Scholar] [CrossRef]
- Kasikci, I. Smart Grid. In Analysis and Design of Electrical Power Systems; Wiley: Hoboken, NJ, USA, 2022; Chapter 4; pp. 25–26. [Google Scholar] [CrossRef]
- Bilan, Y.; Rabe, M.; Widera, K. Distributed Energy Resources: Operational Benefits. Energies 2022, 15, 8864. [Google Scholar] [CrossRef]
- De La Cruz, J.; Gómez-Luna, E.; Ali, M.; Vasquez, J.C.; Guerrero, J.M. Fault Location for Distribution Smart Grids: Literature Overview, Challenges, Solutions, and Future Trends. Energies 2023, 16, 2280. [Google Scholar] [CrossRef]
- 2030.8-2018; IEEE Standard for the Testing of Microgrid Controllers. IEEE: Piscataway, NJ, USA, 2018. [CrossRef]
- IEC TS 62898-1:2017/AMD1:2023|IEC. Available online: https://webstore.iec.ch/en/publication/70189 (accessed on 14 September 2024).
- Martínez-Ramos, J.L.; Marano-Marcolini, A.; García-López, F.P.; Almagro-Yravedra, F.; Onen, A.; Yoldas, Y. Provision of Ancillary Services by a Smart Microgrid: An OPF Approach. In Proceedings of the 2018 International Conference on Smart Energy Systems and Technologies (SEST), Seville, Spain, 10–12 September 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Mehta, R. A Microgrid Case Study for Ensuring Reliable Power for Commercial and Industrial Sites. In Proceedings of the 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), Bangkok, Thailand, 19–23 March 2019; pp. 594–598. [Google Scholar] [CrossRef]
- Shanmugam, K.; Gogineni, P. Resilient Energy Storage-Based Microgrids. In Emerging Solutions for e-Mobility and Smart Grids: Select Proceedings of ICRES 2020; Springer: Berlin/Heidelberg, Germany, 2021; pp. 37–51. [Google Scholar]
- Jiang, J.; Song, H. A Review of Microgrid Power Quality Disturbance Identification Studies. Int. J. Comput. Sci. Inf. Technol. 2024, 3, 94–101. [Google Scholar] [CrossRef]
- Mauger, R. Defining microgrids: From technology to law. J. Energy Nat. Resour. Law 2023, 41, 287–304. [Google Scholar] [CrossRef]
- Gómez-Luna, E.; De La Cruz, J.; Vasquez, J.C. New Approach for Validation of a Directional Overcurrent Protection Scheme in a Ring Distribution Network with Integration of Distributed Energy Resources Using Digital Twins. Energies 2024, 17, 1677. [Google Scholar] [CrossRef]
- Decreto 2236 de 2023—Gestor Normativo—Función Pública. Available online: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=227230 (accessed on 23 October 2024).
- Mejía, H.V.; Puerta, G.S.M. Comunidades energéticas, estrategia para la transición energética en Colombia. Rev. Teinnova 2024, 8, 12–25. [Google Scholar] [CrossRef]
- Castrillón, L.F.U. Marco conceptual regulatorio de la transición minero-energética justa y comunidades energéticas en Colombia. Rev. De La Fac. De Derecho De México 2024, 74, 207–234. [Google Scholar] [CrossRef]
- Kryonidis, G.C.; Kontis, E.O.; Papadopoulos, T.A.; Pippi, K.D.; Nousdilis, A.I.; Barzegkar-Ntovom, G.A.; Boubaris, A.D.; Papanikolaou, N.P. Ancillary services in active distribution networks: A review of technological trends from operational and online analysis perspective. Renew. Sustain. Energy Rev. 2021, 147, 111198. [Google Scholar] [CrossRef]
- Demoulias, C.S.; Malamaki, K.-N.D.; Gkavanoudis, S.; Mauricio, J.M.; Kryonidis, G.C.; Oureilidis, K.O.; Kontis, E.O.; Ramos, J.L.M. Ancillary services offered by distributed renewable energy sources at the distribution grid level: An attempt at proper definition and quantification. Appl. Sci. 2020, 10, 7106. [Google Scholar] [CrossRef]
- Colombia, el Segundo País Más Biodiverso del Mundo|Minciencias. Available online: https://minciencias.gov.co/sala_de_prensa/colombia-el-segundo-pais-mas-biodiverso-del-mundo (accessed on 9 September 2024).
- International—U.S. Energy Information Administration (EIA). Available online: https://www.eia.gov/international/analysis/country/COL (accessed on 9 September 2024).
- Reporte Integral de Sostenibilidad, Operación y Mercado 2023. Available online: https://www.xm.com.co/reporte-integral-de-sostenibilidad-operacion-y-mercado-2023 (accessed on 9 September 2024).
