An Opportunity for Coal Thermal Power Plants Facing Phase-Out: Case of the Power Plant Vojany (Slovakia)
Abstract
:1. Introduction
2. Theoretical Background
2.1. Biomass and RDF-to-Energy Routes, Combustion, and Co-Combustion in TPP Boilers
2.2. Power Production Structure in V4 Countries
Feedstock | Czech Republic | Slovakia | Poland | Hungary |
---|---|---|---|---|
Black coal | 44.2 | 8.5 | 73.9 | 11.6 |
Natural gas | 6.8 | 10.2 | 9.3 | 25.1 |
Other sources except RES | 34.6 | 54 | 0 | 48.2 |
RES total, out of which: | 12.7 | 23.3 | 15.6 | 13.9 |
Biofuels | 5.8 | 3 | 4.2 | 6.1 |
Hydropower | 2.7 | 17.6 | 1.4 | 0.7 |
Solar energy | 3.4 | 2.6 | 0.5 | 4.9 |
Wind energy | 0.8 | 0 | 9.4 | 2.2 |
2.3. Power Production from Black Coal in Slovakia
2.4. Summary
- Ageing fossil power plants offer possibilities for conversion to multi-fuel power plants or their infrastructure can be reused for establishing modern cleaner power sources;
- Production capacities of alternative solid fuels in Europe are not fully exploited and there is potential for their extension, especially in countries that still landfill a significant share of produced waste;
- A major share of such fuels is currently used in cement and clinker plants, replacing fossil fuels;
- A gap exists between the use of such fuels for power production and existing production capacities;
- The development of an alternative feedstock supply chain could contribute to regional CE;
- Black coal still plays an important role in power generation in the V4 region, and the approaching black coal phase-out poses a challenge for socio-economic transformation of the entire region.
3. Materials and Methods
- H1—Regional biomass and RDF sources are sufficient to ensure future coal-free operation of PPV.
- H2—Power production from alternative feedstock in transformed power plants is cost competitive.
- Total energy recovery and its percentage;
- Energetically usable potential of up to 25% of produced municipal waste;
- Usable energy potential, with the calorific value of municipal waste at the level of 13 GJ/t (13 in the case of less calorific fuel, such as RDF as the calorific value of the RDF fuel supplied to PPV was at the level of 22.45 in 2021 and 19.5 GJ/t in 2022);
- According to operational data, energy from waste required to produce electricity in MWh was calculated based on the heat rate 12.37 GJ/t:13 = 0.951 t (So, to produce 1 MWh of EE, 0.951 tons of waste with calorific value of 13 GJ/t are required);
- Black coal savings (taking into account calorific value of coal at a level of 26 GJ·t−1);
- Reduced production of CO2, resulting from the reduced combustion of black coal. (A value of 2.12 for the emission factor of CO2 production by burning 1 t of black coal was used).
4. Results
Municipal Waste Management in V4 Countries
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mac Kinnon, M.A.; Brouwer, J.; Samuelsen, S. The role of natural gas and its infrastructure in mitigating greenhouse gas emissions, improving regional air quality, and renewable resource integration. Prog. Energy Combust. Sci. 2018, 64, 62–92. [Google Scholar] [CrossRef]
- Elavarsan, R.M.; Pugazhedhi, R.; Irfan, M.; Mihet-Popa, L.; Khan, I.A.; Compana, P.E. State-of-the-art sustainable approaches for deeper decarbonization in Europe—An endowment to climate neutral vision. Renew. Sustain. Energy Rev. 2022, 159, 112204. [Google Scholar] [CrossRef]
- Paardekooper, S.; Lund, H.; Thellfsen, J.Z.; Bertelsen, N.; Mathiesen, B.V. Heat Roadmap Europe: Strategic heating transition typology as a basis for policy recommendations. Energy Effic. 2022, 15, 32. [Google Scholar] [CrossRef]
- Portillo, E.; Gallego Fernández, L.M.; Vega, F.; Alonso-Fariñas, B.; Navarrete, B. Oxygen transport membrane unit applied to oxy-combustion coal power plants: A thermodynamic assessment. J. Environ. Chem. Eng. 2021, 9, 105266. [Google Scholar] [CrossRef]
