Biomass Briquetting Technology for Sustainable Energy Solutions: Innovations in Forest Biomass Utilization
Abstract
:1. Introduction
1.1. Renewable Sources of Energy
1.2. Characteristics of Energy Raw Materials
1.2.1. Biomass of Agricultural Origin
1.2.2. Biomass of Forest Origin
1.3. Theory of Plant Material Briquetting
1.3.1. Physical Properties of Wood Materials
1.3.2. Parameters Affecting the Briquetting Process
1.3.3. Mechanics of Densification of the Plant Material
- px represents the pressure along the x-axis within the briquetting chamber (Pa);
- D represents the diameter of the tube (cm);
- μ represents the friction coefficient between the biomass and the chamber walls (unitless);
- x represents the distance along the briquetting chamber (m).
1.4. The Importance of Managing Forest Biomass in the Circular Economy
1.5. Challenges of Forest Biomass Utilization
1.6. Briquetting
1.6.1. A Key to Energy Optimization
1.6.2. The Role of Policy Support in Briquetting Technology
1.7. Future Directions and Research Needs
2. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Köhl, M.; Linser, S.; Prins, K.; Talarczyk, A. The EU Climate Package “Fit for 55”—A Double-Edged Sword for Europeans and Their Forests and Timber Industry. For. Policy Econ. 2021, 132, 102596. [Google Scholar] [CrossRef]
- Vierth, I.; Ek, K.; From, E.; Lind, J. The Cost Impacts of Fit for 55 on Shipping and Their Implications for Swedish Freight Transport. Transp. Res. Part A Policy Pract. 2024, 179, 103894. [Google Scholar] [CrossRef]
- Yavari, M.; Bohreghi, I.M. Developing a Green-Resilient Power Network and Supply Chain: Integrating Renewable and Traditional Energy Sources in the Face of Disruptions. Appl. Energy 2025, 377, 124654. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, D.; Wang, J.; Sui, A. Integrating Renewable Energy Systems: Assessing Financial Innovation, Renewable Energy Generation Intensity, Energy Transition and Environmental Regulation with Renewable Energy Sources. Energy Strategy Rev. 2024, 56, 101567. [Google Scholar] [CrossRef]
- Petryk, A.; Adamik, P. The Guarantees of Origin as a Market-Based Energy Transition Mechanism in Poland. J. Water Land Dev. 2023, 58, 11–16. [Google Scholar] [CrossRef]
- Gerlach, T. Volcanic versus Anthropogenic Carbon Dioxide. Eos 2011, 92, 201–202. [Google Scholar] [CrossRef]
- Weldu, Y.W. Life Cycle Human Health and Ecosystem Quality Implication of Biomass-Based Strategies to Climate Change Mitigation. Renew. Energy 2017, 108, 11–18. [Google Scholar] [CrossRef]
- Manjunath, K.V.; Maiti, S.; Garai, S.; Reddy, D.A.; Bhakat, M.; Aggarwal, A.; Mondal, G. Impact of Temperature Humidity Index-Based Climate Services for Murrah Buffaloes of India on Operational Decision-Making and Economic Outcome of the Farm. Clim. Serv. 2024, 36, 100522. [Google Scholar] [CrossRef]
- Trinh, T.A.; Smyth, R.; Awaworyi Churchill, S.; Yew, S.L. A Financial Disaster in the Making: Temperature Shocks, Climate Change and Savings. Energy Res. Soc. Sci. 2024, 118, 103782. [Google Scholar] [CrossRef]
- Taherzadeh, M.J.; Karimi, K. Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. Int. J. Mol. Sci. 2008, 9, 1621–1651. [Google Scholar] [CrossRef]
- Thakur, V.; Sharma, E.; Guleria, A.; Sangar, S.; Singh, K. Modification and Management of Lignocellulosic Waste as an Ecofriendly Biosorbent for the Application of Heavy Metal Ions Sorption. Mater. Today Proc. 2020, 32, 608–619. [Google Scholar] [CrossRef]
- Roman, K.; Barwicki, J.; Rzodkiewicz, W.; Dawidowski, M. Evaluation of Mechanical and Energetic Properties of the Forest Residues Shredded Chips during Briquetting Process. Energies 2021, 14, 3270. [Google Scholar] [CrossRef]
