Fossil Fuel Prospects in the Energy of the Future (Energy 5.0): A Review
Abstract
:1. Introduction
2. Methodology
3. Energy 5.0 as a Legacy of Energy 4.0
3.1. Energy 5.0—A Platform for Meeting the Energy Needs of Society 5.0
3.2. Differences Between Energy 5.0 and Energy 4.0
4. Fossil Energy Sources in the Transition to Energy 5.0
5. Prospects for Investing in Energy Production in Energy 5.0
6. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shanmugam, G. 200 Years of Fossil Fuels and Climate Change (1900–2100). J. Geol. Soc. India 2023, 99, 1043–1062. [Google Scholar] [CrossRef]
- Mingaleva, Z.; Sigova, M.V. Financial Aspects of the Implementation of the Fourth Energy Transition. Financ. J. 2022, 14, 43–58. [Google Scholar] [CrossRef]
- The UN Sustainable Development Goals. Available online: https://sdgs.un.org/goals (accessed on 10 September 2024).
- Aleshina, O.G. The concept of neo-industrial structural shifts under external shocks. Econ. Innov. Manag. 2024, 2, 4–11. [Google Scholar] [CrossRef]
- Skripko, V.E. Formation of the concept of network transformation of the economy and its digital platform. Econ. Innov. Manag. 2023, 4, 4–10. [Google Scholar] [CrossRef]
- Isupova, O.A.; Pimonov, A.G. The impact of economy decarbonization on the development of integration associations in the commodity-dependent region. Econ. Innov. Manag. 2023, 3, 64–75. [Google Scholar] [CrossRef]
- Ideki, O.; Barikor, B.; Ajoku, O. Assessment of natural resources for energy transition in Rivers state, Nigeria. Discov. Energy 2024, 4, 39. [Google Scholar] [CrossRef]
- Gerasimova, N.V. ESG in Russia: Corporate strategies—Problems and prospects. Econ. Innov. Manag. 2023, 2, 62–75. [Google Scholar] [CrossRef]
- Wong, R.; Dewayanti, A. Indonesiaʼs energy transition: Dependency, subsidies and renewables. Asia Pac. Policy Stud. 2024, 11, e391. [Google Scholar] [CrossRef]
- Hasan, Q.; Heffron, R.J.; Mohtadi, S.; Urpelainen, J. Stepping into the just transition journey: The energy transition in petrostates. Energy Res. Soc. Sci. 2024, 113, 103553. [Google Scholar] [CrossRef]
- Murugalakshmi, S. Evolution and performance analysis of bluetooth low energy 5.0. J. Mob. Appl. Technol. 2022, 10, 31. [Google Scholar] [CrossRef]
- Mahat, D.; Agrawal, R. Smart Cities can Benefit from Energy Savings Made Possible by Spending on Intelligent Transportation System for Society 5.0. Int. J. Appl. Adv. Multidiscip. Res. 2024, 2, 87–102. [Google Scholar] [CrossRef]
- Taneja, A.; Rani, S.; Raza, S.; Sefat, S.M. Energy efficient IRS assisted 6G network for Industry 5.0. Sci. Rep. 2023, 13, 12814. [Google Scholar] [CrossRef] [PubMed]
- Shuvalova, G.A. Risks and bankruptcy of a mining enterprise. Econ. Innov. Manag. 2024, 1, 68–80. [Google Scholar] [CrossRef]
- Bakator, M.; Cockalo, D.; Makitan, V.; Stanisavljev, S.; Nikolic, M. The three pillars of tomorrow: How Marketing 5.0 builds on Industry 5.0 and impacts Society 5.0? Heliyon 2024, 10, e36543. [Google Scholar] [CrossRef]
- Yadav, S.; Jaiswal, P. Transition to a Greener Era with Industry 5.0 and Sustainability. SMS J. Entrep. Innov. 2024, 10, 60–70. [Google Scholar] [CrossRef]
- Yadav, R.; Parwez, Z.; Parimala, S.; Priya, U.; Rathore, S.; Deepak, S.S.K. Analysis and Prediction of Future Research Trends in the State of Industry 5.0. Soc. Sci. J. 2023, 13, 2330–2340. [Google Scholar]
- Meena, M.; Sharafuddin, M.A.; Wangtueai, S. Impact of Industry 5.0 Readiness on Sustainable Business Growth of Marine Food Processing SMEs in Thailand. Adm. Sci. 2024, 14, 110. [Google Scholar] [CrossRef]
- Maddikunta, P.K.R.; Pham, Q.-V.; Ba, P.; Deepa, N.; Dev, K. Industry 5.0: A Survey on Enabling Technologies and Potential Applications. J. Ind. Inf. Integr. 2021, 8, 257. [Google Scholar] [CrossRef]
- Sharma, M.; Tomar, A.; Hazra, A. Edge Computing for Industry 5.0: Fundamental, Applications, and Research Challenges. IEEE Internet Things J. 2024, 11, 19070–19094. [Google Scholar] [CrossRef]
