Exploring the Effects of Synergistic Combustion of Alcohols and Biodiesel on Combustion Performance and Emissions of Diesel Engines: A Review
Abstract
:1. Introduction
2. The Impact on the Characteristics of Biodiesel
3. Engine Performance
3.1. Cylinder Pressure
3.2. Heat Release Rate (HRR)
3.3. Brake Thermal Efficiency (BTE)
3.4. Brake Specific Fuel Consumption (BSFC)
4. Exhaust Emissions
4.1. Carbon Monoxide (CO)
4.2. Carbon Dioxide (CO2)
4.3. Hydroxide (HC)
4.4. Nitrogen Oxides (NOx)
4.5. Smoke
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Almanzalawy, M.S.; Elkady, M.F.; Sanad, A.; Yousef, M.; Elwardany, A.E. Combined effects of ferric oxide nanoparticles and C2–C4 alcohols with diesel/biodiesel blend on diesel engine operating characteristics. Alex. Eng. J. 2024, 103, 38–50. [Google Scholar] [CrossRef]
- Ai, W.; Cho, H.M. Predictive Models for Biodiesel Performance and Emission Characteristics in Diesel Engines: A Review. Energies 2024, 17, 4805. [Google Scholar] [CrossRef]
- Wamankar, A.K.; Satapathy, A.K.; Murugan, S. Experimental investigation of the effect of compression ratio, injection timing & pressure in a DI (direct injection) diesel engine running on carbon black-water-diesel emulsion. Energy 2015, 93 Pt 1, 511–520. [Google Scholar]
- Cernat, A.; Pana, C.; Negurescu, N.; Lazaroiu, G.; Nutu, C.; Fuiorescu, D. Hydrogen—An alternative fuel for automotive diesel engines used in transportation. Sustainability 2020, 12, 9321. [Google Scholar] [CrossRef]
- Das, A.K.; Sahu, S.K.; Panda, A.K. Current status and prospects of alternate liquid transportation fuels in compression ignition engines: A critical review. Renew. Sustain. Energy Rev. 2022, 161, 112358. [Google Scholar] [CrossRef]
- Vellaiyan, S. Experimental study on energy and environmental impacts of alcohol-blended water emulsified cottonseed oil biodiesel in diesel engines. Results Eng. 2024, 24, 102873. [Google Scholar] [CrossRef]
- Chembedu, G.; Manu, P.V. Investigation of diesel-watermelon seed biodiesel-isoamyl alcohol blends in CI engine using Response Surface Methodology optimization. Ind. Crops Prod. 2024, 218, 118849. [Google Scholar] [CrossRef]
- Esmi, F.; Borugadda, V.B.; Dalai, A.K. Heteropoly acids as supported solid acid catalysts for sustainable biodiesel production using vegetable oils: A review. Catal. Today 2022, 404, 19–34. [Google Scholar] [CrossRef]
- Khujamberdiev, R.; Cho, H. Impact of Biodiesel Blending on Emission Characteristics of One-Cylinder Engine Using Waste Swine Oil. Energies 2023, 16, 5489. [Google Scholar] [CrossRef]
- Yang, J.; Cong, W.-J.; Zhu, Z.; Miao, Z.-D.; Wang, Y.-T.; Nelles, M.; Fang, Z. Microwave-assisted one-step production of biodiesel from waste cooking oil by magnetic bifunctional SrO–ZnO/MOF catalyst. J. Clean. Prod. 2023, 395, 136182. [Google Scholar] [CrossRef]
- Rozina, M.A.; Zafar, M. Synthesis of green and non-toxic biodiesel from non-edible seed oil of Cichorium intybus using recyclable nanoparticles of MgO. Mater. Today Commun. 2023, 35, 105611. [Google Scholar] [CrossRef]
- Prabakaran, P.; Karthikeyan, S. Algae biofuel: A futuristic, sustainable, renewable and green fuel for I.C. engines. Mater. Today Proc. 2023; in press. [Google Scholar] [CrossRef]
- Khujamberdiev, R.; Cho, H.M. Evaluation of TiO2 Nanoparticle-Enhanced Palm and Soybean Biodiesel Blends for Emission Mitigation and Improved Combustion Efficiency. Nanomaterials 2024, 14, 1570. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Li, P.; Lin, Y.; Du, H.; Liu, H.; Zhu, W.; Ren, H. Fight for carbon neutrality with state-of-the-art negative carbon emission technologies. Eco-Environ. Health 2022, 1, 259–279. [Google Scholar] [CrossRef] [PubMed]
- You, X.; Yang, L.; Zhou, X.; Zhang, Y. Sustainability and carbon neutrality trends for microalgae-based wastewater treatment: A review. Environ. Res. 2022, 209, 112860. [Google Scholar] [CrossRef]
- Khujamberdiev, R.; Cho, H.M. Exploring the Environmental and Performance Implications of Utilizing Waste Swine Oil Biodiesel in CI Engines. Energies 2024, 17, 551. [Google Scholar] [CrossRef]
- Pullagura, G.; Vanthala, V.S.P.; Vadapalli, S.; Bikkavolu, J.R.; Barik, D.; Sharma, P.; Bora, B.J. Enhancing performance characteristics of biodiesel-alcohol/diesel blends with hydrogen and graphene nanoplatelets in a diesel engine. Int. J. Hydrogen Energy 2024, 50 Pt B, 1020–1034. [Google Scholar] [CrossRef]
