Utilization of H2O/CuO and Syltherm 800/CuO Nanofluids in a Concentrating Solar Collector with Photovoltaic Elements
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Solar Collector and Key Characteristics
2.2. Mathematical Modeling of the Analysis
2.3. Thermal Property Analysis of Nanofluid
2.4. Formulation of Numerical Model and Boundary Condition
3. Results
3.1. Thermal Properties of Nanofluids
3.2. Solar Collector with PV
3.2.1. CuO/Water Nanofluid
3.2.2. CuO/Syltherm 800 Nanofluid
3.3. Solar Collector without PV
4. Conclusions
- ●
- Higher nanoparticles’ concentrations lead to greater thermal efficiency.
- ●
- The water-based nanofluid exhibited higher efficiencies compared to the Syltherm 800 cases.
- ●
- The addition of nanoparticles leads to remarkably more significant enhancements in the Syltherm 800 case both in thermal and electrical performance.
- ●
- The nanoparticles’ addition slightly reduced the thermal efficiency at low temperatures, and it increased it remarkably at higher ones. This happened due to the lower volumetric specific heat capacity and the higher thermal conductivity of the nanofluid compared to the based one. The first parameter seemed to be more important in low temperatures, while the second one seemed to have greater impact at high temperatures by overcoming the limitation of the volumetric specific heat capacity.
- ●
- In the PV/T receiver case, the maximum thermal enhancement observed for the CuO/water nanofluid was 0.28%, while the maximum electrical efficiency increase was 0.04%.
- ●
- The enhancement in the electrical efficiency by the application of the nanofluid was negligible.
- ●
- In the receiver case without a PV, the maximum enhancement was remarkably high at 7.09% for the operating temperature of 140 °C.
- ●
- Syltherm 800 case:
- ●
- The nanoparticles’ addition significantly enhanced the collector’s thermal efficiency for the entire temperature range examined.
- ●
- The thermal enhancement was observed to be up to 25.68% at high temperatures and up to 1.32% at low and medium temperatures, while the maximum electrical efficiency increase was 0.44%
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
General Parameter | |
A | Surface area, mm2 |
Cp | Fluid specific heat, J/(kg K) |
G | Solar radiation, W/m2 |
k | Thermal conductivity, W/m K |
L | Length, mm |
m | Mass flow rate, m2/s |
n | Number of elliptical channels, - |
Q | Energy rate, W |
R | Radius, mm |
r | Reflectance, - |
T | Temperature, K |
W | Width, mm |
βPV | PV temperature dependence, %/K |
η0,PV | PV nominal efficiency, % |
ηth | Thermal efficiency. % |
ηel | Electrical efficiency, % |
Greek symbols | |
α | Absorptance, - |
β | Ratio of the thickness |
ε | Emissivity, - |
μ | Dynamic viscosity, Pa s |
ρ | Density, kg/m3 |
τ | Transmittance, - |
φ | Volumetric concentration, % |
Subscripts | |
a | Ambient |
abs | Absorber or absorbed |
b | Base |
bot | Bottom |
fluid | Fluid |
in | Inlet |
losses | Losses |
m | Mean |
n | Nano |
out | Outlet |
particle | Particle |
PV | Photovoltaic |
rec | Receiver |
refl | Reflector |
sky | Sky |
T | Perpendicular to aperture |
top | Top |
water | Water |
Abbreviations | |
CPC | Compound Parabolic Concentrator |
MWCNT | Multiwall Carbon Nanotubes |
PTC | Parabolic Trough Collector |
PV/T | Thermo-photovoltaic |
SWCNT | Single Wall Carbon Nanotubes |
References
- Kalogirou, S.A. Solar Thermal Collectors and Applications. Prog. Energy Combust. Sci. 2004, 30, 231–295. [Google Scholar] [CrossRef]
- Kalogirou, S.A.; Tripanagnostopoulos, Y. Hybrid PV/T Solar Systems for Domestic Hot Water and Electricity Production. Energy Convers. Manag. 2006, 47, 3368–3382. [Google Scholar] [CrossRef]
- Hwang, Y.; Park, H.S.; Lee, J.K.; Jung, W.H. Thermal Conductivity and Lubrication Characteristics of Nanofluids. Curr. Appl. Phys. 2006, 6, e67–e71. [Google Scholar] [CrossRef]
