Interpretable Data-Driven Methods for Building Energy Modelling—A Review of Critical Connections and Gaps
Abstract
:1. Introduction
2. Methods and Tools
3. Literature Review
3.1. Interpretability Concept, Ethics of AI/ML and Digital Twin Paradigm
3.2. Digital Twins in Buildings, M&V and Interpretable Data-Driven Methods
3.3. Physics-Informed ML and Grey-Box Modelling in Buildings
3.4. Limitations, Summary of Findings and Further Work
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Geels, F.W.; Turnheim, B. The Great Reconfiguration—A Socio-Technical Analysis of Low-Carbon Transitions in UK Electricity, Heat, and Mobility Systems; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Wahlund, M.; Palm, J. The Role of Energy Democracy and Energy Citizenship for Participatory Energy Transitions: A Comprehensive Review. Energy Res. Soc. Sci. 2022, 87, 102482. [Google Scholar] [CrossRef]
- Skjølsvold, T.M.; Coenen, L. Are Rapid and Inclusive Energy and Climate Transitions Oxymorons? Towards Principles of Responsible Acceleration. Energy Res. Soc. Sci. 2021, 79, 102164. [Google Scholar] [CrossRef]
- Bray, R.; Mejía Montero, A.; Ford, R. Skills Deployment for a ‘Just’ Net Zero Energy Transition. Environ. Innov. Soc. Transit. 2022, 42, 395–410. [Google Scholar] [CrossRef]
- Dall-Orsoletta, A.; Cunha, J.; Araújo, M.; Ferreira, P. A Systematic Review of Social Innovation and Community Energy Transitions. Energy Res. Soc. Sci. 2022, 88, 102625. [Google Scholar] [CrossRef]
- Nastasi, B.; Mazzoni, S. Renewable Hydrogen Energy Communities Layouts towards Off-Grid Operation. Energy Convers. Manag. 2023, 291, 117293. [Google Scholar] [CrossRef]
- Nastasi, B.; Markovska, N.; Puksec, T.; Duić, N.; Foley, A. Techniques and Technologies to Board on the Feasible Renewable and Sustainable Energy Systems. Renew. Sustain. Energy Rev. 2023, 182, 113428. [Google Scholar] [CrossRef]
- Bellocchi, S.; Colbertaldo, P.; Manno, M.; Nastasi, B. Assessing the Effectiveness of Hydrogen Pathways: A Techno-Economic Optimisation within an Integrated Energy System. Energy 2023, 263, 126017. [Google Scholar] [CrossRef]
- Way, R.; Ives, M.C.; Mealy, P.; Farmer, J.D. Empirically Grounded Technology Forecasts and the Energy Transition. Joule 2022, 6, 2057–2082. [Google Scholar] [CrossRef]
- Noussan, M.; Nastasi, B. Data Analysis of Heating Systems for Buildings—A Tool for Energy Planning, Policies and Systems Simulation. Energies 2018, 11, 233. [Google Scholar] [CrossRef]
- Fenner, A.E.; Kibert, C.J.; Woo, J.; Morque, S.; Razkenari, M.; Hakim, H.; Lu, X. The Carbon Footprint of Buildings: A Review of Methodologies and Applications. Renew. Sustain. Energy Rev. 2018, 94, 1142–1152. [Google Scholar] [CrossRef]
- Li, Y.L.; Han, M.Y.; Liu, S.Y.; Chen, G.Q. Energy Consumption and Greenhouse Gas Emissions by Buildings: A Multi-Scale Perspective. Build. Environ. 2019, 151, 240–250. [Google Scholar] [CrossRef]
- Berardi, U. A Cross-Country Comparison of the Building Energy Consumptions and Their Trends. Resour. Conserv. Recycl. 2017, 123, 230–241. [Google Scholar] [CrossRef]
- Huang, L.; Krigsvoll, G.; Johansen, F.; Liu, Y.; Zhang, X. Carbon Emission of Global Construction Sector. Renew. Sustain. Energy Rev. 2018, 81, 1906–1916. [Google Scholar] [CrossRef]
- A European Green Deal. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 8 February 2024).