- Shirneshan, A.; Kanberoglu, B.; Gonca, G. Experimental investigation and parametric modeling of the effect of alcohol addition on the performance and emissions characteristics of a diesel engine fueled with biodiesel-diesel-hydrogen fuel mixtures. Fuel 2025, 381 Pt C, 133489. [Google Scholar] [CrossRef]
- Bashir, M.A.; Wu, S.; Zhu, J.; Krosuri, A.; Khan, M.U.; Aka, R.J.N. Recent development of advanced processing technologies for biodiesel production: A critical review. Fuel Process. Technol. 2022, 227, 107120. [Google Scholar] [CrossRef]
- Hoang, A.T. Combustion behavior, performance and emission characteristics of diesel engine fuelled with biodiesel containing cerium oxide nanoparticles: A review. Fuel Process. Technol. 2021, 218, 106840. [Google Scholar] [CrossRef]
- Sia, C.B.; Kansedo, J.; Tan, Y.H.; Lee, K.T. Evaluation on biodiesel cold flow properties, oxidative stability and enhancement strategies: A review. Biocatal. Agric. Biotechnol. 2020, 24, 101514. [Google Scholar] [CrossRef]
- Maleki, B.; Talesh, S.S.A. Cold flow properties and CI engine parameters synchronic improvement of biodiesel/diesel/C3 and C4 alcohol blends: Mixture design approach. Process Saf. Environ. Prot. 2022, 160, 310–326. [Google Scholar] [CrossRef]
- Leiva-Candia, D.E.; García, I.L.; Lopez, I.; Serrano-Herrador, J.A.; Dorado, M.P. Descriptive and inferential statistics as an exhaust emission comparative tool between different engine operating conditions and fuels. Application to highly oxidized biodiesel blended with primary alcohols. Fuel 2022, 324 Pt A, 124453. [Google Scholar] [CrossRef]
- Rathinam, S.; Balan, K.N.; Subbiah, G.; Sajin, J.B.; Devarajan, Y. Emission study of a diesel engine fueled with higher alcohol-biodiesel blended fuels. Int. J. Green Energy 2019, 16, 667–673. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, Q.; Liang, J.; Yang, C. The performance and emissions characteristics of diesel/biodiesel/alcohol blends in a diesel engine. Energy Rep. 2021, 7, 1016–1024. [Google Scholar] [CrossRef]
- Atmanli, A. Comparative analyses of diesel–waste oil biodiesel and propanol, n-butanol or 1-pentanol blends in a diesel engine. Fuel 2016, 176, 209–215. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, Q.; Zheng, Z. An experimental assessment on low temperature combustion using diesel/biodiesel/C2, C5 alcohol blends in a diesel engine. Fuel 2021, 288, 119832. [Google Scholar] [CrossRef]
- Musyoka, S.K.; Khalil, A.S.G.; Ookawara, S.; Nada, S.A. Soot morphology and nanostructure of oxygenated fuels: Influence of three- and four-carbon esters and alcohols in a diesel engine. Fuel 2024, 376, 132627. [Google Scholar] [CrossRef]
- Atmanli, A.; Yilmaz, N. An experimental assessment on semi-low temperature combustion using waste oil biodiesel/C3-C5 alcohol blends in a diesel engine. Fuel 2020, 260, 116357. [Google Scholar] [CrossRef]
- Krishnan, M.G.; Rajkumar, S.; Thangaraja, J.; Devarajan, Y. Exploring the synergistic potential of higher alcohols and biodiesel in blended and dual fuel combustion modes in diesel engines: A comprehensive review. Sustain. Chem. Pharm. 2023, 35, 101180. [Google Scholar] [CrossRef]
- Venu, H.; Veza, I.; Selvam, L.; Appavu, P.; Raju, V.D.; Subramani, L.; Nair, J.N. Analysis of particle size diameter (PSD), mass fraction burnt (MFB) and particulate number (PN) emissions in a diesel engine powered by diesel/biodiesel/n-amyl alcohol blends. Energy 2022, 250, 123806. [Google Scholar] [CrossRef]
- Khan, M.M.; Sharma, R.P.; Kadian, A.K.; Hasnain, S.M.M. An assessment of alcohol inclusion in various combinations of biodiesel-diesel on the performance and exhaust emission of modern-day compression ignition engines—A review. Mater. Sci. Energy Technol. 2022, 5, 81–98. [Google Scholar] [CrossRef]
- Algayyim, S.J.M.; Wandel, A.P. Macroscopic and microscopic characteristics of biofuel spray (biodiesel and alcohols) in CI engines: A review. Fuel 2021, 292, 120303. [Google Scholar] [CrossRef]
- Subramani, S.; Govindasamy, R. Application of MRSN ratio and Taguchi parametric design in optimization of parameters of DI CI engine fuelled with diesel-biodiesel-higher alcohol blends. Fuel 2021, 285, 119116. [Google Scholar] [CrossRef]