- Escobar-Orozco, L.F.; Gómez-Luna, E. Impacts and challenges of the integration of connected to the grid-Microgrids: Colombian Case. In Proceedings of the 2024 Paris Session, Paris, France, 25–30 August 2024. [Google Scholar]
- Caracterización Energética de las ZNI—IPSE-CNM. Available online: https://ipse.gov.co/cnm/caracterizacion-de-las-zni/ (accessed on 9 September 2024).
- Fontalvo, J.D.C. Sistema de Gestión de Energía Para la Operación de Microrredes Utilizando Sistemas de Almacenamiento Para la Prestación del Servicio de Arbitraje: Caso de Estudio en el Sistema Eléctrico Colombiano. Pontificia Universidad Javeriana. Available online: http://hdl.handle.net/10554/63584 (accessed on 18 June 2024).
- CREG. Revisión, Análisis y Evaluación de los Criterios Técnicos y Requisitos Operativos Para la Prestación de Servicios Complementarios en el Sistema Interconectado Nacional. Available online: https://gestornormativo.creg.gov.co/Publicac.nsf/52188526a7290f8505256eee0072eba7/1bc1a50212bcbb6a0525891d00591639/%24FILE/PHC-208-22_Informe_4_Propuesta%20Final.pdf (accessed on 16 June 2024).
- CREG. Respuesta de la Demanda en el Sistema Interconectado Nacional. Available online: https://gestornormativo.creg.gov.co/Publicac.nsf/52188526a7290f8505256eee0072eba7/60ffa0ad021fd467052587eb007d7f03/$FILE/Circular011-2022%20Anexo.pdf (accessed on 18 June 2024).
- IEEE SA—IEEE 1547-2018. Available online: https://standards.ieee.org/ieee/1547/5915/ (accessed on 23 October 2024).
- IEEE SA—IEEE 1547a-2020. Available online: https://standards.ieee.org/ieee/1547a/7696/ (accessed on 23 October 2024).
- IEEE SA—IEEE 519-2022. Available online: https://standards.ieee.org/ieee/519/10677/ (accessed on 23 October 2024).
- IEEE SA—IEEE 2030.2-2015. Available online: https://standards.ieee.org/ieee/2030.2/4968/ (accessed on 23 October 2024).
- IEEE SA—IEEE 2030.7-2017. Available online: https://standards.ieee.org/ieee/2030.7/5941/ (accessed on 23 October 2024).
- IEEE SA—IEEE 2030.8-2018. Available online: https://standards.ieee.org/ieee/2030.8/6169/ (accessed on 23 October 2024).
- IEEE SA—IEEE 2030.10-2021. Available online: https://standards.ieee.org/ieee/2030.10/10742/ (accessed on 23 October 2024).
- IEEE SA—IEEE 2030.9-2019. Available online: https://standards.ieee.org/ieee/2030.9/6079/ (accessed on 23 October 2024).
- IEEE SA—IEEE P2030.12. Available online: https://standards.ieee.org/ieee/2030.12/7398/ (accessed on 23 October 2024).
- IEEE SA—IEEE 2050-2018. Available online: https://standards.ieee.org/ieee/2050/7178/ (accessed on 23 October 2024).
- IEC 61850:2024 SER|IEC. Available online: https://webstore.iec.ch/en/publication/6028 (accessed on 23 October 2024).
- IEC 62443-2-1:2024|IEC. Available online: https://webstore.iec.ch/en/publication/62883 (accessed on 23 October 2024).
- Reglamento Técnico de Instalaciones Eléctricas—RETIE. Available online: https://www.minenergia.gov.co/es/misional/energia-electrica-2/reglamentos-tecnicos/reglamento-t%C3%A9cnico-de-instalaciones-el%C3%A9ctricas-retie/ (accessed on 23 October 2024).
- PB 9—Código Electrico Colombiano NTC 2050 Segunda Actualización. Available online: https://tienda.icontec.org/gpd-pb-9-codigo-electrico-colombiano-ntc-2050-segunda-actualizacion.html (accessed on 23 October 2024).
- Ley 1715 de 2014—Gestor Normativo—Función Pública. Available online: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=57353 (accessed on 23 October 2024).
- Ley 2099 de 2021—Gestor Normativo—Función Pública. Available online: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=166326 (accessed on 23 October 2024).
- Plan Indicativo de Expansión de Cobertura de Energía Eléctrica—PIEC. Available online: https://www1.upme.gov.co/siel/Pages/Plan-indicativo-expansion-cobertura-EE-PIEC.aspx (accessed on 23 October 2024).
- Plan Nacional de Desarrollo 2022–2026. Available online: https://www.dnp.gov.co/plan-nacional-desarrollo/pnd-2022-2026 (accessed on 23 October 2024).