- Rahim, S.; Qureshi, M.A. Navigating the Nexus between Industry 5.0 and Society 5.0: Objectives, Compatibility, and Challenges. In Powering Industry 5.0 and Sustainable Development Through Innovation; IGI Global: Hershey, PA, USA, 2024. [Google Scholar] [CrossRef]
- Panneerselvam, S. Industry 4.0/5.0 Significant Difference-Overview. Arch. Comput. Methods Eng. 2023, 8, 1–11. [Google Scholar]
- Tyagi, A.; Arumugam, S.K.; Prasad, P.R.; Sharma, A. The Position of Digital Society, Healthcare 5.0, and Consumer 5.0 in the Era of Industry 5.0; IGI Global: Harrisburg, PA, USA, 2024. [Google Scholar] [CrossRef]
- Muravskyi, V.; Zarudna, N.; Muravskyi, V.; Prokipchuk, L. Accounting in the new generation society and Industry 5.0. Her. Econ. 2024, 2, 177. [Google Scholar] [CrossRef]
- Mahat, D. Society 5.0: A Bibliometric Analysis from Management Approach. NPRC J. Multidiscip. Res. 2024, 1, 1–19. [Google Scholar] [CrossRef]
- Mladineo, M.; Celent, L.; Milkovi’c, V.; Veža, I. Current State Analysis of Croatian Manufacturing Industry with Regard to Industry 4.0/5.0. Machines 2024, 12, 87. [Google Scholar] [CrossRef]
- Breque, M.; De Nul, L.; Petridis, A. European Commission, Directorate-General for Research and Innovation. In Industry 5.0—Towards a Sustainable, Human-Centric and Resilient European Industry; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar] [CrossRef]
- Petrescu, M.; Neacsa, A.; Laudacescu, E.; Tanase, M. Energy in the Era of Industry 5.0—Opportunities and Risks. In Industry 5.0; Springer: New York, NY, USA, 2023. [Google Scholar]
- Grabowska, S.; Saniuk, S.; Gajdzik, B. Industry 5.0: Improving humanization and sustainability of Industry 4.0. Scientometrics 2022, 127, 3117–3144. [Google Scholar] [CrossRef]
- Akman, A.Z.; Erdirençelebi, M. A Human-Centered Digital Transformation: A Bibliometric Analysis of Society 5.0 and Industry 5.0. Istanb. Manag. J. 2024, 96, 1–16. [Google Scholar] [CrossRef]
- Yitmen, I.; Almusaed, A. Synopsis of Industry 5.0 Paradigm for Human-Robot Collaboration. In Industry 4.0 Transformation towards Industry 5.0 Paradigm—Challenges, Opportunities and Practices; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Introna, V.; Santolamazza, A.; Cesarotti, V. Integrating Industry 4.0 and 5.0 Innovations for Enhanced Energy Management Systems. Energies 2024, 17, 1222. [Google Scholar] [CrossRef]
- Sundaram, A.; Nandakishore, L.V. Collaborate and Energize: Human-Machine Synergy in Advanced Energy Industries (AEI) Within the Framework of Industry 5.0. In Human-Machine Collaboration and Emotional Intelligence in Industry 5.0; IGI Global: Hershey, PA, USA, 2024. [Google Scholar] [CrossRef]
- Apostu, S.A.; Hysa, E.; Mirela, P. Digitalization, Sustainable Development, and Industry 5.0; Emerald Publishing: Bingley, UK, 2023. [Google Scholar] [CrossRef]
- Shankar, R.; Gupta, S.L. Modelling risks in transition from Industry 4.0 to Industry 5.0. Ann. Oper. Res. 2024, 9, 1–46. [Google Scholar] [CrossRef]
- Folgado, F.J.; Calderón, D.; González, I.; Calderón, A.J. Review of Industry 4.0 from the Perspective of Automation and Supervision Systems: Definitions, Architectures and Recent Trends. Electronics 2024, 13, 782. [Google Scholar] [CrossRef]
- Rodríguez, M.; Domingo, M.R.; Ribeiro, J. Mapping and prospective of additive manufacturing in the context of Industry 4.0 and 5.0. Rapid Prototyp. J. 2024, 30, 0410. [Google Scholar] [CrossRef]
- Shadravan, A.; Parsaei, H.R. The Paradigm Shift from Industry 4.0 Implementation to Industry 5.0 Readiness. In Proceedings of the AHFE International Conference, Orlando, FL, USA, 20–24 July 2023. [Google Scholar] [CrossRef]
- Ghobakhloo, M.; Mahdiraji, H.A.; Iranmanesh, M.; Sadeghi, V.J. From Industry 4.0 Digital Manufacturing to Industry 5.0 Digital Society: A Roadmap toward Human-Centric, Sustainable, and Resilient Production. Inf. Syst. Front. 2024, 1–33. Available online: https://link.springer.com/article/10.1007/s10796-024-10476-z#citeas (accessed on 27 October 2024). [CrossRef]