- da Silva, C.M.S.; de Cássia Oliveira Carneiro, A.; Vital, B.R.; Figueiró, C.G.; de Freitas Fialho, L.; de Magalhães, M.A.; Carvalho, A.G.; Cândido, W.L. Biomass Torrefaction for Energy Purposes—Definitions and an Overview of Challenges and Opportunities in Brazil. Renew. Sustain. Energy Rev. 2018, 82, 2426–2432. [Google Scholar] [CrossRef]
- Aryee, R.; Kanda, W. A Strategic Framework for Analysing the Effects of Circular Economy Practices on Firm Performance. J. Clean. Prod. 2024, 476, 143753. [Google Scholar] [CrossRef]
- Nurek, T.; Gendek, A.; Roman, K.; Dąbrowska, M. The Effect of Temperature and Moisture on the Chosen Parameters of Briquettes Made of Shredded Logging Residues. Biomass Bioenergy 2019, 130, 105368. [Google Scholar] [CrossRef]
- Nurek, T.; Gendek, A.; Roman, K. Forest Residues as a Renewable Source of Energy: Elemental Composition and Physical Properties. BioResources 2019, 14, 6–20. [Google Scholar] [CrossRef]
- Choi, J.-H.; Ahn, M.R.; Yoon, C.-H.; Lim, Y.-S.; Kim, J.R.; Seong, H.; Jung, C.-D.; You, S.-M.; Kim, J.; Kim, Y.; et al. Enhancing Compatibility and Biodegradability of Polylactic Acid/Biomass Composites Through Torrefaction of Forest Residue. J. Bioresour. Bioprod. 2024, in press. [Google Scholar] [CrossRef]
- Wagner, M.; Mangold, A.; Lask, J.; Petig, E.; Kiesel, A.; Lewandowski, I. Economic and Environmental Performance of Miscanthus Cultivated on Marginal Land for Biogas Production. GCB Bioenergy 2019, 11, 34–49. [Google Scholar] [CrossRef]
- Wisniewski, G.; Rogulska, M.; Grzybek, A.; Pietruszko, S.M. The Role of Renewable Energy in Carbon Dioxide Emission Reduction in Poland; Elsevier: Amsterdam, The Netherlands, 1995; Volume 52. [Google Scholar]
- Roman, K.; Grzegorzewska, E. The Comparison of Physical and Chemical Properties of Pellets and Briquettes from Hemp (Cannabis sativa L.). Energies 2024, 17, 2210. [Google Scholar] [CrossRef]
- Piątek, M.; Bartkowiak, A. Effectiveness of Using Physical Pretreatment of Lignocellulosic Biomass. J. Water Land Dev. 2023, 1, 62–69. [Google Scholar] [CrossRef]
- Borkowska, H.; Molas, R. Yield Comparison of Four Lignocellulosic Perennial Energy Crop Species. Biomass Bioenergy 2013, 51, 145–153. [Google Scholar] [CrossRef]
- Roman Kamil Dobór Parametrów Technicznych Procesu Brykietowania Biomasy Leśnej. Ph.D. Thesis, Warsaw University of Life Sciences, Warsaw, Poland, 2017.
- Patel, N.; Feofilovs, M.; Blumberga, D. Evaluation of Bioresource Value Models: Sustainable Development in the Agriculture Biorefinery Sector. J. Agric. Food Res. 2022, 10, 100367. [Google Scholar] [CrossRef]
- Sun, X.; Wu, Q.; Picha, D.H.; Ferguson, M.H.; Ndukwe, I.E.; Azadi, P. Comparative Performance of Bio-Based Coatings Formulated with Cellulose, Chitin, and Chitosan Nanomaterials Suitable for Fruit Preservation. Carbohydr. Polym. 2021, 259, 117764. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Shayan, M.; Gwon, J.; Picha, D.H.; Wu, Q. Effectiveness of Cellulose and Chitosan Nanomaterial Coatings with Essential Oil on Postharvest Strawberry Quality. Carbohydr. Polym. 2022, 298, 120101. [Google Scholar] [CrossRef] [PubMed]
- Tumuluru, J.S.; Wright, C.T.; Hess, J.R.; Kenney, K.L. A Review of Biomass Densification Systems to Develop Uniform Feedstock Commodities for Bioenergy Application. Biofuels Bioprod. Biorefining 2011, 5, 683–707. [Google Scholar] [CrossRef]
- Idoate-Lacasia, J.; Stillhard, J.; Portier, J.; Brang, P.; Zimmermann, S.; Bigler, C.; Bugmann, H.; Hobi, M.L. Long-Term Biomass Dynamics of Temperate Forests in Europe after Cessation of Management. For. Ecol. Manag. 2024, 554, 121697. [Google Scholar] [CrossRef]
- Rastislav Raši State of Europe’s Forests 2020. In Proceedings of the Ministerial Conference on the Protection of Forests in Europe, Bratislava, Slovakia, 28–29 October 2020.