- Ley 2294 de 2023—Gestor Normativo—Función Pública. Available online: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=209510 (accessed on 23 October 2024).
- Decreto 273 de 2024—Gestor Normativo—Función Pública. Available online: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=234911#5 (accessed on 23 October 2024).
- Escobar-Orozco, L.F.; Gómez-Luna, E.; Marlés-Sáenz, E. Identification and Analysis of Technical Impacts in the Electric Power System Due to the Integration of Microgrids. Energies 2023, 16, 6412. [Google Scholar] [CrossRef]
- Molina, J.D.; Buitrago, L.F.; Tellez, G.S.M.; Giraldo, S.Y.; Uribe, J.A. Technological Architecture Design for Energy Communities: The Colombian Case. In Proceedings of the 2022 IEEE PES Generation, Transmission and Distribution Conference and Exposition—Latin America, IEEE PES GTD Latin America 2022, La Paz, Bolivia, 20–22 October 2022. [Google Scholar] [CrossRef]
- Pedroza, D.E.L.; Forero, J.M.E.; Arango, S.O. Comunidades de energía para una transición energética: Una revisión documental de los elementos, retos, y tendencias del autoconsumo comunitario. Ingenierías USBMed 2022, 13, 13–24. [Google Scholar] [CrossRef]
- Englberger, S.; Jossen, A.; Hesse, H. Unlocking the Potential of Battery Storage with the Dynamic Stacking of Multiple Applications. Cell Rep. Phys. Sci. 2020, 1, 100238. [Google Scholar] [CrossRef]
- Rezaeimozafar, M.; Monaghan, R.F.D.; Barrett, E.; Duffy, M. A review of behind-the-meter energy storage systems in smart grids. Renew. Sustain. Energy Rev. 2022, 164, 112573. [Google Scholar] [CrossRef]
- Alharbi, A.M.; Gao, W.; Alsaidan, I. Sizing Battery Energy Storage Systems for Microgrid Participating in Ancillary Services. In Proceedings of the 2019 North American Power Symposium (NAPS), Wichita, KS, USA, 13–15 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Quintero, S.X.C. Análisis de Servicios Complementarios en Sistemas de Potencia Eléctricos en Ambientes de Mercados. 2013. Available online: https://repositorio.unal.edu.co/handle/unal/21120 (accessed on 25 July 2024).
- Morán-Río, D.P.; Anta, A.; Roldán-Pérez, J.; Prodanović, M.; García-Cerrada, A. Coordination of distributed resources for frequency support provision in microgrids. Int. J. Electr. Power Energy Syst. 2024, 155, 109539. [Google Scholar] [CrossRef]
- Wang, B.; Fang, F.; Liu, Y.; Wei, L. Delay-dependent Stability Analysis of a Flywheel Storage Energy System for Frequency Support. In Proceedings of the IEEE International Symposium on Industrial Electronics, Ulsan, Republic of Korea, 18–21 June 2024. [Google Scholar] [CrossRef]
- Gilbert, J.; Hill, P.; Myers, K.; Poudel, B. High-Penetration Microgrids Providing Grid Stability Using Frequency-Watt Control. In Proceedings of the IEEE Green Technologies Conference, Springdale, AR, USA, 3–5 April 2024; pp. 22–25. [Google Scholar] [CrossRef]
- Rai, A.; Bhujel, N.; Tamrakar, U.; Hummels, D.; Tonkoski, R. Data-Driven Model Predictive Control for Fast-Frequency Support. In Proceedings of the 2023 IEEE Energy Conversion Congress and Exposition (ECCE), Nashville, TN, USA, 29 October–2 November 2023; pp. 222–229. [Google Scholar] [CrossRef]
- Charalambous, A.; Hadjidemetriou, L.; Zacharia, L.; Bintoudi, A.D.; Tsolakis, A.C.; Tzovaras, D.; Kyriakides, E. Phase balancing and reactive power support services for microgrids. Appl. Sci. 2019, 9, 5067. [Google Scholar] [CrossRef]
- Heidari-Akhijahani, A.; Butler-Purry, K.L. A Review on Black-Start Service Restoration of Active Distribution Systems and Microgrids. Energies 2024, 17, 100. [Google Scholar] [CrossRef]
- Nuhic, M.; Paspatis, A.; Shahare, K. Black-start of microgrids: Insights based on demonstration sites in Europe and India. In Proceedings of the IEEE PES Innovative Smart Grid Technologies Conference Europe, Grenoble, France, 23–26 October 2023. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Yu, H.; Chen, Z. A Black Start Strategy Based on Multiport Interlinking Converters for DC Microgrids. In Proceedings of the PEDG 2023—2023 IEEE 14th International Symposium on Power Electronics for Distributed Generation Systems, Shanghai, China, 9–12 June 2023; pp. 396–401. [Google Scholar] [CrossRef]