- European Commission. A Renovation Wave for Europe-Greening Our Buildings, Creating Jobs, Improving Life. COM(2020)662. Available online: https://www.eumonitor.eu/9353000/1/j9vvik7m1c3gyxp/vlcxt8sqp3zo (accessed on 8 February 2024).
- European Commission. Energy Roadmap 2050-Impact Assessment and Scenario Analysis. 2012. Available online: https://energy.ec.europa.eu/system/files/2014-10/roadmap2050_ia_20120430_en_0.pdf (accessed on 8 February 2024).
- European Commission. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources (Recast). 2018. Available online: https://eur-lex.europa.eu/legal-content/en/txt/pdf/?uri=celex:32018l0844&from=it (accessed on 8 February 2024).
- Ferrara, M.; Monetti, V.; Fabrizio, E. Cost-Optimal Analysis for Nearly Zero Energy Buildings Design and Optimization: A Critical Review. Energies 2018, 11, 1478. [Google Scholar] [CrossRef]
- Zangheri, P.; D’Agostino, D.; Armani, R.; Bertoldi, P. Review of the Cost-Optimal Methodology Implementation in Member States in Compliance with the Energy Performance of Buildings Directive. Buildings 2022, 12, 1482. [Google Scholar] [CrossRef]
- Akhimien, N.G.; Latif, E.; Hou, S.S. Application of Circular Economy Principles in Buildings: A Systematic Review. J. Build. Eng. 2021, 38, 102041. [Google Scholar] [CrossRef]
- Lehmann, H.; Hinske, C.; de Margerie, V.; Slaveikova Nikolova, A. The Impossibilities of the Circular Economy: Separating Aspirations from Reality; Taylor & Francis: London, UK, 2023. [Google Scholar]
- Seyedabadi, M.R.; Samareh Abolhassani, S.; Eicker, U. District Cradle to Grave LCA Including the Development of a Localized Embodied Carbon Database and a Detailed End-of-Life Carbon Emission Workflow. J. Build. Eng. 2023, 76, 107101. [Google Scholar] [CrossRef]
- Nebel, B. Cradle to Cradle, LCA and Circular Economy: A Love Triangle. NZ Manuf. Mag. 2020, 23. Available online: https://nzmanufacturer.co.nz/2020/04/cradle-to-cradle-life-cycle-assessment-and-circular-economy-a-love-triangle/ (accessed on 8 February 2024).
- Borkowski, A.S. A Literature Review of BIM Definitions: Narrow and Broad Views. Technologies 2023, 11, 176. [Google Scholar] [CrossRef]
- Borkowski, A.S. Evolution of BIM: Epistemology, Genesis and Division into Periods. J. Inf. Technol. Constr. 2023, 28, 646–661. [Google Scholar] [CrossRef]
- Deng, M.; Menassa, C.C.; Kamat, V.R. From BIM to Digital Twins: A Systematic Review of the Evolution of Intelligent Building Representations in the AEC-FM Industry. J. Inf. Technol. Constr. 2021, 26, 58–83. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, L. Digital Twin in Circular Economy: Remanufacturing in Construction. IOP Conf. Ser. Earth Environ. Sci. 2020, 588, 32014. [Google Scholar] [CrossRef]
- de Wilde, P. Building Performance Simulation in the Brave New World of Artificial Intelligence and Digital Twins: A Systematic Review. Energy Build. 2023, 292, 113171. [Google Scholar] [CrossRef]
- IEA-EBC Data-Driven Smart Buildings: State-of-the-Art Review—Annex 81. 2023, pp. 1–103. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj0-_7-8JEAxVj2TQHHYm8BdwQFnoECA0QAQ&url=https%3A%2F%2Fannex81.iea-ebc.org%2FData%2Fpublications%2FAnnex%252081%2520State-of-the-Art%2520Report%2520(final).pdf&usg=AOvVaw2PNfkPf80qamynklrZhFSB&opi=89978449 (accessed on 8 February 2024).