- Bansal, K.; Anjimoon, S.; Revathi, V.; Gupta, M.; Sharma, A. The Evolution from Digital Production to Digital Society in Industry 4.0 towards Industry 5.0. In Powering Industry 5.0 and Sustainable Development Through Innovation; IGI Global: Hershey, PA, USA, 2024. [Google Scholar] [CrossRef]
- Taş, A. An Entrepreneurial Perspective on Industry 4.0 and Industry 5.0. In Empowering Entrepreneurial Mindsets with AI; IGI Global: Hershey, PA, USA, 2024. [Google Scholar] [CrossRef]
- Putra, A.; Muslim, M.A. The Literature Review Analysis of The Human Resources Development in The Industry Era 4.0 towards the Era of society 5.0. Tech. Rom. J. Appl. Sci. Technol. 2024, 20, 16–24. [Google Scholar] [CrossRef]
- Xu, X.; Lu, Y.; Vogel-Heuser, B.; Lihui, W. Industry 4.0 and Industry 5.0-Inception, Conception, Perception. J. Manuf. Syst. 2021, 61, 530–535. [Google Scholar] [CrossRef]
- Pasupuleti, M.K. Smart Industry 4.0: Transformative Innovations and Advanced Technologies. In Transformative Innovations in Smart Manufacturing; IGI Global: Hershey, PA, USA, 2024. [Google Scholar] [CrossRef]
- Bashir, M.F.; Shahbaz, M.; Ma, B.; Alam, K. Evaluating the roles of energy innovation, fossil fuel costs and environmental compliance towards energy transition in advanced industrial economies. J. Environ. Manag. 2024, 351, 119709. [Google Scholar] [CrossRef] [PubMed]
- Otim, J.; Watundu, S.; Mutenyo, J.; Bagire, V. Fossil Fuel Energy Consumption, Economic Growth, Urbanization, and Carbon Dioxide Emissions in Kenya. Int. J. Energy Econ. Policy 2023, 13, 457–468. [Google Scholar] [CrossRef]
- Niesenbaum, R. Energy: From Fossil Fuels to a Sustainable Future. In Sustainable Solutions; Science Trove-Oxford University Press: Oxford, UK, 2024. [Google Scholar] [CrossRef]
- Pramanik, S. Industry 5.0: Blue Wind Energy for Sustainable Urbanization and Intelligent Control of Energy. In ESG and Ecosystem Services for Sustainability; IGI Global: Hershey, PA, USA, 2024. [Google Scholar] [CrossRef]
- Rane, N.L. ChatGPT and similar generative artificial intelligence (AI) for smart industry: Role, challenges, and opportunities for Industry 4.0, Industry 5.0, and Society 5.0. Innov. Bus. Strateg. Manag. 2024, 21, 10–17. [Google Scholar] [CrossRef]
- Solar and Wind to Supply over a Third of Global Power by 2030. Available online: https://news.energyjobline.com/renewables/solar-and-wind-to-supply-over-a-third-of-global-power-by-2030/ (accessed on 10 August 2024).
- Sayigh, A. Solar and Wind Energy Will Supply More than 50% of World Electricity by 2030. In Transition Towards a Carbon Free Future; Springer: Cham, Switzerland, 2024. [Google Scholar]
- Singh, B.; Kaunert, C.; Vig, K.; Riswandi, B.A.; Lal, R. Blue Wind Energy for Sustainable Urbanization and Smart Energy Management in Industry 5.0. In Eco-Innovation and Sustainable Development in Industry 5.0; IGI Global: Hershey, PA, USA, 2024. [Google Scholar] [CrossRef]
- Ray, S.; Varma, A.; Pal, R.P.; Korchagina, E. Current State Analysis of Indian Manufacturing Industry with Regards to Industry 4.0/5.0. IBMRD’s J. Manag. Res. 2024, 13, 37–48. [Google Scholar]
- Fani, V.; Bucci, I.; Rossi, M.; Bandinelli, R. Lean and industry 4.0 principles toward industry 5.0: A conceptual framework and empirical insights from fashion industry. J. Manuf. Technol. Manag. 2024, 35, 122–141. [Google Scholar] [CrossRef]
- Leng, J.; Guo, J.; Xie, J.; Wang, L. Review of manufacturing system design in the interplay of Industry 4.0 and Industry 5.0 (Part I): Design thinking and modeling methods. J. Manuf. Syst. 2024, 76, 158–187. [Google Scholar] [CrossRef]
- Argilovski, A.; Vasileska, E.; Tuteski, O.; Boban, K.; Jovanoski, B.; Tomov, M. Bridging the gap: Qualitative comparative analysis of Industry 4.0 and Industry 5.0. Mech. Eng. 2024, 42, 61–66. [Google Scholar] [CrossRef]
- Moeti, M. The Impact of Cybersecurity on Industrial Operations Caused by Digital Transformation from Industry 4.0 to Industry 5.0. In The Role of Cybersecurity in the Industry 5.0 Era; Intech Open: London, UK, 2024. [Google Scholar] [CrossRef]