- Kumar, A.; Gautam, A.; Dutt, D. Biotechnological Transformation of Lignocellulosic Biomass in to Industrial Products: An Overview. Adv. Biosci. Biotechnol. 2016, 07, 149–168. [Google Scholar] [CrossRef]
- Raslavičius, L.; Grzybek, A.; Dubrovin, V. Bioenergy in Ukraine—Possibilities of Rural Development and Opportunities for Local Communities. Energy Policy 2011, 39, 3370–3379. [Google Scholar] [CrossRef]
- Statistical Yearbook of Forestry 2024; Statistics Poland: Białystok, Poland, 2024.
- Dominik Rozkrut 2023 Rocznik Statystyczny Leśnictwa Statistical Yearbook of Forestry; Statistics Poland: Białystok, Poland, 2023.
- Kamperidou, V.; Barboutis, I.; Vasileiou, V. Response of Colour and Hygroscopic Properties of Scots Pine Wood to Thermal Treatment. J. For. Res. 2013, 24, 571–575. [Google Scholar] [CrossRef]
- Nemli, G.; Yildiz, S.; Derya Gezer, E. The Potential for Using the Needle Litter of Scotch Pine (Pinus sylvestris L.) as a Raw Material for Particleboard Manufacturing. Bioresour. Technol. 2008, 99, 6054–6058. [Google Scholar] [CrossRef]
- Gornowicz, R. Wykorzystanie Biomasy Ze Zrebkow i Trzebiezy Na Cele Energetyczne. Bibl. Leśniczego 2008, 274, 1–8. [Google Scholar]
- Kubiak, M.; Grodecki, J.; Rozanski, H. Próba ilościowej oceny biomasy w rębnych drzewostanach sosnowych zależnie od typu siedliskowego lasu. Sylwan 1985, 129, 6. [Google Scholar]
- Fomina, E. Low Power Finite State Machine Synthesis. Ph.D. Thesis, Tallinn University of Technology, Tallinn, Estonia, 2005. [Google Scholar]
- Yang, M.; Wang, Z.; Zhang, Z.; Chen, P.; Zhao, D.; Cheng, E.; Wang, C.; Yan, Y. Pathways for Ecological Restoration of Territorial Space Based on Ecosystem Integrity: A Case Study of Approach to Protecting and Restoring Mountains, Rivers, Forests, Farmlands, Lakes, and Grasslands in Beijing, China. Ecol. Front. 2024, 44, 1214–1223. [Google Scholar] [CrossRef]
- Haneca, K.; Wazny, T.; Van Acker, J.; Beeckman, H. Provenancing Baltic Timber from Art Historical Objects: Success and Limitations. J. Archaeol. Sci. 2005, 32, 261–271. [Google Scholar] [CrossRef]
- Bojarski, W.; Czekała, W.; Nowak, M.; Dach, J. Production of Compost from Logging Residues. Bioresour. Technol. 2023, 376, 128878. [Google Scholar] [CrossRef]
- Smolander, A.; Kitunen, V.; Lindroos, A.J. Piling up Norway Spruce Logging Residues Alters Soil Organic Matter in Clear Cuts. Appl. Soil Ecol. 2024, 201, 105460. [Google Scholar] [CrossRef]
- Dutt, S.; Kumar Batar, A.; Sulik, S.; Kunz, M. Forest Ecosystem on the Edge: Mapping Forest Fragmentation Susceptibility in Tuchola Forest, Poland. Ecol. Indic. 2024, 161, 111980. [Google Scholar] [CrossRef]
- Dai, Z.; Huang, C.; Chen, Y.; Zhong, M.; He, W. Experimental Study on Fire Extinguishing Efficiency of Polymer Hydrogel Fire Extinguishing Agent in Pine-Fir Mixed Coniferous Forest Fires. Case Stud. Therm. Eng. 2024, 64, 105413. [Google Scholar] [CrossRef]
- Government Legislation Center Law of the Republic of Poland No 101 Item 444 Law of on Forests; Fordham Environmental Law Review: New York, NY, USA, 1991.