- Rosenow, J.; Eyre, N. Reinventing Energy Efficiency for Net Zero. Energy Res. Soc. Sci. 2022, 90, 102602. [Google Scholar] [CrossRef]
- Baniassadi, A.; Heusinger, J.; Gonzalez, P.I.; Weber, S.; Samuelson, H.W. Co-Benefits of Energy Efficiency in Residential Buildings. Energy 2022, 238, 121768. [Google Scholar] [CrossRef]
- Regulatory Framework Proposal on Artificial Intelligence. Available online: https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai (accessed on 30 December 2023).
- Molnar, C.; Casalicchio, G.; Bischl, B. Interpretable Machine Learning—A Brief History, State-of-the-Art and Challenges. In Communications in Computer and Information Science; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 417–431. ISBN 9783030659653. [Google Scholar]
- Interpretable Machine Learning, Section 3.2 Taxonomy of Interpretability Methods, Christopher Molnar. Available online: https://christophm.github.io/interpretable-ml-book/taxonomy-of-interpretability-methods.html (accessed on 24 May 2023).
- Rudin, C.; Chen, C.; Chen, Z.; Huang, H.; Semenova, L.; Zhong, C. Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges. Stat. Surv. 2022, 16, 1–85. [Google Scholar] [CrossRef]
- Watson, D.S. Conceptual Challenges for Interpretable Machine Learning. Synthese 2022, 200, 65. [Google Scholar] [CrossRef]
- Kavgic, M.; Mavrogianni, A.; Mumovic, D.; Summerfield, A.; Stevanovic, Z.; Djurovic-Petrovic, M. A Review of Bottom-up Building Stock Models for Energy Consumption in the Residential Sector. Build. Environ. 2010, 45, 1683–1697. [Google Scholar] [CrossRef]
- Foucquier, A.; Robert, S.; Suard, F.; Stéphan, L.; Jay, A. State of the Art in Building Modelling and Energy Performances Prediction: A Review. Renew. Sustain. Energy Rev. 2013, 23, 272–288. [Google Scholar] [CrossRef]
- Fumo, N. A Review on the Basics of Building Energy Estimation. Renew. Sustain. Energy Rev. 2014, 31, 53–60. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, M.; Chen, Z.; Chen, Z.; Ji, Y. Physical Energy and Data-Driven Models in Building Energy Prediction: A Review. Energy Rep. 2022, 8, 2656–2671. [Google Scholar] [CrossRef]
- Hong, S.-M.; Paterson, G.; Burman, E.; Steadman, P.; Mumovic, D. A Comparative Study of Benchmarking Approaches for Non-Domestic Buildings: Part 1—Top-down Approach. Int. J. Sustain. Built Environ. 2013, 2, 119–130. [Google Scholar] [CrossRef]
- Burman, E.; Hong, S.-M.; Paterson, G.; Kimpian, J.; Mumovic, D. A Comparative Study of Benchmarking Approaches for Non-Domestic Buildings: Part 2—Bottom-up Approach. Int. J. Sustain. Built Environ. 2014, 3, 247–261. [Google Scholar] [CrossRef]
- Kheiri, F.; Haberl, J.S.; Baltazar, J.-C. Split-Degree Day Method: A Novel Degree Day Method for Improving Building Energy Performance Estimation. Energy Build. 2023, 289, 113034. [Google Scholar] [CrossRef]
- Gallese, C. The AI Act Proposal: A New Right to Technical Interpretability? arXiv 2023, arXiv:2303.17558. [Google Scholar] [CrossRef]
- Panigutti, C.; Hamon, R.; Hupont, I.; Fernandez Llorca, D.; Fano Yela, D.; Junklewitz, H.; Scalzo, S.; Mazzini, G.; Sanchez, I.; Soler Garrido, J.; et al. The Role of Explainable AI in the Context of the AI Act. In Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, Chicago, IL, USA, 12–15 June 2023; pp. 1139–1150. [Google Scholar]