- Zaharin, M.S.M.; Abdullah, N.R.; Najafi, G.; Sharudin, H.; Yusaf, T. Effects of physicochemical properties of biodiesel fuel blends with alcohol on diesel engine performance and exhaust emissions: A review. Renew. Sustain. Energy Rev. 2017, 79, 475–493. [Google Scholar] [CrossRef]
- Atmanli, A. Effects of a cetane improver on fuel properties and engine characteristics of a diesel engine fueled with the blends of diesel, hazelnut oil and higher carbon alcohol. Fuel 2016, 172, 209–217. [Google Scholar] [CrossRef]
- Zerrakki IŞIK, M. Comparative experimental investigation on the effects of heavy alcohols- safflower biodiesel blends on combustion, performance and emissions in a power generator diesel engine. Appl. Therm. Eng. 2021, 184, 116142. [Google Scholar] [CrossRef]
- Wang, X.; Cheung, C.S.; Di, Y.; Huang, Z. Diesel engine gaseous and particle emissions fueled with diesel–oxygenate blends. Fuel 2012, 94, 317–323. [Google Scholar] [CrossRef]
- Ren, Y.; Huang, Z.; Miao, H.; Di, Y.; Jiang, D.; Zeng, K.; Liu, B.; Wang, X. Combustion and emissions of a DI diesel engine fuelled with diesel-oxygenate blends. Fuel 2008, 87, 2691–2697. [Google Scholar] [CrossRef]
- Yesilyurt, M.K. A detailed investigation on the performance, combustion, and exhaust emission characteristics of a diesel engine running on the blend of diesel fuel, biodiesel and 1-heptanol (C7 alcohol) as a next-generation higher alcohol. Fuel 2020, 275, 117893. [Google Scholar] [CrossRef]
- Liu, X.; Wang, H.; Zheng, Z.; Liu, J.; Reitz, R.D.; Yao, M. Development of a combined reduced primary reference fuel-alcohols (methanol/ethanol/propanols/butanols/n-pentanol) mechanism for engine applications. Energy 2016, 114, 542–558. [Google Scholar] [CrossRef]
- Geng, P.; Cao, E.; Tan, Q.; Wei, L. Effects of alternative fuels on the combustion characteristics and emission products from diesel engines: A review. Renew. Sustain. Energy Rev. 2017, 71, 523–534. [Google Scholar] [CrossRef]
- Mourad, M.; Mahmoud, K.R.M. Performance investigation of passenger vehicle fueled by propanol/gasoline blend according to a city driving cycle. Energy 2018, 149, 741–749. [Google Scholar] [CrossRef]
- Erdiwansyah; Mamat, R.; Sani, M.S.M.; Sudhakar, K.; Kadarohman, A.; Sardjono, R.E. An overview of Higher alcohol and biodiesel as alternative fuels in engines. Energy Rep. 2019, 5, 467–479. [Google Scholar] [CrossRef]
- Emiroğlu, A.O.; Şen, M. Combustion, performance and exhaust emission characterizations of a diesel engine operating with a ternary blend (alcohol-biodiesel-diesel fuel). Appl. Therm. Eng. 2018, 133, 371–380. [Google Scholar] [CrossRef]
- Imdadul, H.K.; Masjuki, H.H.; Kalam, M.A.; Zulkifli, N.W.M.; Alabdulkarem, A.; Rashed, M.M.; Ashraful, A.M. Influences of ignition improver additive on ternary (diesel-biodiesel-higher alcohol) blends thermal stability and diesel engine performance. Energy Convers. Manag. 2016, 123, 252–264. [Google Scholar] [CrossRef]
- Imdadul, H.K.; Masjuki, H.H.; Kalam, M.A.; Zulkifli, N.W.M.; Alabdulkarem, A.; Rashed, M.M.; Teoh, Y.H.; How, H.G. Higher alcohol–biodiesel–diesel blends: An approach for improving the performance, emission, and combustion of a light-duty diesel engine. Energy Convers. Manag. 2016, 111, 174–185. [Google Scholar] [CrossRef]
- Mahalingam, A.; Devarajan, Y.; Radhakrishnan, S.; Vellaiyan, S.; Nagappan, B. Emissions analysis on mahua oil biodiesel and higher alcohol blends in diesel engine. Alex. Eng. J. 2018, 57, 2627–2631. [Google Scholar] [CrossRef]
- Agrawal, T.; Gautam, R.; Agrawal, S.; Singh, V.; Kumar, M.; Kumar, S. Optimization of engine performance parameters and exhaust emissions in compression ignition engine fueled with biodiesel-alcohol blends using taguchi method, multiple regression and artificial neural network. Sustain. Futures 2020, 2, 100039. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, P.; Chen, H.; Wu, H.; Geng, L.; Zhang, W.; Chen, Z.; Qi, D.; Cao, J.; Wang, B. Optical study on the spray and combustion characteristics of diesel-biodiesel-alcohol blend fuels on a constant volume combustion chamber. J. Energy Inst. 2024, 117, 101779. [Google Scholar] [CrossRef]
- Doppalapudi, A.T.; Azad, A.K.; Khan, M.M.K. Exergy, energy, performance, and combustion analysis for biodiesel NOx reduction using new blends with alcohol, nanoparticle, and essential oil. J. Clean. Prod. 2024, 467, 142968. [Google Scholar] [CrossRef]