- Pukalchik, M.; Mercl, F.; Panova, M.; Břendová, K.; Terekhova, V.A.; Tlustoš, P. The Improvement of Multi-Contaminated Sandy Loam Soil Chemical and Biological Properties by the Biochar, Wood Ash, and Humic Substances Amendments. Environ. Pollut. 2017, 229, 516–524. [Google Scholar] [CrossRef]
- Elam, J.; Björdal, C.G. Degradation of Wood Buried in Soils Exposed to Artificially Lowered Groundwater Levels in a Laboratory Setting. Int. Biodeterior. Biodegrad. 2023, 176, 105522. [Google Scholar] [CrossRef]
- Padilla-Martínez, J.R.; Paul, C.; Husmann, K.; Corral-Rivas, J.J.; von Gadow, K. Effects of Biological and Structural Tree Diversity on Biomass Production in Temperate Forests in Northwest Mexico. For. Ecol. Manag. 2024, 566, 122099. [Google Scholar] [CrossRef]
- Government Legislation Center Law of the Republic of Poland No 54 Item 535, Act of March 11, 2004 on Tax on Goods and Services; RSM Global: London, UK, 2004.
- Köthke, M. Implementation of the European Timber Regulation by German Importing Operators: An Empirical Investigation. For. Policy Econ. 2020, 111, 102028. [Google Scholar] [CrossRef]
- Giannotas, G.; Kamperidou, V.; Stefanidou, M.; Kampragkou, P.; Liapis, A.; Barboutis, I. Utilization of Tree-Bark in Cement Pastes. J. Build. Eng. 2022, 57, 104913. [Google Scholar] [CrossRef]
- Niedziółka, I.; Szymanek, M.; Zuchniarz, A. Ocena Trwałości Brykietów Wytworzonych Z Masy Roślinnej Kukurydzy Pastewnej. Inżynieria Rol. 2008, 9, 235–240. [Google Scholar]
- Hultnäs, M.; Fernandez-Cano, V. Determination of the Moisture Content in Wood Chips of Scots Pine and Norway Spruce Using Mantex Desktop Scanner Based on Dual Energy X-Ray Absorptiometry. J. Wood Sci. 2012, 58, 309–314. [Google Scholar] [CrossRef]
- Osborne, N.L.; Høibø, Ø.A.; Maguire, D.A. Estimating the Density of Coast Douglas-Fir Wood Samples at Different Moisture Contents Using Medical X-Ray Computed Tomography. Comput. Electron. Agric. 2016, 127, 50–55. [Google Scholar] [CrossRef]
- Franz, K.; Côté, W.A. Principles of Wood Science and Technology. I, Solid Wood; Springer: New York, NY, USA, 2013; ISBN 9783642879302. [Google Scholar]
- Hejft, R.; Białostocka, P. Wytwarzanie Brykietów z Odpadów Roślinnych w Ślimakowym Układzie Roboczym. Inżynieria Rol. 2006, 5, 231–238. [Google Scholar]
- Fiszer, A. Influence Of Straw Humidity And Temperature of Briquetting Process On The Quality Of Agglomerate. J. Res. Appl. Agric. Eng. 2009, 54, 68–70. [Google Scholar]
- Frączek, J.; Mudryk, K.; Wróbel, M. Nakłady Energetyczne w Procesie Brykietowania Wierzby Salix viminalis L. Inżynieria Rol. 2010, 14, 45–52. [Google Scholar]
- Kulig, R.; Skonecki, S.; Gawłowski, S.; Zdybel, A.; Łysiak, G. Oddziaływanie Ciśnienia na Efektywność Zagęszczania Trocin Wybranego Drewna Miękkiego. Acta Sci. Polonorum. Tech. Agrar. 2013, 12, 1–2. [Google Scholar]
- Maheshwari, R.C.; Chaturvedi, P. Bio-Energy society of India. Bio-Energy for Rural Energisation. In Proceedings of the National Bio-Energy Convention-95 on Bio-Energy for Rural Engergisation, Organised by Bio-Energy Society of India, Delhi, India, 4–15 December 1995; Concept Publishing Company: Delhi, India, 1997. ISBN 9788170226703. [Google Scholar]