- Madhavan, M.; Sharafuddin, M.A.; Wangtueai, S. Measuring the Industry 5.0-Readiness Level of SMEs Using Industry 1.0–5.0 Practices: The Case of the Seafood Processing Industry. Sustainability 2024, 16, 2205. [Google Scholar] [CrossRef]
- Keshari, A.; Singh, P. Analysis of Industry 4.0 and Industry 5.0, Investigating their Evolution and Collaboration. Interdiscip. J. Contemp. Res. 2023, 10, 21–28. [Google Scholar]
- Dmitrieva, E.; Balmiki, V.; Lakhanpal, S.; Lavanya, G.; Bhandari, P. AI Evolution in Industry 4.0 and Industry 5.0: An Experimental Comparative Assessment. BIO Web Conf. 2024, 86, 01069. [Google Scholar] [CrossRef]
- Abas, N.; Kalair, A.; Khan, N. Review of Fossil Fuels and Future Energy Technologies. Futures 2015, 69, 31–49. [Google Scholar] [CrossRef]
- Michaux, S.P. Calculation of the Extra Capacity Required of Non-Fossil Fuel Power Generation Systems to Completely Phase Out Fossil Fuels; GTK Open File Work; Report 42/2021; Geological Survey of Finland: Espoo, Finland, 2021; 1000p. [Google Scholar]
- Shilovskiy, A. On the Nature of Fossil Fuel. In Recent Research on Sedimentology, Stratigraphy, Paleontology, Geochemistry, Volcanology, Tectonics, and Petroleum Geology; Springer: New York, NY, USA, 2024. [Google Scholar] [CrossRef]
- Łosiewicz, B. Technology for Green Hydrogen Production: Desk Analysis. Energies 2024, 17, 4514. [Google Scholar] [CrossRef]
- Tuluhong, A.; Chang, Q.; Xie, L.; Xu, Z.; Song, T. Current Status of Green Hydrogen Production Technology: A Review. Sustainability 2024, 16, 9070. [Google Scholar] [CrossRef]
- Kotowicz, J.; Baszczeńska, O.; Niesporek, K. Cost of Green Hydrogen. Energies 2024, 17, 4651. [Google Scholar] [CrossRef]
- Okonicha, A.C.; Okwuanaso, C.I. A review of Green hydrogen production and the obstacles to hydrogen green economy. Int. J. Sci. Res. 2024, 12, 1867–1872. [Google Scholar] [CrossRef]
- Dusssan, K.; Eftim, G. Advancing Sustainable Energy Practices: The Transition from Fossil Fuels to Biogas. In Proceedings of the 4th World Conference “Waste Management”, Online, 22 April 2024. [Google Scholar] [CrossRef]
- Sikirica, A. Where are Fossil Fuels Displaced by Alternatives? World-Systems and Energy Transitions. J. World-Syst. Res. 2024, 30, 27. [Google Scholar] [CrossRef]
- Bahgat, G. Renewable Energy and the Politics of Fossil Fuels; Gulf International Forum: Jeddah, Saudi Arabia, 2024. [Google Scholar]
- Holechek, J.L.; Geli, H.M.E.; Sawalhah, M.N.; Valdez, R. A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability 2022, 14, 4792. [Google Scholar] [CrossRef]
- Nicolletti, M.; Berensson, M.; Myllyvirta, L.; Cui, R.Y. The Cost of Fossil Gas: Policy Recommendations for a Clean Energy Transition and a Swift Gas Phase-out in Cities. J. City Clim. Policy Econ. 2023, 2, 77–94. [Google Scholar] [CrossRef]
- Rößler, E.; Schmeckel, T.; Kesselheim, U.; Arning, K. Driving towards sustainability: Exploring risk perceptions of fossil fuels, e-fuels, and electric drives in individual transport. Front. Energy Res. 2024, 12, 1415430. [Google Scholar] [CrossRef]
- Rahman, A.; Woahid Murad, S.M.; Mohsin, A.K.M.; Wang, X. Does renewable energy proactively contribute to mitigating carbon emissions in major fossil fuels consuming countries? J. Clean. Prod. 2024, 452, 142113. [Google Scholar] [CrossRef]
- Chen, C.F.; Fan, C.M. Are Fossil Fuels Superior to Floating Photovoltaic on Energy Return? Smart Grids Sustain. Energy 2024, 9, 30. [Google Scholar] [CrossRef]
- Lukyanenok, P.P.; Zhironkina, O.V. Factors of innovative development of oil and gas industry in transition to Industry 4.0. Econ. Innov. Manag. 2023, 4, 77–85. [Google Scholar] [CrossRef]
- Pata, S.K.; Balcilar, M. Decarbonizing energy: Evaluating fossil fuel displacement by renewables in OECD countries. Environ. Sci. Pollut. Res. 2024, 31, 31304–31313. [Google Scholar] [CrossRef]
- Bagga, B. The Future of Fossil Fuels: Renewable Energy—Wind and Solar. In Sustainability in the Oil and Gas Sector; Palgrave Macmillan: London, UK, 2024. [Google Scholar] [CrossRef]