- Fotopoulou, M.; Rakopoulos, D. Sustainable and Optimized Black Start in Microgrids. In Proceedings of the 7th International Conference of Recent Trends in Environmental Science and Engineering (RTESE 2023), Ottawa, ON, Canada, 4–6 June 2023. [Google Scholar] [CrossRef]
- Garcia-Torres, F.; Baez-Gonzalez, P.; Tobajas, J.; Vazquez, F.; Nieto, E. Cooperative Optimization of Networked Microgrids for Supporting Grid Flexibility Services Using Model Predictive Control. IEEE Trans. Smart Grid 2021, 12, 1893–1903. [Google Scholar] [CrossRef]
- Júnior, F.; Haiek, L.J. Avaliação Técnica e Econômica de Uma Microrrede Operando Conectada à Rede Elétrica Utilizando Tecnologia de Peak Shaving. Bachelor’s Thesis, Universidade de Brasília, Brasília, Brazil, 2022. [Google Scholar]
- Attou, N.; Zidi, S.A.; Hadjeri, S.; Khatir, M. Improved peak shaving and valley filling using V2G technology in grid connected Microgrid. In Proceedings of the 2021 3rd International Conference on Transportation and Smart Technologies, TST 2021, Tangier, Morocco, 27–28 May 2021; pp. 53–58. [Google Scholar] [CrossRef]
- Rana, M.M.; Atef, M.; Sarkar, M.R.; Uddin, M.; Shafiullah, G. A Review on Peak Load Shaving in Microgrid—Potential Benefits, Challenges, and Future Trend. Energies 2022, 15, 2278. [Google Scholar] [CrossRef]
- Yang, L.; Li, Z.; Liu, T.; An, N.; Zhou, W. Optimal Schedule Strategy for Peak Shaving Based on the Coordinated Operation of Flexible Resources in Multi-Energy Microgrid. In Proceedings of the 2023 6th International Conference on Renewable Energy and Power Engineering, Tokyo, Japan, 20–22 October 2023; pp. 211–215. [Google Scholar] [CrossRef]
- Ouyang, T.; Zhang, M.; Qin, P.; Tan, X. Flow battery energy storage system for microgrid peak shaving based on predictive control algorithm. Appl. Energy 2024, 356, 122448. [Google Scholar] [CrossRef]
- Yong, L. Peak Shaving Mechanism Employing a Battery Storage System (BSS) and Solar Forecasting. ECTI Trans. Electr. Eng. Electron. Commun. 2023, 21, 249826. [Google Scholar] [CrossRef]
- Prasad, J.; Jain, T.; Sinha, N.; Rai, S. Load Shifting Based DSM Strategy for Peak Demand Reduction in a Microgrid. In Proceedings of the 2020 International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET), Patna, India, 10–11 July 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Demanda Desconectable Voluntaria|Enel Colombia. Available online: https://www.enel.com.co/es/empresas/enel-distribucion/demanda-desconectable-voluntaria.html (accessed on 25 July 2024).
- Jasim, A.M.; Jasim, B.H.; Mohseni, S.; Brent, A.C. Energy Internet-Based Load Shifting in Smart Microgrids: An Experimental Study. Energies 2023, 16, 4957. [Google Scholar] [CrossRef]
- Li, B.; Deng, H.; Wang, J. Optimal scheduling of microgrid considering the interruptible load shifting based on improved biogeography-based optimization algorithm. Symmetry 2021, 13, 1707. [Google Scholar] [CrossRef]
- Zhu, S.; Luo, P.; Yang, Y.; Lu, Q.; Chen, Q. Optimal dispatch for grid-connecting microgrid considering shiftable and adjustable loads. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 5575–5580. [Google Scholar] [CrossRef]
- Abuelrub, A.; Hamed, F.; Hedel, J.; Al-Masri, H.M.K. Feasibility Study for Electric Vehicle Usage in a Microgrid Integrated with Renewable Energy. IEEE Trans. Transp. Electrif. 2023, 9, 4306–4315. [Google Scholar] [CrossRef]
- Bhosale, P.; Sujil, A.; Kumar, R. Electric Vehicle Charging Station Design for V2G and G2V Operation. In Proceedings of the 2023 4th International Conference for Emerging Technology, Belgaum, India, 26–28 May 2023. [Google Scholar] [CrossRef]
- Prasad, S.V.S.; Swathi, B.; Srividhya, C.; Al-Hussainy, A.K.; Nagpal, A.; Raman, R.S. Optimizing Vehicle-to-Grid Integration with Novel Energy Management Strategies and Battery Cost Considerations for Enhanced Microgrid Operations. In Proceedings of the International Conference on Communication, Computer Sciences and Engineering, Gautam Buddha Nagar, India, 9–11 May 2024; pp. 882–887. [Google Scholar] [CrossRef]