- Ossei-Bremang, R.N.; Adjei, E.A.; Kemausuor, F.; Mockenhaupt, T.; Bar-Nosber, T. Effects of Compression Pressure, Biomass Ratio and Binder Proportion on the Calorific Value and Mechanical Integrity of Waste-Based Briquettes. Bioresour. Technol. Rep. 2024, 25, 101724. [Google Scholar] [CrossRef]
- Mitchual, S.J.; Frimpong-Mensah, K.; Darkwa, N.A. Effect of Species, Particle Size and Compacting Pressure on Relaxed Density and Compressive Strength of Fuel Briquettes. Int. J. Energy Environ. Eng. 2013, 4, 1–6. [Google Scholar] [CrossRef]
- Kers, J.; Kulu, P.; Aruniit, A.; Laurmaa, V.; Križan, P.; Šooš, L.; Kask, Ü. Polümeersetest Jäätmetest Pressitud Brikettide Füüsikalismehaaniliste Ja Põlemiskarakteristikute Määramine. Est. J. Eng. 2010, 16, 307–316. [Google Scholar] [CrossRef]
- Sergeev, P.V.; Beletskiy, V.S. Briquetting the Carbon Phase from the Sludge Ponds at the Anzhersk Deposit. Coke Chem. 2013, 56, 282–285. [Google Scholar] [CrossRef]
- Adam, R.; Yiyang, D.; Kruggel-Emden, H.; Zeng, T.; Lenz, V. Influence of Pressure and Retention Time on Briquette Volume and Raw Density during Biomass Densification with an Industrial Stamp Briquetting Machine. Renew. Energy 2024, 229, 120773. [Google Scholar] [CrossRef]
- Granado, M.P.P.; Suhogusoff, Y.V.M.; Santos, L.R.O.; Yamaji, F.M.; De Conti, A.C. Effects of Pressure Densification on Strength and Properties of Cassava Waste Briquettes. Renew. Energy 2021, 167, 306–312. [Google Scholar] [CrossRef]
- Chen, W.H.; Kuo, P.C. A Study on Torrefaction of Various Biomass Materials and Its Impact on Lignocellulosic Structure Simulated by a Thermogravimetry. Energy 2010, 35, 2580–2586. [Google Scholar] [CrossRef]
- Kaliyan, N.; Vance Morey, R. Factors Affecting Strength and Durability of Densified Biomass Products. Biomass Bioenergy 2009, 33, 337–359. [Google Scholar] [CrossRef]
- Wang, S.; Dai, G.; Ru, B.; Zhao, Y.; Wang, X.; Zhou, J.; Luo, Z.; Cen, K. Effects of Torrefaction on Hemicellulose Structural Characteristics and Pyrolysis Behaviors. Bioresour. Technol. 2016, 218, 1106–1114. [Google Scholar] [CrossRef]
- Puglia, M.; Morselli, N.; Ottani, F.; Pedrazzi, S.; Tartarini, P.; Allesina, G. A Preliminary Evaluation of Different Residual Biomass Potential for Energy Conversion in a Micro-Scale Downdraft Gasifier. Sustain. Energy Technol. Assess. 2023, 57, 103224. [Google Scholar] [CrossRef]
- Kaliyan, N.; Morey, R.V. Densification Characteristics of Corn Cobs. Fuel Process. Technol. 2010, 91, 559–565. [Google Scholar] [CrossRef]
- Grochowicz, J.; Agudelo, C.; Li, S.; Abendroth, H.; Wollenweber, K.H.; Reich, A. Influence of Test Procedure on Friction Behavior and Its Repeatability in Dynamometer Brake Performance Testing. SAE Int. J. Passeng. Cars Mech. Syst. 2014, 7, 1345–1360. [Google Scholar] [CrossRef]
- Mani, S.; Tabil, L.G.; Sokhansanj, S. Specific Energy Requirement for Compacting Corn Stover. Bioresour. Technol. 2006, 97, 1420–1426. [Google Scholar] [CrossRef]