- Qvist, S.; Gładysz, P.; Bartela, L.; Sowiżdżał, A. Retrofit Decarbonization of Coal Power Plants—A Case Study for Poland. Energies 2020, 14, 120. [Google Scholar] [CrossRef]
- Kefford, B.M.; Ballinger, B.; Schmeda-Lopez, D.R.; Greig, C.; Smart, S. The early retirement challenge for fossil fuel power plants in deep decarbonisation scenarios. Energy Policy 2018, 119, 294–306. [Google Scholar] [CrossRef]
- del Rio, M.S.; Gibbins, J.; Lucquiaud, M. On the retrofitting and repowering of coal power plants with post-combustion carbon capture: An advanced integration option with a gas turbine windbox. Int. J. Greenh. Gas Control. 2017, 58, 299–311. [Google Scholar] [CrossRef]
- Tańczuk, M.; Skorek, J.; Bargiel, P. Energy and economic optimization of the repowering of coal-fired municipal district heating source by a gas turbine. Energy Convers. Manag. 2017, 149, 885–895. [Google Scholar] [CrossRef]
- Milićević, A.; Belošević, S.; Crnomarković, N.; Tomanović, I.; Tucaković, D. Mathematical modelling and optimisation of lignite and wheat straw co-combustion in 350 Mwe boiler furnace. Appl. Energy 2019, 260, 114206. [Google Scholar] [CrossRef]
- Cuong, T.T.; Le, H.A.; Khai, N.M.; Hung, P.A.; Linh, L.T.; Thanh, N.V.; Tri, N.D.; Huan, N.X. Renewable energy from biomass surplus resource: Potential of power generation from rice straw in Vietnam. Sci. Rep. 2021, 11, 792. [Google Scholar] [CrossRef] [PubMed]
- Merzic, A.; Turkovic, N.; Ikanovic, N.; Lapandic, E.; Kazagic, A.; Music, M. Towards just transition of coal regions—Cultivation of short rotation copies and dedicated energy crops for biomass co-firing vs photo voltaic power plants. Energy Convers. Manag. X 2022, 15, 100267. [Google Scholar] [CrossRef]
- Vamvuka, D.; Alexandrakis, S.; Papagiannis, I. Evaluation of municipal wastes as secondary fuels through co-combustion with woody biomass in a fluidized bed reactor. J. Energy Inst. 2020, 93, 272–280. [Google Scholar] [CrossRef]
- Skopec, P.; Hrdlička, F.; Jeníková, J. Co-firing of coal with a solid recovered fuel as a route of reduction of sulphur dioxide emissions. Waste Forum 2018, 1, 26–34. [Google Scholar]
- Hansen, K. Decision-making based on energy costs: Comparing levelized cost of energy and energy system costs. Energy Strategy Rev. 2019, 24, 68–82. [Google Scholar] [CrossRef]
- Miedema, J.H.; Benders, R.M.; Moll, H.C.; Pierie, F. Renew, reduce or become more efficient? The climate contribution of biomass co-combustion in a coal-fired power plant. Appl. Energy 2017, 187, 873–885. [Google Scholar] [CrossRef]
- Brożyna, J.; Strielkowski, W.; Fomina, A.; Nikitina, N. Renewable Energy and EU 2020 Target for Energy Efficiency in the Czech Republic and Slovakia. Energies 2020, 13, 965. [Google Scholar] [CrossRef]
- Piwowar, A.; Dzikuć, M. Outline of the economic and technical problems associated with the co-combustion of biomass in Poland. Renew. Sustain. Energy Rev. 2016, 54, 415–420. [Google Scholar] [CrossRef]
- Karampinis, E.; Grammelis, P.; Agraniotis, M.; Violidakis, I.; Kakaras, E. Co-firing of biomass with coal in thermal power plants: Technology schemes, impacts, and future perspectives. WIREs Energy Environ. 2014, 3, 384–399. [Google Scholar] [CrossRef]
- Poskart, A.; Skrzyniarz, M.; Sajdak, M.; Zajemska, M.; Skibiński, A. Management of Lignocellulosic Waste towards Energy Recovery by Pyrolysis in the Framework of Circular Economy Strategy. Energies 2021, 14, 5864. [Google Scholar] [CrossRef]
- AGT. Advanced Gasification Technologies—Review and Benchmarking. 2021; p. 41. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1022926/agt-benchmarking-task-4-report.pdf (accessed on 15 November 2021).
