Improvement of Laser-Induced Damage on High-Efficiency Solar Cells via Top-Hat Beam Ablation
Abstract
:1. Introduction
2. Experimental Process and Details
3. Results and Discussion
3.1. Characterization of Ablation Quality
3.2. Laser-Induced Damage in Si
3.3. Influence of Laser Ablation Fraction on PERC Solar Cells
3.4. Influence of Ablation on Bi-Facial PERC Solar Cell
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grübel, B.; Cimiotti, G.; Schmiga, C.; Schellinger, S.; Steinhauser, B.; Brand, A.A.; Kamp, M.; Sieber, M.; Brunner, D.; Fox, S.; et al. Progress of plated metallization for industrial bifacial TOPCon silicon solar cells. Prog. Photovolt. 2022, 30, 615–621. [Google Scholar] [CrossRef]
- Grübel, B.; Cimiotti, G.; Schmiga, C.; Arya, V.; Steinhauser, B.; Bay, N.; Passig, M.; Brunner, D.; Glatthaar, M.; Kluska, S. Direct Contact Electroplating Sequence Without Initial Seed Layer for Bifacial TOPCon Solar Cell Metallization. IEEE J. Photovolt. 2021, 11, 584–590. [Google Scholar] [CrossRef]
- Shen, X.; Hsiao, P.-C.; Phua, B.; Stokes, A.; Gonçales, V.R.; Lennon, A. Plated metal adhesion to picosecond laser-ablated silicon solar cells: Influence of surface chemistry and wettability. Sol. Energy Mater. Sol. Cells 2020, 205, 110285. [Google Scholar] [CrossRef]
- Wang, P.; Sridharan, R.; Ng, X.R.; Ho, J.W.; Stangl, R. Development of TOPCon tunnel-IBC solar cells with screen-printed fire-through contacts by laser patterning. Sol. Energy Mater. Sol. Cells 2021, 220, 110834. [Google Scholar] [CrossRef]
- Sinha, A.; Soman, A.; Das, U.; Hegedus, S.; Gupta, M.C. Nanosecond Pulsed Laser Patterning of Interdigitated Back Contact Heterojunction Silicon Solar Cells. IEEE J. Photovolt. 2020, 10, 1648–1656. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Chen, D.; Kim, M.; Hallam, B. Pathway towards 24% efficiency for fully screen-printed passivated emitter and rear contact solar cells. J. Phys. D Appl. Phys. 2021, 54, 214003. [Google Scholar] [CrossRef]
- Dullweber, T.; Schmidt, J. Industrial Silicon Solar Cells Applying the Passivated Emitter and Rear Cell (PERC) Concept-A Review. IEEE J. Photovolt. 2016, 6, 1366–1381. [Google Scholar] [CrossRef]
- Balaji, N.; Lai, D.; Shanmugam, V.; Basu, P.K.; Khanna, A.; Duttagupta, S.; Aberle, A.G. Pathways for efficiency improvements of industrial PERC silicon solar cells. Sol. Energy 2021, 214, 101–109. [Google Scholar] [CrossRef]
- Sharma, A.K.; Mitra, S.; Behera, S.; Basu, P.K. Exploring the efficiency limiting parameters trade-off at rear surface in passivated emitter rear contact (PERC) silicon solar cells. Sol. Energy Mater. Sol. Cells 2021, 232, 111338. [Google Scholar] [CrossRef]
- Chiu, J.-S.; Zhao, Y.-M.; Zhang, S.; Wuu, D.-S. The role of laser ablated backside contact pattern in efficiency improvement of mono crystalline silicon PERC solar cells. Sol. Energy 2020, 196, 462–467. [Google Scholar] [CrossRef]
- Dang, C.; Labie, R.; Tous, L.; Russell, R.; Recaman, M.; Deckers, J.; Uruena, A.; Duerinckx, F.; Poortmans, J. Investigation of Laser Ablation Induced Defects in Crystalline Silicon Solar Cells. Energy Procedia 2014, 55, 649–655. [Google Scholar] [CrossRef]
- Sun, Z.; Gupta, M.C. A study of laser-induced surface defects in silicon and impact on electrical properties. J. Appl. Phys. 2018, 124, 223103. [Google Scholar] [CrossRef]
- Hwang, Y.; Park, C.-S.; Kim, J.; Kim, J.; Lim, J.-Y.; Choi, H.; Jo, J.; Lee, E. Effect of laser damage etching on i-PERC solar cells. Renew. Energy 2015, 79, 131–134. [Google Scholar] [CrossRef]
- Kim, J.; Hwang, Y.; Kim, J.; Lim, J.; Lee, E. Investigation of Rear Side Selective Laser Ablation and Damage Etching Process for Industrial PERC Solar Cells. Energy Procedia 2014, 55, 791–796. [Google Scholar] [CrossRef]
- Soltani, B.; Azarhoushang, B.; Zahedi, A. Laser ablation mechanism of silicon nitride with nanosecond and picosecond lasers. Opt. Laser Technol. 2019, 119, 105644. [Google Scholar] [CrossRef]