- Geovo, L.; Ri, G.D.; Kumar, R.; Verma, S.K.; Roberts, J.J.; Mendiburu, A.Z. Theoretical Model for Flat Plate Solar Collectors Operating with Nanofluids: Case Study for Porto Alegre, Brazil. Energy 2023, 263, 125698. [Google Scholar] [CrossRef]
- Ashour, A.F.; El-Awady, A.T.; Tawfik, M.A. Numerical Investigation on the Thermal Performance of a Flat Plate Solar Collector Using ZnO & CuO Water Nanofluids under Egyptian Weathering Conditions. Energy 2022, 240, 122743. [Google Scholar] [CrossRef]
- Akram, N.; Montazer, E.; Kazi, S.N.; Soudagar, M.E.M.; Ahmed, W.; Zubir, M.N.M.; Afzal, A.; Muhammad, M.R.; Ali, H.M.; Márquez, F.P.G.; et al. Experimental Investigations of the Performance of a Flat-Plate Solar Collector Using Carbon and Metal Oxides Based Nanofluids. Energy 2021, 227, 120452. [Google Scholar] [CrossRef]
- Mouli, K.V.V.C.; Sundar, L.S.; Alklaibi, A.M.; Said, Z.; Sharma, K.V.; Punnaiah, V.; Sousa, A.C.M. Exergy Efficiency and Entropy Analysis of MWCNT/Water Nanofluid in a Thermosyphon Flat Plate Collector. Sustain. Energy Technol. Assess. 2023, 55, 102911. [Google Scholar] [CrossRef]
- Mostafizur, R.M.; Rasul, M.G.; Nabi, M.N. Energy and Exergy Analyses of a Flat Plate Solar Collector Using Various Nanofluids: An Analytical Approach. Energies 2021, 14, 4305. [Google Scholar] [CrossRef]
- Rejeb, O.; Sardarabadi, M.; Ménézo, C.; Passandideh-Fard, M.; Dhaou, M.H.; Jemni, A. Numerical and Model Validation of Uncovered Nanofluid Sheet and Tube Type Photovoltaic Thermal Solar System. Energy Convers. Manag. 2016, 110, 367–377. [Google Scholar] [CrossRef]
- Elangovan, M.; Srimanickam, B.; Čep, R.; Saranya, A.; Ramachandran, M. Experimental Study of a Hybrid Solar Collector Using TiO2/Water Nanofluids. Energies 2022, 15, 4425. [Google Scholar] [CrossRef]
- Nasrin, R.; Rahim, N.A.; Fayaz, H.; Hasanuzzaman, M. Water/MWCNT Nanofluid Based Cooling System of PVT: Experimental and Numerical Research. Renew. Energy 2018, 121, 286–300. [Google Scholar] [CrossRef]
- Sardarabadi, M.; Passandideh-Fard, M.; Zeinali Heris, S. Experimental Investigation of the Effects of Silica/Water Nanofluid on PV/T (Photovoltaic Thermal Units). Energy 2014, 66, 264–272. [Google Scholar] [CrossRef]
- Xiao, Y.; Bao, Y.; Yu, L.; Zheng, X.; Qin, G.; Chen, M.; He, M. Ultra-Stable Carbon Quantum Dot Nanofluids as Excellent Spectral Beam Splitters in PV/T Applications. Energy 2023, 273, 127159. [Google Scholar] [CrossRef]
- Xiao, Y.; Tian, W.; Yu, L.; Chen, M.; Zheng, X.; Qin, G. Tunable Optical Properties of ATO-CuO Hybrid Nanofluids and the Application as Spectral Beam Splitters. Energy 2024, 289, 129964. [Google Scholar] [CrossRef]
- Dou, L.; Ding, B.; Zhang, Q.; Kou, G.; Mu, M. Numerical Investigation on the Thermal Performance of Parabolic Trough Solar Collector with Synthetic Oil/Cu Nanofluids. Appl. Therm. Eng. 2023, 227, 120376. [Google Scholar] [CrossRef]
- Ghasemi, S.E.; Ranjbar, A.A. Thermal Performance Analysis of Solar Parabolic Trough Collector Using Nanofluid as Working Fluid: A CFD Modelling Study. J. Mol. Liq. 2016, 222, 159–166. [Google Scholar] [CrossRef]
- Korres, D.; Bellos, E.; Tzivanidis, C. Investigation of a Nanofluid-Based Compound Parabolic Trough Solar Collector under Laminar Flow Conditions. Appl. Therm. Eng. 2019, 149, 366–376. [Google Scholar] [CrossRef]
- Arora, S.; Singh, H.P.; Sahota, L.; Arora, M.K.; Arya, R.; Singh, S.; Jain, A.; Singh, A. Performance and Cost Analysis of Photovoltaic Thermal (PVT)-Compound Parabolic Concentrator (CPC) Collector Integrated Solar Still Using CNT-Water Based Nanofluids. Desalination 2020, 495, 114595. [Google Scholar] [CrossRef]
- Korres, D.N.; Papingiotis, T.; Koronaki, I.; Tzivanidis, C. Thermal and Optical Analyses of a Hybrid Solar Photovoltaic/Thermal (PV/T) Collector with Asymmetric Reflector: Numerical Modeling and Validation with Experimental Results. Sustainability 2023, 15, 9932. [Google Scholar] [CrossRef]