- Upham, P.; Shackley, S. Local public opinion of a proposed 21.5 MW(e) biomass gasifier in Devon: Questionnaire survey results. Biomass Bioenergy 2007, 31, 433–441. [Google Scholar] [CrossRef]
- Ministry of Interior of the Slovak Republic. Rozhodnutie. 2017. Available online: https://www.minv.sk/swift_data/source/miestna_statna_sprava/ou_trnava/vystavba/Rozhodnutie_20171221.pdf (accessed on 23 June 2022).
- Priatelia Zeme. Pomoc Občanom Piatich Miest/Obcí Proti Zámerom Depolymerizácie Plastov. 2021. Available online: http://www.priateliazeme.sk/spz/z-nasej-prace/pomoc-obcanom-piatich-miestobci-proti-zamerom-depolymerizacie-plastov (accessed on 7 March 2022).
- Zajemska, M.; Magdziarz, A.; Iwaszko, J.; Skrzyniarz, M.; Poskart, A. Numerical and experimental analysis of pyrolysis process of RDF containing a high percentage of plastic waste. Fuel 2022, 320, 123981. [Google Scholar] [CrossRef] [PubMed]
- Januszewski, J.; Brzezińska, D. RDF Fire and Explosion Hazards at Power Plants. Sustainability 2021, 13, 12718. [Google Scholar] [CrossRef]
- Šuhaj, P.; Haydary, J.; Husár, J.; Steltenpohl, P.; Šupa, I. Catalytic gasification of refuse-derived fuel in a two-stage laboratory scale pyrolysis/gasification unit with catalyst based on clay minerals. Waste Manag. 2019, 85, 1–10. [Google Scholar] [CrossRef]
- Abu-Elyazeed, O.S.M.; Nofal, M.; Ibrahim, K.; Yang, J. Co-combustion of RDF and biomass mixture with bituminous coal: A case study of clinker production plant in Egypt. Waste Dispos. Sustain. Energy 2021, 3, 257–266. [Google Scholar] [CrossRef]
- Han, J.; Huang, Z.; Qin, L.; Chen, W.; Zhao, B.; Xing, F. Refused derived fuel from municipal solid waste used as an alternative fuel during the iron ore sinter process. J. Clean. Prod. 2021, 278, 123594. [Google Scholar] [CrossRef]
- Chavando, J.A.M.; Silva, V.B.; Tarelho, L.A.; Cardoso, J.S.; Eusébio, D. Snapshot review of refuse-derived fuels. Util. Policy 2022, 74, 101316. [Google Scholar] [CrossRef]
- Iacovidou, E.; Hahladakis, J.; Deans, I.; Velis, C.; Purnell, P. Technical properties of biomass and solid recovered fuel (SRF) co-fired with coal: Impact on multi-dimensional resource recovery value. Waste Manag. 2018, 73, 535–545. [Google Scholar] [CrossRef]
- EN ISO 21637:2021; Solid Recovered Fuels—Vocabulary. Úrad Pre Normalizáciu, Metrológiu a Skúšobníctvo Slovenskej Republiky: Bratislava, Slovakia, 2021.