- Sathish, T.; Ağbulut, Ü.; Ubaidullah, M.; Saravanan, R.; Giri, J.; Shaikh, S.F. Waste to fuel: A detailed combustion, performance, and emission characteristics of a CI engine fuelled with sustainable fish waste management augmentation with alcohols and nanoparticles. Energy 2024, 299, 131412. [Google Scholar] [CrossRef]
- Yesilyurt, M.K.; Eryilmaz, T.; Arslan, M. A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/n-pentanol (C5 alcohol) fuel blends. Energy 2018, 165 Pt B, 1332–1351. [Google Scholar] [CrossRef]
- Musthafa, B.; Saravanan, B.; Asokan, M.A.; Devendiran, S.; Venkatesan, K. Effect of ethanol, propanol and butanol on karanja biodiesel with vegetable oil fuelled in a single cylinder diesel engine. Egypt. J. Pet. 2023, 32, 35–40. [Google Scholar] [CrossRef]
- Selvanathan, A.; Vijayaragavan, M. Effect on minor addition of aromatic (benzyl alcohol) and diethyl ether in Calophyllum inophyllum blended diesel fuel in a CI engine operates by hydrogen energy as a secondary fuel. Energy 2023, 285, 129529. [Google Scholar] [CrossRef]
- Murugan, M.A.; Ganesan, N. An insight into the combustion analysis of low carbon alcohol infused ternary fuel blends operated by varying the compression ratios. Case Stud. Therm. Eng. 2024, 63, 105251. [Google Scholar] [CrossRef]
- Kadian, A.K.; Khan, M.; Sharma, R.P.; Mozammil hasnain, S.M. Performance enhancement and emissions mitigation of DI-CI engine fuelled with ternary blends of jatropha biodiesel-diesel-heptanol. Mater. Sci. Energy Technol. 2022, 5, 145–154. [Google Scholar] [CrossRef]
- Kumar, K.; Nandi, B.K.; Saxena, V.K.; Kumar, R. Experimental studies of thermal behavior, engine performance and emission characteristics of biodiesel/diesel/1 pentanol blend in diesel engine. Alex. Eng. J. 2024, 106, 411–421. [Google Scholar] [CrossRef]
- Mujtaba, M.A.; Cho, H.M.; Masjuki, H.H.; Kalam, M.A.; Farooq, M.; Soudagar, M.E.M.; Gul, M.; Afzal, A.; Ahmed, W.; Raza, A.; et al. Effect of primary and secondary alcohols as oxygenated additives on the performance and emission characteristics of diesel engine. Energy Rep. 2021, 7, 1116–1124. [Google Scholar] [CrossRef]
- Ramesh, A.; Ashok, B.; Nanthagopal, K.; Pathy, M.R.; Tambare, A.; Mali, P.; Phuke, P.; Patil, S.; Subbarao, R. Influence of hexanol as additive with Calophyllum Inophyllum biodiesel for CI engine applications. Fuel 2019, 249, 472–485. [Google Scholar] [CrossRef]
- Upadhyay, N.; Das, R.K.; Ghosh, S.K. Investigating the impact of n-heptane (C7H16) and nanoparticles (TiO2) on diesel–microalgae biodiesel blend in CI diesel engines. Environ. Sci. Pollut. Res. 2024, 31, 8608–8632. [Google Scholar] [CrossRef] [PubMed]
- Ghadikolaei, M.A.; Cheung, C.S.; Yung, K.-F. Study of combustion, performance and emissions of diesel engine fueled with diesel/biodiesel/alcohol blends having the same oxygen concentration. Energy 2018, 157, 258–269. [Google Scholar] [CrossRef]
- Datta, A.; Mandal, B.K. Engine performance, combustion and emission characteristics of a compression ignition engine operating on different biodiesel-alcohol blends. Energy 2017, 125, 470–483. [Google Scholar] [CrossRef]
- Tse, H.; Leung, C.W.; Cheung, C.S. Investigation on the combustion characteristics and particulate emissions from a diesel engine fueled with diesel-biodiesel-ethanol blends. Energy 2015, 83, 343–350. [Google Scholar] [CrossRef]
- Zhu, L.; Xiao, Y.; Cheung, C.S.; Guan, C.; Huang, Z. Combustion, gaseous and particulate emission of a diesel engine fueled with n-pentanol (C5 alcohol) blended with waste cooking oil biodiesel. Appl. Therm. Eng. 2016, 102, 73–79. [Google Scholar] [CrossRef]
- Ashok, B.; Nanthagopal, K.; Saravanan, B.; Azad, K.; Patel, D.; Sudarshan, B.; Ramasamy, R.A. Study on isobutanol and Calophyllum inophyllum biodiesel as a partial replacement in CI engine applications. Fuel 2019, 235, 984–994. [Google Scholar] [CrossRef]
- Yilmaz, N.; Atmanli, A. Experimental evaluation of a diesel engine running on the blends of diesel and pentanol as a next generation higher alcohol. Fuel 2017, 210, 75–82. [Google Scholar] [CrossRef]