- Hefner, M.; Marland, G.; Oda, T. The changing mix of fossil fuels used and the related evolution of CO2 emissions. Mitig. Adapt. Strateg. Glob. Change 2024, 29, 56. [Google Scholar] [CrossRef]
- Lawani, E. Evaluating the prospect of large-scale integration of renewable energy sources and how it can replace the need for fossil fuels. J. Res. Educ. 2024, 2, 1–7. [Google Scholar]
- Lindroos, T.J.; Mäki, E.; Koponen, K.; Hannula, I.; Kiviluoma, J.; Raitila, J. Replacing fossil fuels with bioenergy in district heating—Comparison of technology options. Energy 2021, 231, 120799. [Google Scholar] [CrossRef]
- Dias, R.T.; Chambino, M.; Alexandre, P.M. Strength in Transition: Resilience of Sustainable Energy vs. Fossil Energy. In Proceedings of the 7th International Scientific Conference on IT, Tourism, Economics, Management and Agriculture, Zagreb, Croatia, 26 October 2023; p. 102. [Google Scholar] [CrossRef]
- Zhang, M.M.; Wang, Q.; Wang, D.; Zhou, H.; Hao, D. Evaluating uncertain investment decisions in low-carbon transition toward renewable energy. Appl. Energy 2019, 240, 1049–1060. [Google Scholar] [CrossRef]
- Zhao, P.; Gu, C.; Cao, Z.; Li, S. Integrated Energy System: A Low-Carbon Future Enabler; Wiley: New York, NY, USA, 2022. [Google Scholar]
- Goh, T. Decarbonization of the Fossil Fuel Sector. In The 4Ds of Energy Transition; Wiley: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Jenkins, S.; Kuijper, M.; Helferty, H.; Girardin, C. Extended producer responsibility for fossil fuels. Environ. Res. Lett. 2023, 18, 011005. [Google Scholar] [CrossRef]
- Clarke, L.; Curtis, M.; Eisenberg, A.; Grubert, E.A. A research agenda for economic resilience in fossil fuel–dependent communities. Environ. Res. Energy 2024, 1, 033004. [Google Scholar] [CrossRef]
- Nasreddin, D.; Abdellaoui, Y.; Cheracher, A.; Aboutaleb, S. Regression and Machine Learning Modeling Comparative Analysis of Morocco’s Fossil Fuel Energy Forecast. In Artificial Intelligence and Industrial Applications; Springer: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Gaafar, N.; Jürgens, P.; Schweiger, J.S.; Kost, C. System flexibility in the context of transition towards a net-zero sector-coupled renewable energy system—Case study of Germany. Environ. Res. Energy 2024, 1, 025007. [Google Scholar] [CrossRef]
- Friedemann, A.J. Life after Fossil Fuels: A Reality Check on Alternative Energy. Lect. Notes Energy 2021, 81, 23. [Google Scholar] [CrossRef]
- Malik, K.; Capareda, S.C.; Kamboj, B.R.; Malik, S.; Singh, K.; Arya, S.; Bishnoi, D.K. Biofuels Production: A Review on Sustainable Alternatives to Traditional Fuels and Energy Sources. Fuels 2024, 5, 157–175. [Google Scholar] [CrossRef]
- Proskurina, S. Carbon neutrality in the Finnish energy sector: Prospects for a fossil fuel phase out. Biofuels Bioprod. Biorefining 2024, 18, 1065–1076. [Google Scholar] [CrossRef]
- Merceron, L.; Boissonnet, G.; Maréchal, F. Climate neutrality of the French energy system: Overview and impacts of sustainable aviation fuel production. Front. Energy Res. 2024, 12, 1359641. [Google Scholar] [CrossRef]
- Schäfer, W. Energy efficiency of fossil and renewable fuels. In Proceedings of the Maataloustieteen Päivät: Viikki, Helsinki, Finland, 12–13 January 2016. [Google Scholar]
- Trout, K.; Muttitt, G.; Lafleur, D.; Van de Graaf, T.; Mendelevitch, R.; Mei, L.; Meinshausen, M. Existing fossil fuel extraction would warm the world beyond 1.5 °C. Environ. Res. Lett. 2022, 17, 064010. [Google Scholar] [CrossRef]
- Hermundsdottir, F.; Bjørgum, Ø.; Eide, A.E. Transition from fossil fuels to renewable energy: Identifying the necessary dynamic capabilities for a transition among Norwegian oil and gas companies. Bus. Strategy Environ. 2024, 33, 6315–6334. [Google Scholar] [CrossRef]
- Ramos, J.L.; Segura, A. Microbial biotechnology and beyond: A roadmap for sustainable development and climate mitigation in the transition from fossil fuels to green chemistry. Microb. Biotechnol. 2024, 17, e14434. [Google Scholar] [CrossRef]