- Cuperus, G. SRF—The Missing Link in the Circlar Economy; European Recovered Fuel Organisation (ERFO): Bruxelles, Belgium, 2017. [Google Scholar]
- Rimar, M.; Kulikova, O.; Kulikov, A.; Fedak, M. Energy Treatment of Solid Municipal Waste in Combination with Biomass by Decentralized Method with the Respect to the Negative Effects on the Environment. Sustainability 2021, 13, 4405. [Google Scholar] [CrossRef]
- Sajdak, M.; Kmieć, M.; Micek, B.; Hrabak, J. Determination of the optimal ratio of coal to biomass in the co-firing process: Feed mixture properties. Int. J. Environ. Sci. Technol. 2019, 16, 2989–3000. [Google Scholar] [CrossRef]
- Al-Qayim, K.; Nimmo, W.; Pourkashanian, M. Comparative techno-economic assessment of biomass and coal with CCS technologies in a pulverized combustion power plant in the United Kingdom. Int. J. Greenh. Gas Control. 2015, 43, 82–92. [Google Scholar] [CrossRef]
- Glushkov, D.; Kuznetsov, G.; Paushkina, K. Switching Coal-Fired Thermal Power Plant to Composite Fuel for Recovering Industrial and Municipal Waste: Combustion Characteristics, Emissions, and Economic Effect. Energies 2020, 13, 259. [Google Scholar] [CrossRef]
- Glushkov, D.O.; Paushkina, K.K.; Shabardin, D.P. Co-combustion of coal processing waste, oil refining waste and municipal solid waste: Mechanism, characteristics, emissions. Chemosphere 2019, 240, 124892. [Google Scholar] [CrossRef]
- Kalembkiewicz, J.; Chmielarz, U. Ashes from co-combustion of coal and biomass: New industrial wastes. Resour. Conserv. Recycl. 2012, 69, 109–121. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, P.; Yang, S.; Zhou, Y.; Du, W.; Wang, Y.; Deng, C.; Wang, S. Thermodynamic analysis of SOFC–CCHP system based on municipal sludge plasma gasification with carbon capture. Appl. Energy 2023, 336, 120822. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, H.; Xu, Z.; Zhou, Y.; Yin, K.; Wang, X.; Gao, Y.; Sun, C.; Wang, Y.; Cui, P. Thermodynamic analysis of a food waste plasma gasification-based multigeneration system with dehumidification and carbon capture. J. Clean. Prod. 2023, 402, 136844. [Google Scholar] [CrossRef]
- Kochanek, E. The Energy Transition in the Visegrad Group Countries. Energies 2021, 14, 2212. [Google Scholar] [CrossRef]
- The Slovak Energy Transition-Decarbonization and Energy Security. Available online: https://energytransition.org (accessed on 15 October 2020).
- Rokicki, T.; Perkowska, A. Changes in Energy Supplies in the Countries of the Visegrad Group. Sustainability 2020, 12, 7916. [Google Scholar] [CrossRef]
- Ciesielska-Maciągowska, D.; Klimczak, D.; Skrzek-Lubasińska, M. Central and Eastern European CO2 Market—Challenges of Emissions Trading for Energy Companies. Energies 2021, 14, 1051. [Google Scholar] [CrossRef]
- Beyond Fossil Fuels. Czech Republic Joins the Powering Past Coal Alliance, Accelerating the End of Coal in Europe. 2023. Available online: https://beyondfossilfuels.org/2023/12/02/czech-republic-joins-the-powering-past-coal-alliance-accelerating-the-end-of-coal-in-europe/ (accessed on 10 January 2024).
- EURACTIV. Slovakia Announces Regional Coal Phase-Out, Set to Save Big. 2023. Available online: https://www.euractiv.com/section/politics/news/slovakia-announces-regional-coal-phase-out-set-to-save-big/ (accessed on 10 January 2024).