- Candan, F.; Ciniviz, M.; Ors, I. Effect of cetane improver addition into diesel fuel: Methanol mixtures on performance and emissions at different injection pressures. Therm. Sci. 2017, 21 Pt B, 555–566. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Z.; Chen, H.; Ji, Z.; Ma, Y.; Sun, F. A review on performance, combustion and emission of diesel and alcohols in a dual fuel engine. J. Energy Inst 2024, 116, 101760. [Google Scholar] [CrossRef]
- Subbaiah, G.V.; Gopal, K.R.; Hussain, S.A.; Prasad, B.D.; Reddy, K.T.; Pradesh, A. Rice bran oil biodiesel as an additive in diesel-ethanol blends for diesel engines. Int. J. Res. Rev. Appl. Sci. 2010, 3, 334–342. [Google Scholar]
- Hadi rahimi; Ghobadian, B.; Yusaf, T.; Najafi, G.; Khatamifar, M. Diesterol: An environment-friendly IC engine fuel. Renew. Energy 2009, 34, 335–342. [Google Scholar] [CrossRef]
- Wei, L.; Cheung, C.S.; Huang, Z. Effect of n-pentanol addition on the combustion, performance and emission characteristics of a direct-injection diesel engine. Energy 2014, 70, 172–180. [Google Scholar] [CrossRef]
- Yilmaz, N.; Atmanli, A. Experimental assessment of a diesel engine fueled with diesel-biodiesel-1-pentanol blends. Fuel 2017, 191, 190–197. [Google Scholar] [CrossRef]
- Imdadul, H.K.; Masjuki, H.H.; Kalam, M.A.; Zulkifli, N.W.M.; Alabdulkarem, A.; Kamruzzaman, M.; Rashed, M.M. A comparative study of C4 and C5 alcohol treated diesel–biodiesel blends in terms of diesel engine performance and exhaust emission. Fuel 2016, 179, 281–288. [Google Scholar] [CrossRef]
- Yesilyurt, M.K.; Aydin, M.; Yilbasi, Z.; Arslan, M. Investigation on the structural effects of the addition of alcohols having various chain lengths into the vegetable oil-biodiesel-diesel fuel blends: An attempt for improving the performance, combustion, and exhaust emission characteristics of a compression ignition engine. Fuel 2020, 269, 117455. [Google Scholar]
- Zeleke, D.S.; Tefera, A.K. An experimental investigation of the impacts of titanium dioxide (TiO2) and ethanol on performance and emission characteristics on diesel engines run with castor Biodiesel ethanol blended fuel. Fuel Process. Technol. 2024, 264, 108137. [Google Scholar] [CrossRef]
- Vargün, M.; Özsezen, A.N.; Botsalı, H.; Sayın, C. A study on the impact of fuel injection parameters and boost pressure on combustion characteristics in a diesel engine using alcohol/diesel blends. Process Saf. Environ. Prot. 2023, 177, 29–41. [Google Scholar] [CrossRef]
- Fattah, I.R.; Kalam, M.A.; Masjuki, H.H.; Wakil, M.A. Biodiesel production, characterization, engine performance, and emission characteristics of Malaysian Alexandrian laurel oil. RSC Adv. 2014, 4, 17787–17796. [Google Scholar] [CrossRef]
- Akar, M.A. Performance and emission characteristics of compression ignition engine operating with false flax biodiesel and butanol blends. Adv. Mech. Eng. 2016, 8, 1687814016632677. [Google Scholar] [CrossRef]
- Li, L.; Wang, J.; Wang, Z.; Xiao, J. Combustion and emission characteristics of diesel engine fueled with diesel/biodiesel/pentanol fuel blends. Fuel 2015, 156, 211–218. [Google Scholar] [CrossRef]
- Örs, İ.; Sarıkoç, S.; Atabani, A.E.; Ünalan, S. Experimental investigation of effects on performance, emissions and combustion parameters of biodiesel–diesel–butanol blends in a direct-injection CI engine. Biofuels 2020, 11, 121–134. [Google Scholar] [CrossRef]
- Alptekin, E.; Canakci, M.; Ozsezen, A.N.; Turkcan, A.; Sanli, H. Using waste animal fat based biodiesels–bioethanol–diesel fuel blends in a DI diesel engine. Fuel 2015, 157, 245–254. [Google Scholar] [CrossRef]
- Yasin, M.H.M.; Yusaf, T.; Mamat, R.; Yusop, A.F. Characterization of a diesel engine operating with a small proportion of methanol as a fuel additive in biodiesel blend. Appl. Energy 2014, 114, 865–873. [Google Scholar] [CrossRef]
- EL-Seesy, A.I.; Hassan, H.; Kosaka, H. Improving the Performance of a Diesel Engine Operated with Jojoba Biodiesel-Diesel-n-Butanol Ternary Blends. Energy Procedia 2019, 156, 33–37. [Google Scholar] [CrossRef]
- Yilmaz, N.; Atmanli, A.; Vigil, F.M. Quaternary blends of diesel, biodiesel, higher alcohols and vegetable oil in a compression ignition engine. Fuel 2018, 212, 462–469. [Google Scholar] [CrossRef]