- Raveendran, V.; Kanaran, S.; Shanthisree, S.; Nair, M.G. Vehicle-to-grid Ancillary Services using Solar Powered Electric Vehicle Charging Stations. In Proceedings of the 2019 4th International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), Bangalore, India, 17–18 May 2019; pp. 1270–1274. [Google Scholar] [CrossRef]
- Kaushal, A.; Van Hertem, D. An overview of ancillary services and HVDC systems in European context. Energies 2019, 12, 3481. [Google Scholar] [CrossRef]
- Bordons, C.; García-Torres, F.; Valverde, L. Gestión Óptima de la Energía en Microrredes con Generación Renovable. Rev. Iberoam. Automática Inf. Ind. RIAI 2015, 12, 117–132. [Google Scholar] [CrossRef]
- Ajitha, S.; Yazhini, S.; Priyadharsen, S.; Narayanan, K.; Sharma, A.; Sharma, G. Congestion Management in Interconnected Microgrids for P2P Energy Trading Integrated with ESS. In Proceedings of the 11th International Conference on Innovative Smart Grid Technologies—Asia, ISGT-Asia 2022, Singapore, 1–5 November 2022; pp. 670–674. [Google Scholar] [CrossRef]
- Kurundkar, K.; Vaidya, G. Congestion management ancillary service at the distribution level through grid-connected microgrid based on DLMP and HFPSO-TOPSIS approach. Cogent Eng. 2023, 10, 2288411. [Google Scholar] [CrossRef]
- Lin, X.; Wang, L.; Xu, H.; Yang, M.; Cheng, X. Event-trigger rolling horizon optimization for congestion management considering peer-to-peer energy trading among microgrids. Int. J. Electr. Power Energy Syst. 2023, 147, 108838. [Google Scholar] [CrossRef]
- Garces, A.; Gil-González, W.; Montoya, O.D.; Chamorro, H.R. Alvarado-Barrios. A mixed-integer quadratic formulation of the phase-balancing problem in residential microgrids. Appl. Sci. 2021, 11, 1972. [Google Scholar] [CrossRef]
- Raza, S.A.; Jiang, J. Dynamic phase balancing of three single-phase sections having phase-wise generation and storage in a residential network. Electr. Power Syst. Res. 2024, 232, 110349. [Google Scholar] [CrossRef]
- Domínguez-García, J.L.; Ugalde-Loo, C.E. Power system oscillation damping by means of VSC-HVDC systems. In HVDC Grids; Wiley: Hoboken, NJ, USA, 2016; pp. 391–411. [Google Scholar] [CrossRef]
- Arora, A.; Bhadu, M.; Kumar, A. Simultaneous Damping and Frequency Control in AC Microgrid Using Coordinated Control Considering Time Delay and Noise. Trans. Inst. Meas. Control 2024, 46, 2436–2463. [Google Scholar] [CrossRef]
- Rumky, T.J.; Ahmed, T.; Ahmed, M.; Mekhilef, S. Tri-Band Damping Controller for Low Frequency Oscillations in AC Microgrid System. In Proceedings of the 2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies, GlobConHT 2023, Male, Maldives, 11–12 March 2023. [Google Scholar] [CrossRef]
- Ilyushin, P.; Volnyi, V.; Suslov, K.; Filippov, S. State-of-the-Art Literature Review of Power Flow Control Methods for Low-Voltage AC and AC-DC Microgrids. Energies 2023, 16, 3153. [Google Scholar] [CrossRef]
- Rossi, M.; Vigano, G.; Moneta, D.; Clerici, D.; Carlini, C. Analysis of active power curtailment strategies for renewable distributed generation. In Proceedings of the 2016 AEIT International Annual Conference (AEIT), Capri, Italy, 5–7 October 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Grupo Técnico Proyecto BID. Parte II Mapa de Ruta: Construcción y Resultados (COMPONENTE I). Available online: https://www1.upme.gov.co/DemandayEficiencia/Doc_Hemeroteca/Smart_Grids_Colombia_Vision_2030/2_Parte2_Proyecto_BID_Smart_Grids.pdf (accessed on 12 June 2024).
- Cuadra, L.; Salcedo-Sanz, S.; Del Ser, J.; Jiménez-Fernández, S.; Geem, Z.W. A critical review of robustness in power grids using complex networks concepts. Energies 2015, 8, 9211–9265. [Google Scholar] [CrossRef]
- IEA. Status of Power System Transformation 2019. IEA. 2019. Available online: https://www.iea.org/reports/status-of-power-system-transformation-2019 (accessed on 12 June 2024).
