End-Region Losses in High-Power Electrical Machines: Impact of Material Thickness on Eddy Current Losses in Clamping Structures †
Abstract
:1. Introduction
2. Eddy Current Loss Calculation
2.1. Experimental Bench
2.2. Numerical Calculation
- B: n = 0 in the boundary of the domain;
- E: t = 0 at the edges of the conducting devices;
- J: n = 0 on the surfaces of the pressure fingers and the clamping plate, so as to have induced currents that do not flow out of these surfaces.
3. Impact of Different Quantities on Eddy Current Losses
3.1. Impact of the Stator
3.2. Impact of the Distance
3.3. Impact of the Clamping Plate’s Thickness
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krings, A.; Boglietti, A.; Cavagnino, A.; Sprague, S. Soft Magnetic Material Status and Trends in Electric Machines. IEEE Trans. Ind. Electron. 2017, 64, 2405–2414. [Google Scholar] [CrossRef]
- De Almeida, A.T.; Ferreira, F.J.T.E.; Duarte, A.Q. Technical and Economical Considerations on Super High-Efficiency Three-Phase Motors. IEEE Trans. Ind. Appl. 2014, 50, 1274–1285. [Google Scholar] [CrossRef]
- IEC 60034-2-1: 2024; Rotating Electrical Machines—Part 2-1: Standard Methods for Determining Losses and Efficiency from Tests (Excluding Machines for Traction Vehicles). IEC: Nagoya, Japan, 2024. Available online: https://webstore.iec.ch/en/publication/67756 (accessed on 22 August 2024).
- Geravandi, M.; CheshmehBeigi, H.M. Stray Load Losses Determination Methods of Induction Motors-A Review. In Proceedings of the 2022 30th International Conference on Electrical Engineering (ICEE), Tehran, Iran, 17–19 May 2022; pp. 1033–1038. [Google Scholar] [CrossRef]
- Hong, K.-P.; Lee, J. Design of 200 kW Cryogenic Induction Motor for Liquefied Natural Gas Emergency Pump. Energies 2024, 17, 1898. [Google Scholar] [CrossRef]
- Cheaytani, J.; Benabou, A.; Tounzi, A.; Dessoude, M. Stray Load Losses Analysis of Cage Induction Motor Using 3-D Finite-Element Method with External Circuit Coupling. IEEE Trans. Magn. 2017, 53, 8202104. [Google Scholar] [CrossRef]
- Hamalainen, H.M.; Pyrhonen, J.; Nerg, J.; Puranen, J. 3-D Finite Element Method Analysis of Additional Load Losses in the End Region of Permanent-Magnet Generators. IEEE Trans. Magn. 2012, 48, 2352–2357. [Google Scholar] [CrossRef]
- Liang, Y.; Yu, H.; Bian, X. Finite-Element Calculation of 3-D Transient Electromagnetic Field in End Region and Eddy-Current Loss Decrease in Stator End Clamping Plate of Large Hydrogenerator. IEEE Trans. Ind. Electron. 2015, 62, 7331–7338. [Google Scholar] [CrossRef]
- Stermecki, A.; Biro, O.; Bakhsh, I.; Rainer, S.; Ofner, G.; Ingruber, R. 3-D Finite Element Analysis of Additional Eddy Current Losses in Induction Motors. IEEE Trans. Magn. 2012, 48, 959–962. [Google Scholar] [CrossRef]
- Darques, K.; Tounzi, A.; Benabou, A.; Shihab, S.; Korecki, J.; Boughanmi, W.; Laloy, D. Iron loss quantification in the aim of the estimation of eddy currents in clamping devices. Eur. J. Electr. Eng. 2021, 23, 481–486. [Google Scholar] [CrossRef]
- Waldhart, F.J.; Bacher, J.P.; Maier, G. Modeling eddy current losses in the clamping plate of large synchronous generators using the finite element method. In Proceedings of the International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Sorrento, Italy, 20–22 June 2012; pp. 1468–1473. [Google Scholar] [CrossRef]
- Bi, X.; Wang, L.; Marignetti, F.; Zhou, M. Research on Electromagnetic Field, Eddy Current Loss and Heat Transfer in the End Region of Synchronous Condenser with Different End Structures and Material Properties. Energies 2021, 14, 4636. [Google Scholar] [CrossRef]
- Wang, L.; Sun, Y.; Kou, B.; Bi, X.; Guo, H.; Marignetti, F.; Zhang, H. Prediction of Electromagnetic Characteristics in Stator End Parts of a Turbo-Generator Based on MLP and SVR. Energies 2021, 14, 5908. [Google Scholar] [CrossRef]
- Wang, L.; Li, W. Assessment of the Stray Flux, Losses, and Temperature Rise in the End Region of a High-Power Turbogenerator Based on a Novel Frequency-Domain Model. IEEE Trans. Ind. Electron. 2018, 65, 4503–4513. [Google Scholar] [CrossRef]
- Holland, S.A. Three dimensional finite element analysis of stator clamp plate losses of large turbo-generators. In Proceedings of the 2002 International Conference on Power Electronics, Machines and Drives (Conf. Publ. No. 487), Sante Fe, NM, USA, 4–7 June 2002; pp. 586–591. [Google Scholar] [CrossRef]
- Mohand Oussaid, W.M.A.; Tounzi, A.; Romary, R.; Benabou, A.; Laloy, D.; Boughanmi, W. Investigation of Losses in Fingers and Clamping Plates of High-Power Electrical Machines. In Proceedings of the 2022 International Conference on Electrical Machines (ICEM), Valencia, Spain, 5–8 September 2022; pp. 2187–2192. [Google Scholar] [CrossRef]
- Mohand Oussaid, W.M.A.; Tounzi, A.; Romary, R.; Benabou, A.; Laloy, D.; Boughanmi, W. Influence of Thickness on Eddy Current Losses in Materials Used as Clamping Structures in High-Power Electrical Machines. In Proceedings of the 2023 IEEE International Magnetic Conference—Short Papers (INTERMAG Short Papers), Sendai, Japan, 15–19 May 2023; pp. 1–2. [Google Scholar] [CrossRef]
- Code_Carmel, LAMEL (L2EP & EDF R&D), Version 2.2.0 of 30/09/2021. Available online: https://code-carmel.univ-lille.fr/ (accessed on 22 August 2024).