- Gryz, J.; Rojszczak, M. Black Box Algorithms and the Rights of Individuals: No Easy Solution to the “Explainability” Problem. Internet Policy Rev. 2021, 10, 1–24. [Google Scholar] [CrossRef]
- Rudin, C. Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef]
- Flora, M.; Potvin, C.; McGovern, A.; Handler, S. Comparing Explanation Methods for Traditional Machine Learning Models Part 1: An Overview of Current Methods and Quantifying Their Disagreement. arXiv 2022, arXiv:2211.08943. [Google Scholar]
- Rudin, C.; Radin, J. Why Are We Using Black Box Models in AI When We Don’t Need to? A Lesson from an Explainable AI Competition. Harv. Data Sci. Rev. 2019, 1, 1–9. [Google Scholar]
- Petch, J.; Di, S.; Nelson, W. Opening the Black Box: The Promise and Limitations of Explainable Machine Learning in Cardiology. Can. J. Cardiol. 2022, 38, 204–213. [Google Scholar] [CrossRef]
- Roberts, H.; Cowls, J.; Hine, E.; Mazzi, F.; Tsamados, A.; Taddeo, M.; Floridi, L. Achieving a ‘Good AI Society’: Comparing the Aims and Progress of the EU and the US. Sci. Eng. Ethics 2021, 27, 68. [Google Scholar] [CrossRef]
- Floridi, L.; Cowls, J. A Unified Framework of Five Principles for AI in Society. Harv. Data Sci. Rev. 2019, 1. [Google Scholar] [CrossRef]
- Semeraro, C.; Lezoche, M.; Panetto, H.; Dassisti, M. Digital Twin Paradigm: A Systematic Literature Review. Comput. Ind. 2021, 130, 103469. [Google Scholar] [CrossRef]
- Dalibor, M.; Jansen, N.; Rumpe, B.; Schmalzing, D.; Wachtmeister, L.; Wimmer, M.; Wortmann, A. A Cross-Domain Systematic Mapping Study on Software Engineering for Digital Twins. J. Syst. Softw. 2022, 193, 111361. [Google Scholar] [CrossRef]
- Wright, L.; Davidson, S. How to Tell the Difference between a Model and a Digital Twin. Adv. Model. Simul. Eng. Sci. 2020, 7, 13. [Google Scholar] [CrossRef]
- Schmidt, M.; Åhlund, C. Smart Buildings as Cyber-Physical Systems: Data-Driven Predictive Control Strategies for Energy Efficiency. Renew. Sustain. Energy Rev. 2018, 90, 742–756. [Google Scholar] [CrossRef]
- de Wilde, P. The Gap between Predicted and Measured Energy Performance of Buildings: A Framework for Investigation. Autom. Constr. 2014, 41, 40–49. [Google Scholar] [CrossRef]
- Imam, S.; Coley, D.A.; Walker, I. The Building Performance Gap: Are Modellers Literate? Build. Serv. Eng. Res. Technol. 2017, 38, 351–375. [Google Scholar] [CrossRef]
- de Wilde, P. The Building Performance Gap: Are Modellers Literate? Build. Serv. Eng. Res. Technol. 2017, 38, 757–759. [Google Scholar] [CrossRef]
- Doan, D.; Ghaffarianhoseini, A.; Naismith, N.; Zhang, T.; Tookey, T. What Is BIM?: A Need for a Unique BIM Definition. In Proceedings of the IConBEE2018: Inaugural International Conference on the Built Environment and Engineering, EDP Sciences, Johor, Malaysia, 29–30 October 2018; p. 88. [Google Scholar]
- Opoku, D.-G.J.; Perera, S.; Osei-Kyei, R.; Rashidi, M. Digital Twin Application in the Construction Industry: A Literature Review. J. Build. Eng. 2021, 40, 102726. [Google Scholar] [CrossRef]