- Tucki, K.; Krzywonos, M.; Orynycz, O.; Kupczyk, A.; Bączyk, A.; Wielewska, I. Analysis of the Possibility of Fulfilling the Paris Agreement by the Visegrad Group Countries. Sustainability 2021, 13, 8826. [Google Scholar] [CrossRef]
- Sulich, A.; Sołoducho-Pelc, L. Renewable Energy Producers’ Strategies in the Visegrád Group Countries. Energies 2021, 14, 3048. [Google Scholar] [CrossRef]
- Vrban, B.; Nečas, V.; Čerba, Š.; Luley, J.; Filová, V. Perspectives on the future of nuclear energy in Slovakia. Energy Syst. 2023, 1–22. [Google Scholar] [CrossRef]
- Wach, K.; Głodowska, A.; Maciejewski, M.; Sieja, M. Europeanization Processes of the EU Energy Policy in Visegrad Countries in the Years 2005–2018. Energies 2021, 14, 1802. [Google Scholar] [CrossRef]
- Integrovaný Národný Energetický a Klimatický Plán na Roky 2021–2030. Ministerstvo Hospodárstva Slovenskej Republiky: Bratislava, Slovakia, 2019; p. 41. Available online: https://www.mhsr.sk/energetika/integrovany-narodny-energeticky-a-klimaticky-plan-na-roky-2021-2030 (accessed on 12 May 2022).
- Ogrodnik, Ł. Czechia’s Climate Policy and Energy Transformation. PISM Bulletin, 7 September 2020; p. 1613. [Google Scholar]
- van der Burg, L.; Trilling, M.; Gençsü, I. Fossil Fuel Subsidies in Draft EU National Energy and Climate Plans; ODI: London, UK, 2019; Volume 562, p. 15. Available online: https://cdn.odi.org/media/documents/12895.pdf (accessed on 23 December 2022).
- Slovenské elektrárne. 2022. Available online: https://www.seas.sk/elektraren/elektrarne-vojany/ (accessed on 20 January 2022).
- Decree of the Ministry of the Environment of the Slovak Republic No. 228/2014 Coll. Available online: https://www.slov-lex.sk/pravne-predpisy/SK/ZZ/2014/228/ (accessed on 26 April 2022).
- Decree of the Ministry of the Environment of the Slovak Republic No. 365/2015 Coll. Available online: https://www.slov-lex.sk/pravne-predpisy/SK/ZZ/2015/365/ (accessed on 26 April 2022).
- Financial Times: Interactive Listing. Europe’s Climate Leaders 2021. 2021. Available online: https://www.ft.com/climate-leaders-europe-2021 (accessed on 11 September 2021).
- Financial Times: Interactive Listing. Europe’s Climate Leaders 2022. 2022. Available online: https://www.ft.com/climate-leaders-europe-2022 (accessed on 8 September 2022).
- Enviroportal. 2023. Available online: https://www.enviroportal.sk/ipkz/prevadzka?id=291 (accessed on 10 January 2023).
- AFEP. AFEP (French Association of Large Companies) Study on Trade & Climate Change/Final Report. [online] Paris. 2020. 113p. Available online: https://afep.com/wp-content/uploads/2021/01/Trade-and-Climate-Change-Quantitative-Assessment-of-the-Best-Policy-Tools.pdf (accessed on 15 February 2021).
- EUROSTAT: Municipal Waste Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Municipal_waste_statistics (accessed on 10 January 2023).
- Implementing Agency of the Ministry of Labour, Social Affairs and Family of the Slovak Republic. Analýza Odpadového Hospodárstva. 2021. Available online: https://www.zmos.sk/analyza-odpadoveho-hospodarstva-oznam/mid/419520/.html (accessed on 17 April 2022).
- Ministry of Environment of the Slovak Republic. Európska Zelená Dohoda. 2021. Available online: https://www.minzp.sk/klima/europska-zelena-dohoda/ (accessed on 18 March 2022).
- Bezama, A.; Aguayo, P.; Konrad, O.; Navia, R.; Lorber, K.E. Investigations on mechanical biological treatment of waste in South America: Towards more sustainable MSW management strategies. Waste Manag. 2007, 27, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Rada, E.C.; Istrate, I.A.; Ragazzi, M. Trends in the management of residual municipal solid waste. Env. Technol. 2009, 30, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Hemidat, S.; Saidan, M.; Al-Zu’bi, S.; Irshidat, M.; Nassour, A.; Nelles, M. Potential utilization of RDF as an alternative fuel to be used in cement industry in Jordan. Sustainability 2019, 11, 5819. [Google Scholar] [CrossRef]
- Halkos, G.; Petrou, K.N. Analysing the Energy Efficiency of EU Member States: The Potential of Energy Recovery from Waste in the Circular Economy. Energies 2019, 12, 3718. [Google Scholar] [CrossRef]
- Dmitrienko, M.A.; Strizhak, P.A. Coal-water slurries containing petrochemicals to solve problems of air pollution by coal thermal power stations and boiler plants: An introductory review. Sci. Total. Environ. 2018, 613-614, 1117–1129. [Google Scholar] [CrossRef]
- Milieu. Study to Assess the Implementation by the EU Member States of Certain Provisions of Directive 1999/31/EC on the Landfill of Waste. 2017. Available online: https://op.europa.eu/en/publication-detail/-/publication/cd1748fb-0884-11e7-8a35-01aa75ed71a1 (accessed on 3 March 2022).