- Hejft, R.; Obidziński, S.; Jałbrzykowski, M.; Markowski, J. Production of Heating Pellets with Apple Pomace Content. J. Res. Appl. Agric. Eng. 2016, 61, 29–34.3. [Google Scholar]
- Hu, J.; Lei, T.; Shen, S.; Zhang, Q. Energy Use in Straw Molding; Monography: Beijing, China, 2013; Volume 8. [Google Scholar]
- Skonecki, S.; Laskowski, J. Wpływ Średnicy Komory i Wilgotności Słomy Pszennej na Parametry Zagęszczania. Acta Agrophysica 2012, 19, 2. [Google Scholar]
- Koch, S.M.; Goldhahn, C.; Müller, F.J.; Yan, W.; Pilz-Allen, C.; Bidan, C.M.; Ciabattoni, B.; Stricker, L.; Fratzl, P.; Keplinger, T.; et al. Anisotropic Wood-Hydrogel Composites: Extending Mechanical Properties of Wood towards Soft Materials’ Applications. Mater. Today Bio 2023, 22, 100772. [Google Scholar] [CrossRef]
- Yang, S.; Lee, H.; Choi, G.; Kang, S. Mechanical Properties of Hybrid Cross-Laminated Timber with Wood-Based Materials. Ind. Crops Prod. 2023, 206, 117629. [Google Scholar] [CrossRef]
- Jensen, P.; Gregory, D.J. Selected Physical Parameters to Characterize the State of Preservation of Waterlogged Archaeological Wood: A Practical Guide for Their Determination. J. Archaeol. Sci. 2006, 33, 551–559. [Google Scholar] [CrossRef]
- Saravana, P.S.; Choi, J.H.; Park, Y.B.; Woo, H.C.; Chun, B.S. Evaluation of the Chemical Composition of Brown Seaweed (Saccharina japonica) Hydrolysate by Pressurized Hot Water Extraction. Algal Res. 2016, 13, 246–254. [Google Scholar] [CrossRef]
- Aryal, K.; Maraseni, T.; Kretzschmar, T.; Chang, D.; Naebe, M.; Neary, L.; Ash, G. Knowledge Mapping for a Secure and Sustainable Hemp Industry: A Systematic Literature Review. Case Stud. Chem. Environ. Eng. 2024, 9, 100550. [Google Scholar] [CrossRef]
- Sassoni, E.; Manzi, S.; Motori, A.; Montecchi, M.; Canti, M. Novel Sustainable Hemp-Based Composites for Application in the Building Industry: Physical, Thermal and Mechanical Characterization. Energy Build. 2014, 77, 219–226. [Google Scholar] [CrossRef]
- Eisenbies, M.H.; Volk, T.A.; Amidon, T.E.; Shi, S. Influence of Blending and Hot Water Extraction on the Quality of Wood Pellets. Fuel 2019, 241, 1058–1067. [Google Scholar] [CrossRef]
- Brilli, F.; Fares, S.; Ghirardo, A.; de Visser, P.; Calatayud, V.; Muñoz, A.; Annesi-Maesano, I.; Sebastiani, F.; Alivernini, A.; Varriale, V.; et al. Plants for Sustainable Improvement of Indoor Air Quality. Trends Plant Sci. 2018, 23, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Pierrat, L.; García-Triñanes, P. Optimising Furfural Production from Lignocellulosic Biomass: Feedstock Selection, Process Enhancement, and Techno-Economic and Environmental Viability. Chem. Eng. Res. Des. 2024, 212, 261–280. [Google Scholar] [CrossRef]
- Petrovič, A.; Hochenauer, C.; Zazijal, M.; Gruber, S.; Rola, K.; Čuček, L.; Goričanec, D.; Urbancl, D. Torrefaction and Hydrothermal Carbonization of Waste from the Paper Industry: Effects of Atmosphere Choice and Pretreatment with Natural Acidic Reagent on Fuel Properties. Therm. Sci. Eng. Prog. 2024, 51, 102623. [Google Scholar] [CrossRef]