- Tsai, B.-H.; Huang, Y.-M. Comparing the Substitution of Nuclear Energy or Renewable Energy for Fossil Fuels between the United States and Africa. Sustainability 2023, 15, 10076. [Google Scholar] [CrossRef]
- Carayannis, E.G.; Draper, J.; Bhaneja, B. Towards Fusion Energy in the Industry 5.0 and Society 5.0 Context: Call for a Global Commission for Urgent Action on Fusion Energy. J. Knowl. Econ. 2021, 12, 1891–1904. [Google Scholar] [CrossRef]
- Dell’Aversano, S.; Villante, C.; Gallucci, K.; Vanga, G.; Di Giuliano, A. E-Fuels: A Comprehensive Review of the Most Promising Technological Alternatives towards an Energy Transition. Energies 2024, 17, 3995. [Google Scholar] [CrossRef]
- Cavalcanti, J.T.F.; De Lima, J.G.; Melo, M.R.N.; Monteiro, E.C.B.; Campos-Takaki, G.M. Fossil fuels, nuclear energy and renewable energy. Seven Ed. 2023, 146, 1–23. [Google Scholar] [CrossRef]
- Mazur, L.; Cieślik, S.; Czapp, S. Trends in Locally Balanced Energy Systems without the Use of Fossil Fuels: A Review. Energies 2023, 16, 4551. [Google Scholar] [CrossRef]
- Hebda, W. Fossil fuels in the energy transition—The case of Romania. Miner. Resour. Manag. 2023, 39, 85–106. [Google Scholar]
- Overland, I.; Juraev, J.; Vakulchuk, R. Are renewable energy sources more evenly distributed than fossil fuels? Renew. Energy 2022, 200, 379–386. [Google Scholar] [CrossRef]
- Xia, S. The link and spillovers between clean energy and fossil fuels market: A systematic literature review. J. Account. Lit. 2022, 44, 177–191. [Google Scholar] [CrossRef]
- Khatibi, S.R.; Moradi-Lakeh, M.; Karimi, S.M.; Kermani, M.; Motevalian, S.A. Catalyzing healthier air: The impact of escalating fossil fuel prices on air quality and public health and the need for transition to clean fuels. Biofuel Res. J. 2024, 42, 2099–2104. [Google Scholar] [CrossRef]
- Barbesgaard, M.; Whitmore, A. Smoke and Minerals: How the Mining Industry Plans to Profit from the Energy Transition; Mining Network: London, UK, 2022. [Google Scholar]
- von Hirschhausen, C.; Kemfert, C.; Präger, F. Fossil Natural Gas Exit—A New Narrative for European Energy Transformation towards Decarbonization Fossil natural gas exit. DIW Berl. Discuss. Pap. 2020, 1892, 1–52. [Google Scholar] [CrossRef]
- Saeed, S.; Siraj, T. Global Renewable Energy Infrastructure: Pathways to Carbon Neutrality and Sustainability. Sol. Energy Sustain. Dev. 2024, 13, 183–203. [Google Scholar] [CrossRef]
- Sikandar, A.Q.; Al-Motairi, H.; Tahir, F.; al-Fagih, L. Incentives and strategies for financing the renewable energy transition: A review. Energy Rep. 2021, 7, 3590–3606. [Google Scholar] [CrossRef]
- Perskaya, V.V. ESG Strategies and Business Energy Transition in Modern Conditions. Econ. Strateg. 2022, 152, 76–85. [Google Scholar] [CrossRef]
- Komljenovic, D.; Kozarevic, E.; Avdic, H.; Suljić, N.; Softic, A.; Markovic, O.; Maric, D. Asset Management as a Framework for Energy Transition of Power Utilities in Developing Countries. In Proceedings of the CIGRE Session, Paris, France, 28 August–2 September 2022. [Google Scholar]
- Shirizadeh, B.; Lévêque, C.; Carty, C.; Pradeep, P.; Jacamon, V.; Trüby, J.; Lorentz, B. Financing the Green Energy transition: A US$50-Trillion Catch; Deloitte: New York, NY, USA, 2023; p. 52. [Google Scholar]
- Kudryavtseva, O.V.; Chernyavskiy, S.V.; Utkina, A.V. Economic growth in developed and developing countries in the context of the transition to renewable energy sources. Econ. Math. Methods 2024, 60, 40–49. [Google Scholar] [CrossRef]
- Li, B. The role of financial markets in the energy transition: An analysis of investment trends and opportunities in renewable energy and clean technology. Environmental Sci. Pollut. Res. 2023, 30, 97948–97964. [Google Scholar] [CrossRef]
- Saraji, S.; Akindipe, D. The Role of the Oil and Gas Industry in the Energy Transition. In Sustainability in the Oil and Gas Sector; Palgrave Macmillan: London, UK, 2024. [Google Scholar] [CrossRef]