- EK. Správa Komisie Európskemu Parlamentu, Rade, Európskemu Hospodárskemu a Sociálnemu Výboru a Výboru Regiónov. 2018. Available online: https://eur-lex.europa.eu/legal-content/SK/TXT/HTML/?uri=CELEX:52018DC0656&from=EN (accessed on 15 March 2021).
- Slovak Government. Act No. 79/2015 Col. On Waste and on the Amendment of Certain Acts. Order of the Government of the Slovak Republic: Bratislava, Slovakia, 2015. Available online: https://www.slov-lex.sk/pravne-predpisy/SK/ZZ/2015/79/20211201 (accessed on 24 June 2022).
- European Commission. Infringement Decisions. 2023. Available online: https://ec.europa.eu/atwork/applying-eu-law/infringements-proceedings/infringement_decisions/?typeOfSearch=true&active_only=1&noncom=0&r_dossier=&decision_date_from=&decision_date_to=&EM=SK&DG=ENV&title=&submit=Search&lang_code=en (accessed on 22 January 2023).
- Odpady. 2021. Available online: https://www.odpady-portal.sk/Dokument/106410/slovensko-celi-dalsiemu-infringementu-pre-nedostatky-v-odpadovom-hospodarstve.aspx (accessed on 13 June 2022).
- Ministry of Environment of the Slovak Republic. Program Odpadového Hospodárstva Slovenskej Republiky na Roky 2021–2025. 2021. Available online: https://www.enviroportal.sk/sk/eia/detail/program-odpadoveho-hospodarstva-slovenskej-republiky-na-roky-2021-2025 (accessed on 12 November 2022).
- United Nations. A/RES/70/1—Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://sdgs.un.org/2030agenda (accessed on 4 February 2023).
- Ellen Macarthur Foundation. Growth within: A Circular Economy Vision for a Competitive Europe. 2015. Available online: https://www.ellenmacarthurfoundation.org/assets/downloads/publications/EllenMacArthurFoundation_Growth-Within_July15.pdf (accessed on 15 May 2021).
- Ministry of Environment of the Slovak Republic. Správa o Stave Životného Prostredia Slovenskej Republiky v Roku 2019; Ministry of Environment of the Slovak Republic: Bratislava, Slovakia, 2020; p. 182. ISBN 978-80-8213-028-0. [Google Scholar]
- Slovenské elektrárne. 2023. Available online: https://www.seas.sk/pre-dodavatelov/obstaravanie/tendre/ (accessed on 13 January 2023).
- Ministry of Agriculture and Rural Development of the Slovak Republic. Správa o Lesnom Hospodárstve v Slovenskej Republike za rok 2021. ZELENÁ SPRÁVA. 2022, pp. 64–65. Available online: https://www.mpsr.sk/zelena-sprava-2022/123---18463/ (accessed on 22 January 2023).
- ClientEarth. 2023. Available online: https://www.clientearth.org/media/hqqbceot/enervis-belchatow-lignite-power-plant-full-documentation-ext-en1.pdf (accessed on 12 January 2023).