- Yang, P.-M.; Lin, Y.-C.; Lin, K.C.; Jhang, S.-R.; Chen, S.-C.; Wang, C.-C.; Lin, Y.-C. Comparison of carbonyl compound emissions from a diesel engine generator fueled with blends of n-butanol, biodiesel and diesel. Energy 2015, 90 Pt 1, 266–273. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Y.; Li, S.; Roskilly, A.P.; Yu, H.; Li, H. Experimental investigation on the performance and emissions of a diesel engine fuelled with ethanol–diesel blends. Appl. Therm. Eng. 2009, 29, 2484–2490. [Google Scholar] [CrossRef]
- Sayin, C. Engine performance and exhaust gas emissions of methanol and ethanol–diesel blends. Fuel 2010, 89, 3410–3415. [Google Scholar] [CrossRef]
Fuel Type | Diesel | Methanol | Ethanol | Propanol | Butanol | n-propanol | n-butanol | n-pentanol |
---|---|---|---|---|---|---|---|---|
Chemical formula | C12–C25 | CH3OH | C2H5OH | C3H7OH | C4H9OH | C3H7OH | C4H9OH | C5H11OH |
Density (kg/m3) | 820 | 791.3 | 789.4 | 804 | / | 0.803 | 0.810 | 0.815 |
Kinematic Viscosity (cSt) | 1.9–4.0 | 0.59 | 1.13 | 1.74 | 2.22 | 1.74 | 2.22 | 2.88 |
Calorific Value (MJ/kg) | 42.5 | 20.08 | 26.83 | 29.81 | 32.01 | 29.82 | 32.01 | 32.16 |
Cetane Number | 40–55 | 2 | 8 | 12 | 17 | 12 | 17 | 20 |
Oxygen content (wt%) | 0 | 49.93 | 34.73 | 26.62 | 21.6 | 26.6 | 21.6 | 18.2 |
Boiling point | 180–370 | 65 | 78.4 | 82.3 | 117 | / | / | / |
Ref. | [41] | [41,42] | [41,42] | [43,44] | [44] | [41] | [41] | [41] |
Biodiesel Type | Fuel Type | Density (kg/m3) | Kinematic Viscosity (cSt) | Calorific Value (MJ/kg) | Cetane Number | Flash Point (°C) | Ref. |
---|---|---|---|---|---|---|---|
Cottonseed biodiesel | B20 | 842 | 2.78 | 42.36 | 57.8 | / | [45] |
B20 + 10% Butanol | 840 | 2.90 | 41.35 | 54.4 | / | ||
B20 + 10% Ethanol | 837.5 | 2.66 | 40.88 | 52.7 | / | ||
B20 + 10% Methanol | 838 | 2.60 | 40 | 52.3 | / | ||
Waste oil biodiesel | Waste oil biodiesel | 858 | 4.49 | 40.7 | 51.4 | 125 | [29] |
80% Biodiesel + 20% Propanol | 844 | 4.02 | 38.49 | 44.1 | 92.7 | ||
80% Biodiesel + 20% n-butanol | 845 | 3.95 | 39.08 | 45.12 | 96.4 | ||
80% Biodiesel + 20% 1-pentanol | 846 | 4.16 | 39.47 | 45.6 | 98.7 | ||
Palm biodiesel | PB100 | 866 | 4.671 | 39.95 | 55 | 187 | [46] |
80% Diesel + 10% Biodiesel + 10% Pentanol | 828.4 | 3.28 | 43.65 | 51.1 | 79.1 | ||
75% Diesel + 20% Biodiesel + 5% Pentanol | 833.9 | 3.49 | 43.28 | 52.7 | 90.85 | ||
Crude CI oil biodiesel | B20 | 837.6 | 3.64 | 43.41 | 53.4 | 78.6 | [47] |
80% Diesel + 10% Biodiesel + 10% Pentanol | 829.1 | 3.21 | 42.91 | 51.5 | 69.7 | ||
70% Diesel + 15% Biodiesel + 15% Pentanol | 831.7 | 3.28 | 42.23 | 50.2 | 62.3 | ||
60% Diesel + 20% Biodiesel + 20% Pentanol | 833.4 | 3.34 | 41.48 | 48.7 | 56.1 | ||
Mahua oil biodiesel | B100 | 882 | 4.2 | 38.108 | 52 | 140 | [48] |
90% Biodiesel + 10% Octanol | 866 | 4.4 | 38.057 | 52 | 137 | ||
80% Biodiesel + 20% Octanol | 848 | 4.6 | 37.912 | 51 | 136 | ||
Kusum oil biodiesel | B100 | 872 | 3.5 | 42.653 | 47 | 95 | [49] |
95% Biodiesel + 5% Octanol | 834 | 3.76 | 41.013 | / | 49.7 | ||
90% Biodiesel + 10% Octanol | 842 | 3.49 | 40.965 | / | 61.4 | ||
85% Biodiesel + 15% Octanol | 845 | 3.28 | 40.473 | / | 76.4 | ||
80% Biodiesel + 20% Octanol | 852 | 3.13 | 39.561 | / | 82.9 | ||
Biodiesel | Diesel | 836 | 3.94 | 42.9 | 50 | / | [50] |
70% Diesel + 20% Biodiesel + 10% Methanol | 860.5 | 4.34 | 35.6 | 46.9 | / | ||
70% Diesel + 20% Biodiesel + 10% Ethanol | 863 | 4.52 | 36.1 | 47.2 | / | ||
70% Diesel + 20% Biodiesel + 10% Propanol | 864.5 | 4.78 | 36.5 | 47.6 | / | ||
Tucuma biodiesel | B10 | 874.39 | 4.01 | 41.58 | / | 47.78 | [51] |
80% Diesel + 10% Biodiesel + 10% Ethanol | 865.2 | 4.04 | 43.4446 | / | 46.82 | ||
Fish waste biodiesel | B100 | 842 | 3.28 | 38.98 | 50 | 89 | [52] |
60% Diesel + 20% Biodiesel + 20% n-butanol | 830 | 3.12 | 39.08 | 48 | 75 |
Fuel Type | BTE | BSFC | HRR | CP | Ref. |
---|---|---|---|---|---|
Diesel | / | / | 15.89 J/deg | 81.24 bar | [53] |
93% Diesel + 2% Biodiesel + 5% 1-Butanol | ↑ 0.69% than diesel | ↑ 1.84% than diesel | 16.47 J/deg | 82.19 bar | |
88% Diesel + 2% Biodiesel + 10% 1-Butanol | ↓ 2.42% than diesel | ↑ 8.04% than diesel | 16.13 J/deg | 79.58 bar | |
75% Diesel + 20% Biodiesel + 5% 1-Butanol | ↓ 0.84% than diesel | ↑ 6.19% than diesel | 15.8 J/deg | 78.19 bar | |
70% Diesel + 20% Biodiesel + 10% 1-Butanol | ↓ 1.59% than diesel | ↑ 8.07% than diesel | 16.39 J/deg | 78.91 bar | |
93% Diesel + 2% Biodiesel + 5% n-pentanol | ↑ 0.85% than diesel | ↑ 0.77% than diesel | 16.45 J/deg | 80.2 bar | |