- Chartier, S.L.; Venkiteswaran, V.K.; Rangarajan, S.S.; Collins, E.R.; Senjyu, T. Microgrid Emergence, Integration, and Influence on the Future Energy Generation Equilibrium—A Review. Electronics 2022, 11, 791. [Google Scholar] [CrossRef]
- Sreedharan, P.; Farbes, J.; Cutter, E.; Woo, C.K.; Wang, J. Microgrid and renewable generation integration: University of California, San Diego. Appl. Energy 2016, 169, 709–720. [Google Scholar] [CrossRef]
- Dilliott, J.; Manager, U. CHP Equipment & Operations CHP Performance and Economic Savings. 2020. Available online: www.wchptap.org (accessed on 25 July 2024).
- The, U.C. San Diego Microgrid|EcoMotion. Available online: https://ecomotion.us/the-u-c-san-diego-microgrid/#tab-id-1 (accessed on 25 July 2024).
- Harvey, C. This Island Is Now Powered Almost Entirely by Solar Energy. The Washington Post. 2016. Available online: https://www.washingtonpost.com/news/energy-environment/wp/2016/11/24/this-island-is-now-powered-almost-entirely-by-solar-energy/ (accessed on 26 July 2024).
- Konidena, R.; Sun, B.; Bhandari, V. Missing discourse on microgrids—The importance of transmission and distribution infrastructure. Electr. J. 2020, 33, 106727. [Google Scholar] [CrossRef]
- Tesla Y SolarCity Independizan Energéticamente Una Isla De La Samoa Americana. Available online: https://ecoinventos.com/tesla-y-solarcity-independizan-energeticamente-una-isla-de-la-samoa-americana/ (accessed on 25 July 2024).
- SolarCity and Tesla: Ta’u Microgrid—Power World Analysis. Available online: https://www.powerworldanalysis.com/solarcity-tesla-tau-microgrid/ (accessed on 25 July 2024).
- Bowen, A.; Engelhardt, J.; Gabderakhmanova, T.; Marinelli, M.; Rohde, G. Battery Buffered EV Fast Chargers on Bornholm: Charging Patterns and Grid Integration. In Proceedings of the 2022 57th International Universities Power Engineering Conference: Big Data and Smart Grids, UPEC 2022—Proceedings, Istanbul, Turkey, 30 August–2 September 2022. [Google Scholar] [CrossRef]
- Politecnico di Torino, Institute of Electrical and Electronics Engineers. Italy Section, and Institute of Electrical and Electronics Engineers. In Proceedings of the UPEC 2020: 2020 55th International Universities Power Engineering Conference (UPEC): Verifying the Targets: Conference Proceedings, Torino, Italy, 1–4 September 2020. [Google Scholar]
- Micro-Red de HuatacondoCentro de Energía. Available online: https://centroenergia.cl/seleccionados/micro-red-de-huatacondo/ (accessed on 25 July 2024).
- Mata, O.N.; Villalba, D.O.; Palma-Behnke, R. Microrredes en la red eléctrica del futuro-caso huatacondo. Cienc. y Tecnol. 2013, 29, 16. Available online: https://revistas.ucr.ac.cr/index.php/cienciaytecnologia/article/view/15214 (accessed on 26 July 2024).
- Eras-Almeida, A.A.; Egido-Aguilera, M.A. Hybrid renewable mini-grids on non-interconnected small islands: Review of case studies. Renew. Sustain. Energy Rev. 2019, 116, 109417. [Google Scholar] [CrossRef]
- Hernández, Y.; Monagas, C.; de Lara, D.R.M.; Corral, S. Are microgrids an opportunity to trigger changes in small insular territories toward more community-based lifestyles? J. Clean. Prod. 2023, 411, 137206. [Google Scholar] [CrossRef]
- El Hierro isla 100% renovable | Endesa. Available online: https://www.endesa.com/es/proyectos/todos-los-proyectos/transicion-energetica/renovables/el-hierro-renovable (accessed on 25 July 2024).
- Wind Power, Solar and Battery Storage: Inland Empire Utilities Agency. Available online: https://www.wucaonline.org/assets/pdf/greenhouse-gas-case-study-ieua.pdf (accessed on 25 July 2024).
- Microgrid Analysis and Case Studies Report—California, North America, and Global Case Studies | California Energy Commission. Available online: https://www.energy.ca.gov/publications/2018/microgrid-analysis-and-case-studies-report-california-north-america-and-global (accessed on 25 July 2024).
- Our Vision | Pena Station NEXT. Available online: https://penastationnext.com/vision/#section__vision__clean_energy (accessed on 25 July 2024).
- A Portfolio Microgrid in Denver, Colorado. Available online: https://solar-media.s3.amazonaws.com/assets/Pubs/Younicos%20White%20Paper.pdf (accessed on 25 July 2024).