- Preston, N.; Maroufmashat, A.; Riaz, H.; Barbouti, S.; Mukherjee, U.; Tang, P.; Wang, J.; Haghi, E.; Elkamel, A.; Fowler, M. How Can the Integration of Renewable Energy and Power-to-Gas Benefit Industrial Facilities? From Techno-Economic, Policy, and Environmental Assessment. Int. J. Hydrog. Energy 2020, 45, 26559–26573. [Google Scholar] [CrossRef]
- Liang, H.; Wu, Z.; Du, S. Study on the Impact of Environmental Awareness, Health Consciousness, and Individual Basic Conditions on the Consumption Intention of Green Furniture. Sustain. Futures 2024, 8, 100245. [Google Scholar] [CrossRef]
- Sarpong, D.; Boakye, D.; Ofosu, G.; Botchie, D. The Three Pointers of Research and Development (R&D) for Growth-Boosting Sustainable Innovation System. Technovation 2023, 122, 102581. [Google Scholar] [CrossRef]
- Igliński, B.; Iglińska, A.; Kujawski, W.; Buczkowski, R.; Cichosz, M. Bioenergy in Poland. Renew. Sustain. Energy Rev. 2011, 15, 2999–3007. [Google Scholar] [CrossRef]
- Khudyakov, A.; Vashchenko, S.; Baiul, K.; Semenov, Y.; Krot, P. Optimization of Briquetting Technology of Fine-Grained Metallurgical Materials Based on Statistical Models of Compressibility. Powder Technol. 2022, 412, 118025. [Google Scholar] [CrossRef]
- Ahmadi, M.; Zabihi, O.; Nia, Z.K.; Unnikrishnan, V.; Barrow, C.J.; Naebe, M. Engineering Flame and Mechanical Properties of Natural Plant-Based Fibre Biocomposites. Adv. Ind. Eng. Polym. Res. 2024, in press. [Google Scholar] [CrossRef]
- Marini, L.J.; Cavalheiro, R.S.; De Araujo, V.A.; Cortez-Barbosa, J.; de Campos, C.I.; Molina, J.C.; Silva, D.A.L.; Lahr, F.A.R.; Christoforo, A.L. Estimation of Mechanical Properties in Eucalyptus Woods towards Physical and Anatomical Parameters. Constr. Build. Mater. 2022, 352, 128824. [Google Scholar] [CrossRef]
- Lu, Z.; Tang, Z.; Wang, L.; Wang, S.; Li, X. Design and Application of the Newly Developed Industrial Biomass Briquette Hot Air Furnace System. Appl. Therm. Eng. 2024, 256, 124130. [Google Scholar] [CrossRef]
- Baltrocchi, A.P.D.; Ferronato, N.; Calle Mendoza, I.J.; Gorritty Portillo, M.A.; Romagnoli, F.; Torretta, V. Socio-Economic Analysis of Waste-Based Briquettes Production and Consumption in Bolivia. Sustain. Prod. Consum. 2023, 37, 191–201. [Google Scholar] [CrossRef]
- Song, C. Global Challenges and Strategies for Control, Conversion and Utilization of CO2 for Sustainable Development Involving Energy, Catalysis, Adsorption and Chemical Processing. Catal. Today 2006, 115, 2–32. [Google Scholar] [CrossRef]
Properties | Share of Part, % | Study |
---|---|---|
compact log wood | 64 | Kubiak & Różański 1985 [37] |
stack compact wood | 8 | |
branches and small pieces of timber | 5 | |
brushwood | 7 | |
roots | 16 | |
tree stems | 61 | Gornowicz 2010 [36] |
tree stem bark | 8 | |
branches | 12 | |
conifer needles | 3 | |
rootstock | 16 | |
treetops, branches, and conifer needles | 20 | 1998–2007 Studies of the Department of Forest Technology, UP in Poznań (Gornowicz 2010 [36]) |