88% Diesel + 2% Biodiesel + 10% n-pentanol | ↓ 0.68% than diesel | ↑ 4.97% than diesel | 16.36 J/deg | 79.26 bar | |
75% Diesel + 20% Biodiesel + 5% n-pentanol | ↓ 0.04% than diesel | ↑ 5% than diesel | 16.3 J/deg | 79.24 bar | |
70% Diesel + 20% Biodiesel + 10% n-pentanol | ↓ 1.55% than diesel | ↑ 7.27% than diesel | 16.38 J/deg | 79.51 bar | |
B20 | / | / | 29.71 J/deg | 81.17 bar | [45] |
B20 + 10% Butanol | / | / | 31.93 J/deg | 81.59 bar | |
B20 + 10% Ethanol | / | / | 34.59 J/deg | 82.33 bar | |
B20 + 10% Methanol | / | / | 34.13 J/deg | 83.68 bar | |
B50 | 30.8% | 0.3 kg/kw.hr | / | 72.6 bar | [54] |
40% Diesel + 40% Biodiesel + 10% Vegetable oil + 10% Propanol | 31.84% | 0.3 kg/kw.hr | / | 73.16 | |
40% Diesel + 40% Biodiesel + 10% Vegetable oil + 10% Butanol | 31.2% | 0.3 kg/kw.hr | / | 72.08 bar | |
40% Diesel + 40% Biodiesel + 10% Vegetable oil + 10% Ethanol | 29.2% | 0.32 kg/kw.hr | 68 J/deg | 72.9 bar | |
B20 | / | 0.27938 kg/kw.hr | / | 73.58 bar | [55] |
B20 + 10% Benzyl alcohol | / | 0.25182 kg/kw.hr | / | 73.59 bar | |
B20 + 20% Benzyl alcohol | / | 0.21 kg/kw.hr | / | 74.82 bar | |
50% Diesel + 40% Biodiesel + 10% Ethanol | / | / | 55.74 J/deg | 51.5–54.5 bar | [56] |
50% Diesel + 30% Biodiesel + 20% Ethanol | / | / | 65.41 J/deg | 59.5–62.5 bar | |
50% Diesel + 20% Biodiesel + 30% Ethanol | / | / | 39.9 J/deg | / | |
Diesel | 31.88% | 0.24 | / | / | [57] |
40% Diesel + 50% Biodiesel + 10% Heptanol | 26.97% | 0.36 | / | / | |
40% Diesel + 40% Biodiesel + 20% Heptanol | 28.21% | 0.32 | / | / | |
40% Diesel + 30% Biodiesel + 30% Heptanol | 28.7% | 0.31 | / | / | |
40% Diesel + 20% Biodiesel + 40% Heptanol | 30.1% | 0.305 | / | / | |
70% Diesel + 30% Biodiesel | 27.18% | ↑ 3.24% than diesel | 34.3 J/deg | 75.3 bar | [58] |
70% Diesel + 25% Biodiesel + 5% Ethanol | 27.56% | 0.448 kg/kw.hr | 35.5 J/deg | 75.9 bar | |
70% Diesel + 20% Biodiesel + 10% Ethanol | 28.68% | 0.435 kg/kw.hr | 37.8 J/deg | 76.7 bar | |
70% Diesel + 15% Biodiesel + 15% Ethanol | 26.76% | 0.456 kg/kw.hr | 32.8 J/deg | 74.5 bar | |
B20 | 21.56% | ↑ 7.65% than diesel | [59] | ||
70% Diesel + 20% Biodiesel + 10% Ethanol | 23.11% | ↑ 4.63% than diesel | / | / | |
70% Diesel + 20% Biodiesel + 10% 2-Propanol | 23.13% | ↑ 4.45% than diesel | / | / | |
70% Diesel + 20% Biodiesel + 10% Iso-Butanol | 22.43% | ↑ 5.99% than diesel | / | / | |
70% Diesel + 20% Biodiesel + 10% Pentanol | 22.80% | ↑ 4.27% than diesel | / | / | |
70% Diesel + 20% Biodiesel + 10% 1-Hexanol | 21.95% | ↑ 7.53% than diesel | / | / |
Fuel Type | CO | HC | NOx | CO2 | Smoke | Ref. |
---|---|---|---|---|---|---|
70% Diesel + 15% Biodiesel + 15% n-butanol | ↓ 18.5% than B15 | ↓ 50% than B15 | ↑ 16.8% than B15 | ↑ 19.9% than B15 | / | [74] |
60% Diesel + 20% Biodiesel + 20% n-butanol | ↓ 21.5% than B20 | ↓ 67.7% than B20 | / | ↑ 8.85% than B20 | / | |
70% Diesel + 15% Biodiesel + 15% Pentanol | ↓ 33.1% than B15 | ↓ 56.25% than B15 | ↑ 13.2% than B15 | ↑ 15.6% than B15 | / | |
60% Diesel + 20% Biodiesel + 20% Pentanol | ↓ 33.8% than B20 | ↓ 67.7% than B20 | / | ↑ 7% than B20 | / | |
Diesel | 67.03 g/kWh | / | / | 372.06 g/kWh | / | [75] |
B20 | 64.10 g/kWh | ↓ 1.72–4.46% than Diesel | / | 431.09 g/kWh | ↓ 1.07% than Diesel | |
70% Diesel + 20% Biodiesel + 10% Safflower oil | 53.15 g/kWh | ↓ 39.15% than Diesel | / | 267.78 g/kWh | / | |
60% Diesel + 20% Biodiesel + 10% Safflower oil + Ethanol | ↓ 32.71% than Diesel | ↓ 51.81% than Diesel | 1.52 g/kWh | 284.35 g/kWh | 69.20% | |
60% Diesel + 20% Biodiesel + 10% Safflower oil + Isopropanol | ↓ 33.86% than Diesel | ↓ 26% than Diesel | 1.99 g/kWh | 356.13 g/kWh | 69.50% | |
60% Diesel + 20% Biodiesel + 10% Safflower oil + n-butanol | ↓ 40.43% than Diesel | ↓ 32.73% than Diesel | 2.25 g/kWh | 381.65 g/kWh | 68.10% | |
60% Diesel + 20% Biodiesel + 10% Safflower oil + Iso-pentanol | ↓ 47.09% than Diesel | ↓ 41.17% than Diesel | 2.43 g/kWh | 395.42 g/kWh | 68.44% | |
B30 | ↓ 20.13% than Diesel | ↓ 26.66% than Diesel | ↑ 48.36% than Diesel | ↑ 5.09% than Diesel | / | [76] |
B30 + 10% Ethanol + 50 ppm TiO2 | ↓ 32.14% than Diesel | ↓ 46.66% than Diesel | ↑ 55.65% than Diesel | ↑ 7.39% than Diesel | / | |
B30 + 20% Ethanol + 50 ppm TiO2 | ↓ 39.61% than Diesel | ↓ 60% than Diesel | ↑ 61.31% than Diesel | ↑ 5.18% than Diesel | ||