- Borth, M.; Verriet, J.; Muller, G. Digital Twin Strategies for SoS 4 Challenges and 4 Architecture Setups for Digital Twins of SoS. In Proceedings of the 2019 14th Annual Conference System of Systems Engineering (SoSE), Anchorage, AK, USA, 19–22 May 2019; pp. 164–169. [Google Scholar]
- Bjørnskov, J.; Jradi, M. An Ontology-Based Innovative Energy Modeling Framework for Scalable and Adaptable Building Digital Twins. Energy Build. 2023, 292, 113146. [Google Scholar] [CrossRef]
- Ammar, A.; Nassereddine, H.; AbdulBaky, N.; AbouKansour, A.; Tannoury, J.; Urban, H.; Schranz, C. Digital Twins in the Construction Industry: A Perspective of Practitioners and Building Authority. Front. Built Environ. 2022, 8, 834671. [Google Scholar] [CrossRef]
- Yu, W.; Patros, P.; Young, B.; Klinac, E.; Walmsley, T.G. Energy Digital Twin Technology for Industrial Energy Management: Classification, Challenges and Future. Renew. Sustain. Energy Rev. 2022, 161, 112407. [Google Scholar] [CrossRef]
- Manfren, M.; Tagliabue, L.C.; Re Cecconi, F.; Ricci, M. Long-Term Techno-Economic Performance Monitoring to Promote Built Environment Decarbonisation and Digital Transformation—A Case Study. Sustainability 2022, 14, 644. [Google Scholar] [CrossRef]
- Chen, Z.; Xiao, F.; Guo, F.; Yan, J. Interpretable Machine Learning for Building Energy Management: A State-of-the-Art Review. Adv. Appl. Energy 2023, 9, 100123. [Google Scholar] [CrossRef]
- Qaisar, I.; Zhao, Q. Energy Baseline Prediction for Buildings: A Review. Results Control Optim. 2022, 7, 100129. [Google Scholar] [CrossRef]
- Afroz, Z.; Burak Gunay, H.; O’Brien, W.; Newsham, G.; Wilton, I. An Inquiry into the Capabilities of Baseline Building Energy Modelling Approaches to Estimate Energy Savings. Energy Build. 2021, 244, 111054. [Google Scholar] [CrossRef]
- Grillone, B.; Mor, G.; Danov, S.; Cipriano, J.; Lazzari, F.; Sumper, A. Baseline Energy Use Modeling and Characterization in Tertiary Buildings Using an Interpretable Bayesian Linear Regression Methodology. Energies 2021, 14, 5556. [Google Scholar] [CrossRef]
- Fu, H.; Baltazar, J.-C.; Claridge, D.E. Review of Developments in Whole-Building Statistical Energy Consumption Models for Commercial Buildings. Renew. Sustain. Energy Rev. 2021, 147, 111248. [Google Scholar] [CrossRef]
- Kim, H.; Haberl, J. Field-Test of the ASHRAE/CIBSE/USGBC Performance Measurement Protocols: Part I Intermediate Level Energy Protocols. Sci. Technol. Built Environ. 2018, 24, 281–297. [Google Scholar] [CrossRef]
- Kim, H.; Haberl, J. Field-Test of the ASHRAE/CIBSE/USGBC Performance Measurement Protocols: Part II Advanced Level Energy Protocols. Sci. Technol. Built Environ. 2018, 24, 298–315. [Google Scholar] [CrossRef]
- Grillone, B.; Danov, S.; Sumper, A.; Cipriano, J.; Mor, G. A Review of Deterministic and Data-Driven Methods to Quantify Energy Efficiency Savings and to Predict Retrofitting Scenarios in Buildings. Renew. Sustain. Energy Rev. 2020, 131, 110027. [Google Scholar] [CrossRef]
- Alrobaie, A.; Krarti, M. A Review of Data-Driven Approaches for Measurement and Verification Analysis of Building Energy Retrofits. Energies 2022, 15, 7824. [Google Scholar] [CrossRef]