- Bounaas, L.; Auriac, N.; Grange, B.; Monna, R.; Pirot, M.; De Vecchi, S.; Jourdan, J.; Mialon, S.; Pasquinelli, M.; Barakel, D. Laser ablation of dielectric layers and formation of local Al-BSF in dielectric back passivated solar cells. Energy Procedia 2013, 38, 670–676. [Google Scholar] [CrossRef]
- Du, Z.; Palina, N.; Chen, J.; Hong, M.; Hoex, B. Rear-side contact opening by laser ablation for industrial screen-printed aluminum local back surface field silicon wafer solar cells. Energy Procedia 2012, 25, 19–27. [Google Scholar] [CrossRef]
- Poulain, G.; Blanc, D.; Focsa, A.; Vita, M.D.; Semmache, B.; Gauthier, M.; Pellegrin, Y.; Lemiti, M. Laser Ablation Mechanism of Silicon Nitride Layers in A Nanosecond UV Regime. Energy Procedia 2012, 27, 516–521. [Google Scholar] [CrossRef]
- Shen, X.; Hsiao, P.-C.; Wang, Z.; Liu, M.; Phua, B.; Song, N.; Stokes, A.; Lennon, A. Modelling picosecond and nanosecond laser ablation for prediction of induced damage on textured SiNx/Si surfaces of Si solar cells. Prog. Photovolt. 2021, 29, 1020–1033. [Google Scholar] [CrossRef]
- Grohe, A.; Knorz, A.; Nekarda, J.; Jäger, U.; Mingirulli, N.; Preu, R. Novel laser technologies for crystalline silicon solar cell production. In Proceedings of the SPIE—The International Society for Optical Engineering, San Jose, CA, USA, 23–25 February 2009; pp. 72020P-1–72020P-12. [Google Scholar]
- Richter, M.; Saint-Cast, P.; Dannenberg, T.; Zimmer, M.; Rentsch, J. Impact of rear side roughness on optical and electrical properties of a high-efficiency solar cell. Energy Procedia 2015, 77, 832–839. [Google Scholar] [CrossRef]
- De Silvestri, S.; Laporta, P.; Magni, V.; Svelto, O.; Majocchi, B. Unstable laser resonators with super-Gaussian mirrors. Opt. Lett. 1988, 13, 201–203. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, G.; Bähr, M.; Stolberg, K.; Wütherich, T.; Leonhardt, M.; Lawerenz, A. Investigation of ablation mechanisms for selective laser ablation of silicon nitride layers. Energy Procedia 2011, 8, 592–597. [Google Scholar] [CrossRef]
Splits | Laser Ablated Area Fraction | |||
---|---|---|---|---|
0% | 2% | 4% | 8% | |
Lifetime with a Gaussian beam (µs) | 110.24 | 70.69 | 40.28 | 33.52 |
Residual lifetime ratio with a Gaussian beam (%) | 100 | 64.12 | 36.54 | 30.41 |
Lifetime with a top-hat beam (µs) | 108.88 | 86.53 | 60.31 | 40.68 |
Residual lifetime ratio with a top-hat beam (%) | 100 | 79.47 | 55.39 | 37.36 |
Splits | AF (%) | Eff (%) | Voc (V) | Isc (A) | FF (%) | Rs (Ω) |
---|---|---|---|---|---|---|
Group 1 ** | 2.1 | 22.475 | 0.6788 | 10.442 | 79.91 | 0.00263 |
Group 2 * | 2.1 | 22.520 | 0.6790 | 10.465 | 79.87 | 0.00264 |
Group 3 * | 1.89 | 22.523 | 0.6792 | 10.473 | 79.80 | 0.00271 |
Group 4 * | 1.68 | 22.501 | 0.6795 | 10.472 | 79.68 | 0.00280 |
Best cell in Group1 | 2.1 | 22.563 | 0.6791 | 10.499 | 79.75 | 0.00281 |
Best cell in Group3 | 1.89 | 22.636 | 0.6804 | 10.515 | 79.73 | 0.00281 |
Splits | AF (%) | Eff (%) | Voc (V) | Isc (A) | FF (%) | Rs (Ω) |
---|---|---|---|---|---|---|
Group 5 ** | 2.3 | 22.40 | 0.6778 | 10.490 | 79.41 | 0.00293 |
Group 6 * | 2.3 | 22.43 | 0.6782 | 10.492 | 79.43 | 0.00292 |
Best cell in Group 5 | 2.3 | 22.58 | 0.6787 | 10.524 | 79.65 | 0.00274 |
Best cell in Group 6 | 2.3 | 22.60 | 0.6801 | 10.526 | 79.57 | 0.00284 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, F.; Shen, H.; Huang, G.; Liu, B.; Hong, J. Improvement of Laser-Induced Damage on High-Efficiency Solar Cells via Top-Hat Beam Ablation. Energies 2024, 17, 858. https://doi.org/10.3390/en17040858
Qian F, Shen H, Huang G, Liu B, Hong J. Improvement of Laser-Induced Damage on High-Efficiency Solar Cells via Top-Hat Beam Ablation. Energies. 2024; 17(4):858. https://doi.org/10.3390/en17040858
Chicago/Turabian StyleQian, Feng, Honglie Shen, Guoping Huang, Biao Liu, and Juan Hong. 2024. "Improvement of Laser-Induced Damage on High-Efficiency Solar Cells via Top-Hat Beam Ablation" Energies 17, no. 4: 858. https://doi.org/10.3390/en17040858
APA StyleQian, F., Shen, H., Huang, G., Liu, B., & Hong, J. (2024). Improvement of Laser-Induced Damage on High-Efficiency Solar Cells via Top-Hat Beam Ablation. Energies, 17(4), 858. https://doi.org/10.3390/en17040858