- Kojima, Y.; Koshio, M.; Nakamura, S.; Maejima, H.; Fujioka, Y.; Goda, T. A Demonstration Project in Hachinohe: Microgrid with Private Distribution Line. In Proceedings of the 2007 IEEE International Conference on System of Systems Engineering, San Antonio, TX, USA, 16–18 April 2007; pp. 1–6. [Google Scholar] [CrossRef]
- Hossain, E.; Bayindir, R.; Kabalci, E.; Demirbas, S. Microgrid facility around Asia and far east. In Proceedings of the 2014 International Conference on Renewable Energy Research and Application (ICRERA), Milwaukee, WI, USA, 19–22 October 2014; pp. 873–879. [Google Scholar] [CrossRef]
Norm/Standard/Regulation | Description | Ref. |
---|---|---|
IEEE 1547-2018 | IEEE Standard for Interconnection and Interoperability of DERs | [26] |
IEEE 1547a-2020 | IEEE Standard for Interconnection and Interoperability of DERs, Amendment 1: To Provide More Flexibility for Adoption of Abnormal Operating Performance Category III | [27] |
IEEE 519-2022 | IEEE Standard for Harmonic Control in Electric Power Systems | [28] |
IEEE 2030.2-2015 | IEEE Guide for the Interoperability of ESS with the Electric Power Infrastructure | [29] |
IEEE 2030.7-2017 | IEEE Standard for the Specification of Microgrid Controllers | [30] |
IEEE 2030.8-2018 | Standard for the Testing of Microgrid Controllers | [31] |
IEEE 2030.10-2021 | IEEE Standard for DC Microgrids for Rural and Remote Electricity Access Applications | [32] |
IEEE 2030.9-2019 | IEEE Recommended Practice for the Planning and Design of the Microgrid | [33] |
IEEE P2030.12 | IEEE Draft Guide for the Design of Microgrid Protection Systems | [34] |
IEEE 2050-2018 | IEEE Standard for a Real-Time Operating System (RTOS) for Embedded Systems | [35] |
IEC 61850 | Communication networks and systems for power utility automation | [36] |
IEC 62443 | Industrial communication networks—Network and system security | [37] |
Colombian Regulation | ||
RETIE | Technical Regulations for Electrical Installations | [38] |
NTC 2050 | Colombian Electrical Code | [39] |
Law 1715 of 2014 | Regulating the integration of non-conventional renewable energies to the National Energy System | [40] |
Law 2099 of 2021 | Whereby provisions are issued for the energy transition, the dynamization of the energy market, the economic reactivation of the country and other provisions are issued. | [41] |
PIEC 2019-2023 | Indicative Plan for the Expansion of Electric Energy Coverage | [42] |
PND 2022-2026 | National Development Plan “Colombia, world power of life” | [43] |
Law 2294 of 2023 | Whereby the National Development Plan 2022–2026 “Colombia, world power of life” is issued | [44] |
Decree 2236 of 2023 | Regulating Art 235 of Law 2294 of 2023 | [13] |
Decree 273 of 2024 | Modifies articles of Decree 2236 of 2023 | [45] |
Segment | Business Model | Use Case |
---|---|---|
FTM | Large energy volumes | Arbitrage Contributing power capacity Reliability charge Peak shaving management |
Complementary services (SSCCs) | Frequency control support Voltage support Black start Reserve service | |
Grid support | Power quality Flexibility Reactive power regulation | |
Renewable energy integration | Renewable energy displacement Firm energy capacity Grid integration of renewables Renewable smoothing | |
BTM | Consumer energy services | Peak shaving Load shifting EV storage Oscillation damping Congestion management (optimization) Loss compensation Phase balancing Curtailment of renewable energy (DER integration) |
No | Services | Operation |
---|---|---|
1 | Frequency control support | NIS |
2 | Voltage support | NIS |
3 | Black start | NIZ/NIS |
4 | Reserve service (energy storage) | NIZ/NIS |
5 | Peak shaving | NIS |
6 | Load shifting | NIZ/NIS |
7 | EV storage | NIZ/NIS |
8 | Oscillation damping | NIS |
9 | Congestion management | NIS |
10 | Loss compensation | NIS |
11 | Phase balancing | NIS |
12 | Curtailment of renewable energy (DER integration) | NIZ/NIS |
No | Services | Efficiency | Reliability | Resilience | Stability | Flexibility | Quality |
---|---|---|---|---|---|---|---|
1 | Frequency control support | X | X | X | X | ||
2 | Voltage support | X | X | X | X | ||
3 | Black start | X | X | X | |||