- Nunes, L.J.R.; Casau, M.; Matias, J.C.O.; Dias, M.F. Coal to Biomass Transition as the Path to Sustainable Energy Production: A Hypothetical Case Scenario with the Conversion of Pego Power Plant (Portugal). Appl. Sci. 2023, 13, 4349. [Google Scholar] [CrossRef]
- Shehata, N.; Obaideen, K.; Sayed, E.T.; Abdelkareem, M.A.; Mahmoud, M.S.; El-Salamony, A.-H.R.; Mahmoud, H.M.; Olabi, A.G. Role of refuse-derived fuel in circular economy and sustainable development goals. Process Saf. Environ. Prot. 2022, 163, 558–573. [Google Scholar] [CrossRef]
- Mateus, M.M.; Cecílio, D.; Fernandes, M.C.; Correia, M.J.N. Refuse derived fuels as an immediate strategy for the energy transition, circular economy, and sustainability. Bus. Strat. Environ. 2023, 32, 3915–3926. [Google Scholar] [CrossRef]
Parameter/Year | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|
Net power generated from alternative feedstock (GWh) | 5.89 | 20.99 | 21.64 | 20.67 | 12.91 | 22.64 | 15.13 |
Total net power generated (GWh) | 431.44 | 607.08 | 693.94 | 313.70 | 74.20 | 308.47 | 227.40 |
Hours in service * (thousands of h) | 8.39 | 10.85 | 12.24 | 5.95 | 1.64 | 7.20 | 5.25 |
Average net output per unit when in service (MW) | 61.86 | 66.49 | 60.22 | 61.90 | 57.20 | 52.83 | 54.33 |
Parameter | Year | |
---|---|---|
2021 | 2022 | |
Coal price, EUR·t−1 | 102.65 | 180 |
RDF price, EUR·t−1 | 13.82 | 8.66 |
Biomass price, EUR·t−1 | 48.56 | 49 |
Assumed yearly average electricity price, EUR·MWh−1 | 61.37 | 123 |
CO2 allowances cost, EUR·t−1 | 42.57 | 80 |
Net heat rate of PPV, GJ·MWh−1 | 12.30 | 12.37 |
Average coal LHV, GJ·t−1 | 24.84 | 24.56 |
Average RDF LHV, GJ·t−1 | 22.45 | 19.50 |
Average biomass LHV, GJ·t−1 | 11.40 | |
Coal CO2 emission factor, t·t−1 | 2.12 | |
RDF CO2 emission factor, t·t−1 | 1.30 | |
CO2 released from biomass combustion, t·t−1 | 1.36 |
Normalised Working Time | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|---|
Unit no. 5 | 0.7 | 0.6 | 0.7 | 0.4 | 0.2 | 0.5 |
Unit no. 6 | 0.2 | 0.6 | 0.7 | 0.3 | 0 | 0.3 |
Year | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|
Biomass (t) | 6035 | 20,974 | 20,263 | 20,666 | 12,906 | 24,453 | 14,296 |
RDF (t) | - | - | - | 1550 | 4900 | 68,391 | 30,005 |
Black coal (103 t) | 208 | 282 | 331 | 151 | 33 | 99 | 104 |
Natural gas (103 m3) | 539 | 833 | 625 | 404 | 349 | 2602 | 1158 |
Avoided CO2 emissions (t) | 6173 | 22,122 | 19,245 | 24,546 | 14,270 | 103,081 | 34,161 |
Year | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|
Wood chips (EUR·t−1) | 43.77 | 43.83 | 43.16 | 54.47 | 47.26 | 48.56 | 62.91 |
RDF (EUR·t−1) | - | - | - | 31.26 | 23.65 | 13.82 | 12.00 |
Black coal (EUR·t−1) | 63.97 | 81.66 | 94.75 | 98.45 | 97.87 | 102.65 | 261.98 |
Natural gas (EUR/m3) | 1.15 | 0.75 | 0.94 | 0.61 | 0.52 | 0.69 | 0.86 |
CO2 (EUR·t−1) | 5.25 | 5.77 | 15.89 | 24.87 | 24.76 | 42.57 | 66.63 |
Average ash processing costs (EUR·t−1) | 3.80 | 3.80 | 4.78 | 5.69 | 13.17 | 5.67 | 6.76 |