- Usman, M.; Jahanger, A.; Makhdum, M.S.A.; Radulescu, M.; Lorente, D.B.; Jianu, E. An Empirical Investigation of Ecological Footprint Using Nuclear Energy, Industrialization, Fossil Fuels and Foreign Direct Investment. Energies 2022, 15, 6442. [Google Scholar] [CrossRef]
- Khmyz, O.V. Problems of financing the global energy transition. Econ. Manag. 2023, 29, 621–629. [Google Scholar] [CrossRef]
- Van de Putte, A.; Campbell-Holt, A.; Littlejohn, G. Financing the Sustainable Energy Transition. Lect. Notes Energy 2020, 73, 157–177. [Google Scholar] [CrossRef]
- Babkin, A.B.; Shkarupeta, E. Co-evolutionary-convergent potential of ESG 5.0 as a driver of industrial growth of the Russian economy in a multipolar world. Econ. Manag. 2024, 30, 953–971. [Google Scholar] [CrossRef]
- Aramendia, E.; Brockway, P.E.; Taylor, P.G.; Norman, J.B. Estimation of useful-stage energy returns on investment for fossil fuels and implications for renewable energy systems. Nat. Energy 2024, 9, 803–816. [Google Scholar] [CrossRef]
- Sahin, H.; Asfaw, S.A.; Aghahosseini, A.; Breyer, C. Systemwide energy return on investment in a sustainable transition towards net zero power systems. Nat. Commun. 2024, 15, 208. [Google Scholar] [CrossRef]
- Biryukov, E.; Kolpakov, A. Fossil Fuel Subsidy Reform as Western Trade and Climate Initiative. World Econ. Int. Relat. 2024, 68, 45–56. [Google Scholar] [CrossRef]
- Diallo, S.; Ouoba, Y.; Gatete, C. Effect of Fossil Fuel Subsidies on Renewable Energy Transition in Sub-Saharan African Countries. In Energy Regulation in Africa; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Umar, Z.; Choi, S.Y.; Teplova, T.; Sokolova, T. Dynamic spillovers and portfolio implication between green cryptocurrencies and fossil fuels. PLoS ONE 2023, 18, e0288377. [Google Scholar] [CrossRef] [PubMed]
- Korobka, R.V. The Global Dimension of Environmental Investment: Between Renewable Energy and Fossil Fuels. Bus. Inf. 2023, 12, 144–150. [Google Scholar] [CrossRef]
- Michaux, S. Assessment of the Extra Capacity Required of Alternative Energy Electrical Power Systems to Completely Replace Fossil Fuels; Report Number: 42/2021; Geological Survey of Finland: Espoo, Finland, 2021. [Google Scholar]
- Fitzgerald, L.M. Tracing the development of Anti-Fossil Fuel Norms: Insights from the Republic of Ireland. Clim. Policy 2023, 23, 1101–1114. [Google Scholar] [CrossRef]
- Barreto, R. Fossil fuels, alternative energy and economic growth. Econ. Model. 2018, 75, 196–220. [Google Scholar] [CrossRef]
- Tsai, B.H. Modelling Energy Consumption and Carbon Dioxide Emissions of Fossil Fuels and Nuclear Energy Using Lotka-Volterra Equations. Appl. Ecol. Environ. Res. 2022, 20, 1435–1455. [Google Scholar] [CrossRef]
- van de Ketterij, R.G.; Geertsma, R.; Grasman, A.; Pothaar, M.; Coraddu, A. Alternative Fuels, Propulsion and Power Systems for the Future Navy—A Route Towards Reduced Emissions and Signatures, and Fossil Fuel Independence. In Climate Security and the Military: Concepts, Strategies and Partnerships; Leiden University Press: Leiden, The Netherlands, 2023. [Google Scholar]
- Jesus, B.; Ferreira, I.A.; Carreira, A.; Erikstad, S.O.; Godina, R. Economic framework for green shipping corridors: Evaluating cost-effective transition from fossil fuels towards hydrogen. Int. J. Hydrog. Energy 2024, 83, 1429–1447. [Google Scholar] [CrossRef]
- Halkos, G.E.; Gkampoura, E.-C. Assessing Fossil Fuels and Renewables’ Impact on Energy Poverty Conditions in Europe. Energies 2023, 16, 560. [Google Scholar] [CrossRef]
- Gasanov, M.A.; Gasanov, E.A.; Ashvanyan, S.K.; Zhavoronok, A.V.; Zhironkin, S.A. Digital structural shift: An approach to analysis in modern economy. Econ. Innov. Manag. 2024, 2, 23–34. [Google Scholar] [CrossRef]
- Zhironkina, O.; Zhironkin, S. Technological and Intellectual Transition to Mining 4.0: A Review. Energies 2023, 16, 1427. [Google Scholar] [CrossRef]