- De Wulf, M.; Makaveev, D.; Houbaert, Y.; Melkebeek, J. Design and calibration aspects of small size single sheet testers. J. Magn. Magn. Mater. 2003, 254–255, 70–72. [Google Scholar] [CrossRef]
- Xiong, R.; Masoumi, S.; Pakdel, A. An Automatic Apparatus for Simultaneous Measurement of Seebeck Coefficient and Electrical Resistivity. Energies 2023, 16, 6319. [Google Scholar] [CrossRef]
- Bertotti, G. General properties of power losses in soft ferromagnetic materials. IEEE Trans. Magn. 1988, 24, 621–630. [Google Scholar] [CrossRef]
Item | Type Size |
---|---|
Number of slots | 48 |
Stator inner diameter | 280 mm |
Stator outer diameter | 460 mm |
Core length | 80 mm |
Number of turns | 175 |
Material | Electrical Conductivity σ (MS/m) | |
---|---|---|
Aluminum | 1 | 17.93 |
Brass | 1 | 15 |
Stainless steel | 2.08 | 1.39 |
Magnetic steel | 1020 | 6.47 |
Current (A) | 3 | 6 | 9 | 12 |
---|---|---|---|---|
Measured power (W) | 16.5 | 65.7 | 148.0 | 262.4 |
Eddy current losses (W) | 6.6 | 26.1 | 59.0 | 104.2 |
Calculated iron losses (W) | 10−3 | 2 × 10−3 | 4.5 × 10−3 | 7.7 × 10−3 |
Resistance (ohm) | 1.0989 | 1.0985 | 1.0987 | 1.0984 |
Material | f = 50 Hz | f = 200 Hz | ||
---|---|---|---|---|
3D FEM | Test | 3D FEM | Test | |
Aluminum | 104.2 | 105.2 | 167.3 | 178.3 |
Brass | 118.1 | 124.5 | 186.1 | 195.7 |
Stainless steel | 87.3 | 115.1 | 649.1 | 723.3 |
Magnetic steel | 22.1 | 52.3 | 188.2 | 350.5 |
Distance (mm) | ||||
---|---|---|---|---|
Material | 5 | 10 | 17 | 20 |
Aluminum | 138.9 | 120.6 | 100.3 | 93.0 |
Stainless steel | 71.3 | 62.0 | 51.5 | 47.8 |
Magnetic steel | 35.0 | 30.0 | 24.4 | 22.7 |
Distance (mm) | ||||
---|---|---|---|---|
Material | 5 | 10 | 17 | 20 |
Aluminum | 228.5 | 195.7 | 160.9 | 148.7 |
Stainless steel | 697.0 | 605.7 | 503.6 | 466.7 |
Magnetic steel | 338.4 | 288.2 | 234.4 | 217.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohand Oussaid, W.; Tounzi, A.; Romary, R.; Benabou, A.; Boughanmi, W.; Laloy, D. End-Region Losses in High-Power Electrical Machines: Impact of Material Thickness on Eddy Current Losses in Clamping Structures. Energies 2024, 17, 5684. https://doi.org/10.3390/en17225684
Mohand Oussaid W, Tounzi A, Romary R, Benabou A, Boughanmi W, Laloy D. End-Region Losses in High-Power Electrical Machines: Impact of Material Thickness on Eddy Current Losses in Clamping Structures. Energies. 2024; 17(22):5684. https://doi.org/10.3390/en17225684
Chicago/Turabian StyleMohand Oussaid, Walid, Abdelmounaïm Tounzi, Raphaël Romary, Abdelkader Benabou, Walid Boughanmi, and Daniel Laloy. 2024. "End-Region Losses in High-Power Electrical Machines: Impact of Material Thickness on Eddy Current Losses in Clamping Structures" Energies 17, no. 22: 5684. https://doi.org/10.3390/en17225684
APA StyleMohand Oussaid, W., Tounzi, A., Romary, R., Benabou, A., Boughanmi, W., & Laloy, D. (2024). End-Region Losses in High-Power Electrical Machines: Impact of Material Thickness on Eddy Current Losses in Clamping Structures. Energies, 17(22), 5684. https://doi.org/10.3390/en17225684