- Grillone, B.; Mor, G.; Danov, S.; Cipriano, J.; Sumper, A. A Data-Driven Methodology for Enhanced Measurement and Verification of Energy Efficiency Savings in Commercial Buildings. Appl. Energy 2021, 301, 117502. [Google Scholar] [CrossRef]
- Manfren, M.; Nastasi, B.; Tronchin, L. Linking Design and Operation Phase Energy Performance Analysis Through Regression-Based Approaches. Front. Energy Res. 2020, 8, 557649. [Google Scholar] [CrossRef]
- Manfren, M.; Nastasi, B.; Tronchin, L.; Groppi, D.; Garcia, D.A. Techno-Economic Analysis and Energy Modelling as a Key Enablers for Smart Energy Services and Technologies in Buildings. Renew. Sustain. Energy Rev. 2021, 150, 111490. [Google Scholar] [CrossRef]
- Manfren, M.; Sibilla, M.; Tronchin, L. Energy Modelling and Analytics in the Built Environment—A Review of Their Role for Energy Transitions in the Construction Sector. Energies 2021, 14, 679. [Google Scholar] [CrossRef]
- ECAM 7.0. Available online: https://sbwconsulting.com/ecam/ (accessed on 8 February 2024).
- CalTRACK CalTRACK Methods. Available online: http://docs.caltrack.org/en/latest/methods.html (accessed on 30 December 2023).
- RMV2.0—LBNL M&V2.0 Tool. Available online: https://lbnl-eta.github.io/rmv2.0/ (accessed on 30 December 2023).
- NMECR. Available online: https://kw-labs.github.io/nmecr/ (accessed on 30 December 2023).
- Østergård, T.; Jensen, R.L.; Maagaard, S.E. A Comparison of Six Metamodeling Techniques Applied to Building Performance Simulations. Appl. Energy 2018, 211, 89–103. [Google Scholar] [CrossRef]
- Li, D.H.W.; Chen, W.; Li, S.; Lou, S. Estimation of Hourly Global Solar Radiation Using Multivariate Adaptive Regression Spline (MARS)—A Case Study of Hong Kong. Energy 2019, 186, 115857. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Y. Data-Driven Modeling of Building Thermal Dynamics: Methodology and State of the Art. Energy Build. 2019, 203, 109405. [Google Scholar] [CrossRef]
- Khamma, T.R.; Zhang, Y.; Guerrier, S.; Boubekri, M. Generalized Additive Models: An Efficient Method for Short-Term Energy Prediction in Office Buildings. Energy 2020, 213, 118834. [Google Scholar] [CrossRef]
- Li, K.; Sun, Y.; Robinson, D.; Ma, J.; Ma, Z. A New Strategy to Benchmark and Evaluate Building Electricity Usage Using Multiple Data Mining Technologies. Sustain. Energy Technol. Assess. 2020, 40, 100770. [Google Scholar] [CrossRef]
- Feng, Y.; Duan, Q.; Chen, X.; Yakkali, S.S.; Wang, J. Space Cooling Energy Usage Prediction Based on Utility Data for Residential Buildings Using Machine Learning Methods. Appl. Energy 2021, 291, 116814. [Google Scholar] [CrossRef]
- Zhang, C.; Tian, X.; Zhao, Y.; Li, T.; Zhou, Y.; Zhang, X. Causal Discovery-Based External Attention in Neural Networks for Accurate and Reliable Fault Detection and Diagnosis of Building Energy Systems. Build. Environ. 2022, 222, 109357. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, D.; Lv, J. Comparison of the Applicability of City-Level Building Energy Consumption Quota Methods. Energy Build. 2022, 261, 111933. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, X.; Zhou, G.; Fan, C.; Ding, P.; Chen, Q. An Online Physical-Based Multiple Linear Regression Model for Building’s Hourly Cooling Load Prediction. Energy Build. 2022, 254, 111574. [Google Scholar] [CrossRef]