4 | Reserve service (energy storage) | X | X | X | |||
5 | Peak shaving | X | X | ||||
6 | Load shifting | X | X | X | |||
7 | EV storage | X | X | X | X | ||
8 | Oscillation damping | X | X | X | |||
9 | Congestion management | X | X | ||||
10 | Loss compensation | X | |||||
11 | Phase balancing | X | X | X | X | ||
12 | Curtailment of renewable energy | X | X | X | X |
Name | Ubication | Category | Date | Type | Power | Energy Sources | Storage |
---|---|---|---|---|---|---|---|
UC San Diego | United States | University MG | 2001 | Connected | 45 MW | CCGT, CT, PV, TES, BESS, Evs | 2.5 MW BESS 2.8 MW TES |
Island of Bornholm | Denmark | Piloto | 2021 | Connected | 602 kW | PV, BESS, WT, EVs | 0.104 kWh |
Huatacondo | Chile | Community MG | 2011 | Isolated | 218 kW | PV, BESS, DG, WT | 129 kWh |
El Hierro | Spain | MG of public services | 2014 | Isolated | 34.5 MW | PV, WT, HP, HS, DG | 530,000 m3 |
Inland Empire Utilities Agency | United States | MG of public services, Utility | 2016 | Connected | 13.5 MW | PV, WT, BESS, TES, DG | 5.55 MW |
Peña Station NEXT | United States | Residential and commercial MG | 2017 | Connected | 2.86 MW | PV, BESS, EVs | 2 MWh |
Hachinohe | Japan | Residential and commercial MG | 2005 | Connected | 890 kW | PV, WT, BESS, GE | 100 kW |
Nombre | Segment | Services Offered | Savings | Environmental Impact | Barriers and Challenges | Performance | Ref. |
---|---|---|---|---|---|---|---|
UC San Diego | BTM | 1, 2, 4, 12. | Savings of USD 800,000 per month | NOX reduction by 2.5 ppm. | Voltage regulation service is technically feasible, but the regulatory standards are without guarantees | It imports only 8% of the energy required from the grid operator. Voltage regulation can increase revenue by 2%. | [94,95,96] |
Ta’u MG American Samoa | FTM | 4, 12. | 110,000 Gallons of fuel | 2.5 MTons of CO2 emission reduction. | High initial capex as it is a remote island | 99% of supply. | [97,98,99,100] |
Island of Bornholm | BTM | 4, 5, 6, 7, 12. | NI | Reduction in power demand from the power grid, resulting in better use of available resources. | As this is a pilot and experimental GM, large-scale implementations have not been considered. | Saves more than half the energy required from the grid. | [101,102] |
Huatacondo | FTM | 4, 12. | NI | Reduce fuel consumption by 50%. | Systemically change-averse social structure. | Increased reliability. Improved power quality. | [103,104] |
El Hierro | FTM | 1, 2, 3, 4, 9, 12. | Savings of EUR 1.8 million per year | 100 tons of SO2, 400 tons of NOx, and 18,700 tons of CO2 reduced. | NI | 47% reduction in energy produced in the diesel plant. | [105,106,107] |
Inland Empire Utilities Agency | FTM | 1, 2, 4, 9, 12. | USD 230,000 per year | NI | Finding financing and regulatory complications for deploying various DERs. | Increased installation resiliency. | [108,109] |
Peña Station NEXT | BTM/FTM | 1, 2, 4, 6, 7, 9, 12. | NI | NI | Microgrid pilot with participation of different private entities and public utilities. | NI | [109,110,111] |
Hachinohe | 4, 5, 6, 11, 12. | NI | 520% CO2 reduction. | NI | 62% reduction in energy imported from the grid. | [112,113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez Alzate, Y.; Gómez-Luna, E.; Vasquez, J.C. Innovative Microgrid Services and Applications in Electric Grids: Enhancing Energy Management and Grid Integration. Energies 2024, 17, 5567. https://doi.org/10.3390/en17225567
Lopez Alzate Y, Gómez-Luna E, Vasquez JC. Innovative Microgrid Services and Applications in Electric Grids: Enhancing Energy Management and Grid Integration. Energies. 2024; 17(22):5567. https://doi.org/10.3390/en17225567
Chicago/Turabian StyleLopez Alzate, Yeferson, Eduardo Gómez-Luna, and Juan C. Vasquez. 2024. "Innovative Microgrid Services and Applications in Electric Grids: Enhancing Energy Management and Grid Integration" Energies 17, no. 22: 5567. https://doi.org/10.3390/en17225567
APA StyleLopez Alzate, Y., Gómez-Luna, E., & Vasquez, J. C. (2024). Innovative Microgrid Services and Applications in Electric Grids: Enhancing Energy Management and Grid Integration. Energies, 17(22), 5567. https://doi.org/10.3390/en17225567