Diesel | / | / | 422 ppm | 5.7% | / | [77] |
94% Diesel + 1% Biodiesel + 5% Ethanol | / | / | 446 ppm | 5.5% | / | |
82% Diesel + 3% Biodiesel + 15% Ethanol | / | / | 443 ppm | 5.34% | / | |
Diesel | 0.165% | / | / | / | 59% | [55] |
B20 | 0.709% | / | / | / | 56% | |
B20 + 10% Benzyl alcohol | 0.096% | ↓ 27.8% than Diesel | / | / | 54% | |
B20 + 20% Benzyl alcohol | 0.099% | ↓ 32.9% than Diesel | / | / | 52% | |
Diesel | 0.065% | 35.25 ppm | 168.25 ppm | / | 1.025% | [57] |
40% Diesel + 50% Biodiesel + 10% Heptanol | 0.056% | 29.25 ppm | 178 ppm | / | 0.142% | |
40% Diesel + 40% Biodiesel + 20% Heptanol | 0.047% | 17.0 ppm | 190 ppm | / | 0.197% | |
40% Diesel + 30% Biodiesel + 30% Heptanol | 0.032% | 15.75 ppm | 202 ppm | / | 0.33% | |
40% Diesel + 20% Biodiesel + 40% Heptanol | 0.02% | 13.25 ppm | 221.75 ppm | / | 0.45% | |
70% Diesel + 30% Biodiesel | ↓ 36% than Diesel | ↓ 25.64% than Diesel | ↑ 30.47% than Diesel | / | / | [58] |
70% Diesel + 25% Biodiesel + 5% Ethanol | ↓ 40% than Diesel | ↓ 30.76% than Diesel | ↑ 22.89% than Diesel | / | / | |
70% Diesel + 20% Biodiesel + 10% Ethanol | ↓ 41.2% than Diesel | ↓ 38.46% than Diesel | ↑ 17.72% than Diesel | / | / | |
70% Diesel + 15% Biodiesel + 15% Ethanol | ↓ 52% than Diesel | ↓ 46.15% than Diesel | ↑ 8.77% than Diesel | / | / | |
B20 | ↓ 18.63% than Diesel | ↓ 55.57% than Diesel | ↓ 10.29% than Diesel | / | / | [59] |
70% Diesel + 20% Biodiesel + 10% Ethanol | ↓ 14.19% than Diesel | ↑ 0.94% than Diesel | ↓ 44.03% than Diesel | / | / | |
70% Diesel + 20% Biodiesel + 10% 2-Propanol | ↓ 63.78% than Diesel | ↓ 36.04% than Diesel | ↓ 17.85% than Diesel | / | / | |
70% Diesel + 20% Biodiesel + 10% Iso-Butanol | ↓ 47.8% than Diesel | ↓ 64.17% than Diesel | ↓ 28.03% than Diesel | / | / | |
70% Diesel + 20% Biodiesel + 10% Pentanol | ↓ 59.49% than Diesel | ↑ 11.39% than Diesel | ↑ 17.5% than Diesel | / | / | |
70% Diesel + 20% Biodiesel + 10% 1-Hexanol | ↓ 13.26% than Diesel | ↓ 11.45% than Diesel | ↑ 15.88% than Diesel | / | / | |
B19.3 | ↓ 13% than Diesel | ↓ 20.3% than Diesel | / | / | / | [22] |
B100 | ↓ 49% than Diesel | ↓ 30.5% than Diesel | / | / | / | |
41.7% Diesel + 19.3% Biodiesel + 39% Propanol | ↓ 53% than Diesel | ↓ 16.2% than Diesel | / | / | / | |
41.7% Diesel + 19.3% Biodiesel + 39% Butanol | ↓ 62% than Diesel | ↓ 13.8% than Diesel | / | ↑ 11.79% than Diesel | / | |
Diesel | 1244 | / | [53] | |||
93% Diesel + 2% Biodiesel + 5% 1-Butanol | ↓ 6.9% than Diesel | 1214 | 14.4% | ↓ 21.2% than Diesel | ||
88% Diesel + 2% Biodiesel + 10% 1-Butanol | ↓ 11.02% than Diesel | 1169 | 14.2% | ↓ 35.43% than Diesel | ||
75% Diesel + 20% Biodiesel + 5% 1-Butanol | ↓ 20.18% than Diesel | 1283 | 14.1% | ↓ 30.94% than Diesel | ||
70% Diesel + 20% Biodiesel + 10% 1-Butanol | ↓ 27.54% than Diesel | 1239 | 13.8% | ↓ 44.43% than Diesel | ||
93% Diesel + 2% Biodiesel + 5% n-pentanol | ↓ 19.23% than Diesel | 1211 | 14.5% | ↓ 10.47% than Diesel | ||
88% Diesel + 2% Biodiesel + 10% n-pentanol | ↓ 27.32% than Diesel | 1167 | 14.2% | ↓ 16.39% than Diesel | ||
75% Diesel + 20% Biodiesel + 5% n-pentanol | ↓ 24.8% than Diesel | 1279 | 14.5% | ↓ 15.86% than Diesel | ||
70% Diesel + 20% Biodiesel + 10% n-pentanol | ↓ 32.4% than Diesel | 1237 | 14% | ↓ 25.81% than Diesel |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, F.; Cho, H.M. Exploring the Effects of Synergistic Combustion of Alcohols and Biodiesel on Combustion Performance and Emissions of Diesel Engines: A Review. Energies 2024, 17, 6274. https://doi.org/10.3390/en17246274
Zheng F, Cho HM. Exploring the Effects of Synergistic Combustion of Alcohols and Biodiesel on Combustion Performance and Emissions of Diesel Engines: A Review. Energies. 2024; 17(24):6274. https://doi.org/10.3390/en17246274
Chicago/Turabian StyleZheng, Fangyuan, and Haeng Muk Cho. 2024. "Exploring the Effects of Synergistic Combustion of Alcohols and Biodiesel on Combustion Performance and Emissions of Diesel Engines: A Review" Energies 17, no. 24: 6274. https://doi.org/10.3390/en17246274
APA StyleZheng, F., & Cho, H. M. (2024). Exploring the Effects of Synergistic Combustion of Alcohols and Biodiesel on Combustion Performance and Emissions of Diesel Engines: A Review. Energies, 17(24), 6274. https://doi.org/10.3390/en17246274