branches thinner than 40 mm and conifer needles | 15 | |
branches thicker than 40 mm | 5 * | |
trunk | 69 | Fomina 2005 [38] |
treetop and branches | 16 | |
stump and roots | 15 |
Species | State | Density, kg∙m−3 | Moisture, % | Porosity, % | Lignin Content, % | Durability |
---|---|---|---|---|---|---|
Scots pine (Pinus sylvestris) | Barked | 600–800 | 12–58 | 50–70 | 25–30 | 3–5 |
European spruce (Pice abies) | Barked | 600–750 | 13–59 | 60–72 | 25–28 | 2–4 |
Fir (Abies) | Barked | 600–800 | 12–58 | 60–70 | 25–30 | 2–4 |
Beech (Fagus) | With bark | 850–1100 | 12–60 | 45–60 | 20–25 | 4–7 |
Beech (Fagus) | Barked | 800–1000 | 12–60 | 50–65 | 20–25 | 4–7 |
Oak (Quercus) | With bark | 950–1200 | 10–50 | 45–60 | 20–25 | 4–6 |
Oak (Quercus) | Barked | 1000 | 10–50 | 50–65 | 20–25 | 4–6 |
Pressure per Unit Area, MPa | References |
---|---|
5 | Maheshwari and Chaturvedi 1997 [60] |
10–20 | Ossei-Bremang et al., 2024 [61] |
17–47 | Frączek et al., 2010 [58] |
10–50 | Mitchual et al., 2013 [62] |
45–50 | Hejft 2006 [56] |
30–60 | Kers et al., 2010 [63] |
98 | Roman et al., 2021 [12] |
25–100 | Sergeev and Beletskiy 2013 [64] |
100–200 | Adam et al. [65] |
102–204 | Granado et al. [66] |
Share of Fraction, % | Briquetting Time, s | Energy Consumption, J | Pressure, N | Density, g∙cm−3 | |||
---|---|---|---|---|---|---|---|
(1.8 mm) | (5 mm) | (10 mm) | (15 mm) | ||||
100 | 0 | 0 | 0 | 182.4 | 57.92 | 96 | 1.006 |
0 | 100 | 0 | 0 | 269 | 78.07 | 34 | 0.854 |
0 | 0 | 100 | 0 | 296.3 | 86.69 | 28 | 0.912 |
0 | 0 | 0 | 100 | 406.3 | 90.78 | 54 | 0.928 |
50 | 50 | 0 | 0 | 238.4 | 73.74 | 200 | 0.945 |
50 | 0 | 50 | 0 | 252.8 | 77.64 | 163 | 0.883 |
50 | 0 | 0 | 50 | 239.5 | 71.83 | 63 | 0.962 |
0 | 50 | 50 | 0 | 345 | 84.19 | 51 | 0.896 |
0 | 50 | 0 | 50 | 384.3 | 79.11 | 53 | 0.809 |
0 | 0 | 0.5 | 0.5 | 390.8 | 80.67 | 29 | 0.903 |
33.3 | 33.3 | 33.3 | 0 | 266.5 | 76.89 | 64 | 0.931 |
33.3 | 33.3 | 0 | 33.3 | 198.2 | 68.87 | 60 | 0.935 |
33.3 | 0 | 33.3 | 33.3 | 269 | 78.39 | 57 | 0.955 |
0 | 33.3 | 33.3 | 33.3 | 274.9 | 79.44 | 32 | 0.898 |
25 | 25 | 25 | 25 | 238.7 | 73.61 | 67 | 0.972 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roman, K.; Grzegorzewska, E. Biomass Briquetting Technology for Sustainable Energy Solutions: Innovations in Forest Biomass Utilization. Energies 2024, 17, 6392. https://doi.org/10.3390/en17246392
Roman K, Grzegorzewska E. Biomass Briquetting Technology for Sustainable Energy Solutions: Innovations in Forest Biomass Utilization. Energies. 2024; 17(24):6392. https://doi.org/10.3390/en17246392
Chicago/Turabian StyleRoman, Kamil, and Emilia Grzegorzewska. 2024. "Biomass Briquetting Technology for Sustainable Energy Solutions: Innovations in Forest Biomass Utilization" Energies 17, no. 24: 6392. https://doi.org/10.3390/en17246392
APA StyleRoman, K., & Grzegorzewska, E. (2024). Biomass Briquetting Technology for Sustainable Energy Solutions: Innovations in Forest Biomass Utilization. Energies, 17(24), 6392. https://doi.org/10.3390/en17246392