Country | Total MW 2020 (t) | Other Waste (t) 2020 | MW Per Capita (kg) | Other Waste Per Capita (kg) | Number of Inhabitants to 1 January 2020 |
---|---|---|---|---|---|
Slovak Republic | 2,366,000 | 12,340,055 | 433 | 2261 | 5,457,873 |
Czech Republic | 5,814,000 | 36,726,679 | 543 | 3434 | 10,693,939 |
Hungary | 3,931,000 | 15,493,646 | 403 | 1586 | 9,769,526 |
Poland | 13,177,000 | 167,978,822 | 346 | 4425 | 37,958,138 |
EU (27) | 231,249,000 | 2,055,470,000 | 517 | 4595 | 447,319,829 |
Country | Total MW | Material Recovery | Energy Recovery | Composting and Decomposition | Combustion | Landfilling and Other Waste Management Methods | Collected Waste |
---|---|---|---|---|---|---|---|
Slovak Republic | 2,366,000 | 675,000 | 188,000 | 324,000 | 0 | 1,175,000 | 4000 |
Czech Republic | 5,814,000 | 1,886,000 | 735,000 | 753,000 | 5000 | 2,774,000 | - |
Hungary | 3,931,000 | 873,000 | 466,000 | 384,000 | 4000 | 2,124,000 | 80,000 |
Poland | 13,117,000 | 3,499,000 | 2,656,000 | 1,578,000 | 166,000 | 5,218,000 | 60,000 |
EU (27) | 231,249,000 | 69,723,000 | 60,037,000 | 41,724,000 | 1,117,140 | 54,658,000 | 3,989,860 |
Country | Total Amount of MW (t) | Actual Energy Recovery and Combustion (t) | Actual Energy Recovery and Combustion in (%) | Energetically Usable Potential of MW (t) | Energetically Usable Potential of MW (GJ) | Potential Amount of EE Produced (MWh) | Saved Black Coal (t) | Reduced Production of CO2 by Not Combusting Black Coal (t) |
---|---|---|---|---|---|---|---|---|
Slovak Republic | 2,366,000 | 188,000 | 7.95 | 403,000 | 5,239,000 | 423,524 | 201,500 | 427,180 |
Czech Republic | 5,814,000 | 740,000 | 12.73 | 714,000 | 9,282,000 | 750,363 | 357,000 | 756,840 |
Hungary | 3,931,000 | 470,000 | 11.95 | 513,000 | 6,669,000 | 539,123 | 256,500 | 543,780 |
Poland | 13,117,000 | 2,822,000 | 21.51 | 457,000 | 5,941,000 | 480,274 | 228,500 | 484,420 |
Total V4 | 25,228,000 | 4,220,000 | 16.73 | 2,087,000 | 27,131,000 | 2,193,284 | 1,043,500 | 2,212,220 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stričík, M.; Kuhnová, L.; Variny, M.; Szaryszová, P.; Kršák, B.; Štrba, Ľ. An Opportunity for Coal Thermal Power Plants Facing Phase-Out: Case of the Power Plant Vojany (Slovakia). Energies 2024, 17, 585. https://doi.org/10.3390/en17030585
Stričík M, Kuhnová L, Variny M, Szaryszová P, Kršák B, Štrba Ľ. An Opportunity for Coal Thermal Power Plants Facing Phase-Out: Case of the Power Plant Vojany (Slovakia). Energies. 2024; 17(3):585. https://doi.org/10.3390/en17030585
Chicago/Turabian StyleStričík, Michal, Lenka Kuhnová, Miroslav Variny, Petra Szaryszová, Branislav Kršák, and Ľubomír Štrba. 2024. "An Opportunity for Coal Thermal Power Plants Facing Phase-Out: Case of the Power Plant Vojany (Slovakia)" Energies 17, no. 3: 585. https://doi.org/10.3390/en17030585
APA StyleStričík, M., Kuhnová, L., Variny, M., Szaryszová, P., Kršák, B., & Štrba, Ľ. (2024). An Opportunity for Coal Thermal Power Plants Facing Phase-Out: Case of the Power Plant Vojany (Slovakia). Energies, 17(3), 585. https://doi.org/10.3390/en17030585