- Onifade, T.T. Fossil Fuel Subsidies in Canada: Governance Implications in the Net-Zero Transition; Canada Climate Law Initiative: Toronto, ON, Canada, 2022. [Google Scholar]
- Syed Ali, S.A.; Abdul Rahman, A.S.; Mohamad, M.F.N.; Supian, L.S.; Mohd Zahari, H.; Razali, M. Assessing the energy efficiency of fossil fuel in ASEAN. Int. J. Renew. Energy Dev. 2023, 12, 1008–1017. [Google Scholar] [CrossRef]
- Owusu, P.A.; Borkloe, J.K.; Mahamud, Y. Challenges towards Sustainable Energy as a Substitute for Fossil Fuels for the Case of Municipal Waste Management. J. Earth Energy Sci. Eng. Technol. 2024, 7, 1–14. [Google Scholar] [CrossRef]
- Hersaputri, L.D.; Yeganyan, R.; Cannone, C.; Plazas-Niño, F.; Osei-Owusu, S.; Kountouris, Y.; Howells, M. Reducing Fossil Fuel Dependence and Exploring Just Energy Transition Pathways in Indonesia Using OSeMOSYS (Open-Source Energy Modelling System). Climate 2024, 12, 37. [Google Scholar] [CrossRef]
- McDonnell, C.; Gupta, J. Beyond divest vs. engage: A review of the role of institutional investors in an inclusive fossil fuel phase-out. Clim. Policy 2023, 24, 314–331. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.M.; Destek, M.A.; Haque, A.; Khudoykulov, K. Can undergoing renewable energy transition assist the BRICS countries in achieving environmental sustainability? Environ. Sci. Pollut. Res. 2024, 31, 9700–9712. [Google Scholar] [CrossRef]
- Li, X.S.; Liu, L. Energy transition paradox: Solar and wind growth can hinder decarbonization. Renew. Sustain. Energy Rev. 2024, 192, 114220. [Google Scholar] [CrossRef]
- Benjamin, S.; Hussein, H. The geopolitical economy of an undermined energy transition: The case of Jordan. Energy Policy 2023, 180, 113655. [Google Scholar] [CrossRef]
- Durani, F. Time-varying Relationship between Fossil Fuel-Free Energy Indices and Economic Uncertainty: Global Evidence from Wavelet Coherence Approach. Int. J. Energy Econ. Policy 2024, 14, 663–672. [Google Scholar] [CrossRef]
- Alagoz, E.; Yaser, A. The Energy Transition: Navigating the Shift towards Renewables in the Oil and Gas Industry. J. Energy Nat. Resour. 2023, 12, 21–24. [Google Scholar] [CrossRef]
- Plantinga, A.; Scholtens, B. The financial impact of fossil fuel divestment. Clim. Policy 2021, 21, 107–119. [Google Scholar] [CrossRef]
- Gicquello, M.; Webster, E. The Investment Treaty Regime and the Clean Energy Transition. In European Yearbook of International Economic Law; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Kolie, B.; Elshkaki, A.; Sunahara, G.; Diakite, M.L.; Sangare, M. Energy and water infrastructures management under energy transition pressure in mineral extraction urban and rural areas: A case study of the Republic of Guinea. Extr. Ind. Soc. 2024, 17, 101433. [Google Scholar] [CrossRef]
- Nikolaeva, R.; Field, S.; Tskhay, A. Decarbonizing an energy-hungry world: The dilemma of investing in fossil fuels. Manag. Decis. 2024, 62, 1105–1113. [Google Scholar] [CrossRef]
- Nieto, J.; Brockway, P.E.; Sakai, M.; Barrett, J. Assessing the energy and socio-macroeconomic impacts of the EV transition: A UK case study 2020-2050. Appl. Energy 2024, 370, 123367. [Google Scholar] [CrossRef]
- Uusitalo, N. Coming off fossil fuels: Visual recollection of fossil fuel dependency. Vis. Stud. 2022, 37, 184–192. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhironkin, S.; Abu-Abed, F. Fossil Fuel Prospects in the Energy of the Future (Energy 5.0): A Review. Energies 2024, 17, 5606. https://doi.org/10.3390/en17225606
Zhironkin S, Abu-Abed F. Fossil Fuel Prospects in the Energy of the Future (Energy 5.0): A Review. Energies. 2024; 17(22):5606. https://doi.org/10.3390/en17225606
Chicago/Turabian StyleZhironkin, Sergey, and Fares Abu-Abed. 2024. "Fossil Fuel Prospects in the Energy of the Future (Energy 5.0): A Review" Energies 17, no. 22: 5606. https://doi.org/10.3390/en17225606
APA StyleZhironkin, S., & Abu-Abed, F. (2024). Fossil Fuel Prospects in the Energy of the Future (Energy 5.0): A Review. Energies, 17(22), 5606. https://doi.org/10.3390/en17225606