- Nasseriyan, P.; Afzali Gorouh, H.; Gomes, J.; Cabral, D.; Salmanzadeh, M.; Lehmann, T.; Hayati, A. Numerical and Experimental Study of an Asymmetric CPC-PVT Solar Collector. Energies 2020, 13, 1669. [Google Scholar] [CrossRef]
- Guarracino, I.; Mellor, A.; Ekins-Daukes, N.J.; Markides, C.N. Dynamic Coupled Thermal-and-Electrical Modelling of Sheet-and-Tube Hybrid Photovoltaic/Thermal (PVT) Collectors. Appl. Therm. Eng. 2016, 101, 778–795. [Google Scholar] [CrossRef]
- Korres, D.N.; Tzivanidis, C.; Koronaki, I.P.; Nitsas, M.T. Experimental, Numerical and Analytical Investigation of a U-Type Evacuated Tube Collectors’ Array. Renew. Energy 2019, 135, 218–231. [Google Scholar] [CrossRef]
- Khanafer, K.; Vafai, K. A Critical Synthesis of Thermophysical Characteristics of Nanofluids. Int. J. Heat Mass Transf. 2011, 54, 4410–4428. [Google Scholar] [CrossRef]
- Yu, W.; Choi, S.U.S. The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model. J. Nanoparticle Res. 2003, 5, 167–171. [Google Scholar] [CrossRef]
- COMSOL Multiphysics Reference Manual; COMSOL AB: Stockholm, Sweden, 2019.
- Herrando, M.; Ramos, A.; Zabalza, I.; Markides, C.N. A Comprehensive Assessment of Alternative Absorber-Exchanger Designs for Hybrid PVT-Water Collectors. Appl. Energy 2019, 235, 1583–1602. [Google Scholar] [CrossRef]
- Hassanzadeh, A.; Jiang, L.; Winston, R. Coupled Optical-Thermal Modeling, Design and Experimental Testing of a Novel Medium-Temperature Solar Thermal Collector with Pentagon Absorber. Sol. Energy 2018, 173, 1248–1261. [Google Scholar] [CrossRef]
- Campos, C.S.; Torres, J.P.N.; Fernandes, J.F.P. Effects of the Heat Transfer Fluid Selection on the Efficiency of a Hybrid Concentrated Photovoltaic and Thermal Collector. Energies 2019, 12, 1814. [Google Scholar] [CrossRef]
General Characteristics | Symbols | Value |
---|---|---|
Length | L | 2290 mm |
Width | W | 464.52 mm |
Absorber width | wabs | 157 mm |
Absorber height | habs | 6.50 mm |
Number of elliptical channels | n | 8 |
Radius of the circular geometry of reflector | Rrefl | 144.86 mm |
Focal length of the parabolic geometry of reflector | frefl | 144.86 mm |
PV temperature dependence | βPV | 0.64%/K |
PV nominal efficiency | η0,PV | 18.7% |
Glass transmittance | τ | 0.95 |
Glass emissivity | εg | 0.95 |
Concentrator reflectance | r | 0.94 |
Concentrator emissivity | εc | 0.05 |
Solar cell absorptance | αPV | 0.93 |
Solar cell emissivity | εPV | 0.90 |
Receiver absorptance | αrec | 0.92 |
Receiver emissivity | εrec | 0.40 |
Parameter | Value |
---|---|
Base fluids | Water, Syltherm 800 |
Nanoparticle | CuO |
Specific heat capacity of CuO | 532 J/kgK |
Density of CuO | 6320 kg/m3 |
Thermal conductivity of CuO | 77 W/mK |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papingiotis, T.; Korres, D.N.; Koronaki, I.; Tzivanidis, C. Utilization of H2O/CuO and Syltherm 800/CuO Nanofluids in a Concentrating Solar Collector with Photovoltaic Elements. Energies 2024, 17, 576. https://doi.org/10.3390/en17030576
Papingiotis T, Korres DN, Koronaki I, Tzivanidis C. Utilization of H2O/CuO and Syltherm 800/CuO Nanofluids in a Concentrating Solar Collector with Photovoltaic Elements. Energies. 2024; 17(3):576. https://doi.org/10.3390/en17030576
Chicago/Turabian StylePapingiotis, Theodoros, Dimitrios N. Korres, Irene Koronaki, and Christos Tzivanidis. 2024. "Utilization of H2O/CuO and Syltherm 800/CuO Nanofluids in a Concentrating Solar Collector with Photovoltaic Elements" Energies 17, no. 3: 576. https://doi.org/10.3390/en17030576
APA StylePapingiotis, T., Korres, D. N., Koronaki, I., & Tzivanidis, C. (2024). Utilization of H2O/CuO and Syltherm 800/CuO Nanofluids in a Concentrating Solar Collector with Photovoltaic Elements. Energies, 17(3), 576. https://doi.org/10.3390/en17030576