- Liu, X.; Tang, H.; Ding, Y.; Yan, D. Investigating the Performance of Machine Learning Models Combined with Different Feature Selection Methods to Estimate the Energy Consumption of Buildings. Energy Build. 2022, 273, 112408. [Google Scholar] [CrossRef]
- Yue, N.; Caini, M.; Li, L.; Zhao, Y.; Li, Y. A Comparison of Six Metamodeling Techniques Applied to Multi Building Performance Vectors Prediction on Gymnasiums under Multiple Climate Conditions. Appl. Energy 2023, 332, 120481. [Google Scholar] [CrossRef]
- Manfren, M.; James, P.A.B.; Tronchin, L. Data-Driven Building Energy Modelling—An Analysis of the Potential for Generalisation through Interpretable Machine Learning. Renew. Sustain. Energy Rev. 2022, 167, 112686. [Google Scholar] [CrossRef]
- Wang, E. Decomposing Core Energy Factor Structure of U.S. Residential Buildings through Principal Component Analysis with Variable Clustering on High-Dimensional Mixed Data. Appl. Energy 2017, 203, 858–873. [Google Scholar] [CrossRef]
- Shen, Y.; Pan, Y. BIM-Supported Automatic Energy Performance Analysis for Green Building Design Using Explainable Machine Learning and Multi-Objective Optimization. Appl. Energy 2023, 333, 120575. [Google Scholar] [CrossRef]
- Wang, J.; Mae, M.; Taniguchi, K. Uncertainty Modeling Method of Weather Elements Based on Deep Learning for Robust Solar Energy Generation of Building. Energy Build. 2022, 266, 112115. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, L.; Li, Y.; Shi, Y.; Gao, X.; Hu, Y. A Review of Computing-Based Automated Fault Detection and Diagnosis of Heating, Ventilation and Air Conditioning Systems. Renew. Sustain. Energy Rev. 2022, 161, 112395. [Google Scholar] [CrossRef]
- Zhang, C.; Li, J.; Zhao, Y.; Li, T.; Chen, Q.; Zhang, X. A Hybrid Deep Learning-Based Method for Short-Term Building Energy Load Prediction Combined with an Interpretation Process. Energy Build. 2020, 225, 110301. [Google Scholar] [CrossRef]
- Gao, Y.; Ruan, Y. Interpretable Deep Learning Model for Building Energy Consumption Prediction Based on Attention Mechanism. Energy Build. 2021, 252, 111379. [Google Scholar] [CrossRef]
- Li, A.; Xiao, F.; Zhang, C.; Fan, C. Attention-Based Interpretable Neural Network for Building Cooling Load Prediction. Appl. Energy 2021, 299, 117238. [Google Scholar] [CrossRef]
- Li, G.; Li, F.; Xu, C.; Fang, X. A Spatial-Temporal Layer-Wise Relevance Propagation Method for Improving Interpretability and Prediction Accuracy of LSTM Building Energy Prediction. Energy Build. 2022, 271, 112317. [Google Scholar] [CrossRef]
- Gokhale, G.; Claessens, B.; Develder, C. Physics Informed Neural Networks for Control Oriented Thermal Modeling of Buildings. Appl. Energy 2022, 314, 118852. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, C.; Li, J.; Zhao, Y.; Qiu, W.; Li, T.; Zhou, K.; He, J. Graph Convolutional Networks-Based Method for Estimating Design Loads of Complex Buildings in the Preliminary Design Stage. Appl. Energy 2022, 322, 119478. [Google Scholar] [CrossRef]
- Choi, S.Y.; Kim, S.H. Selection of a Transparent Meta-Model Algorithm for Feasibility Analysis Stage of Energy Efficient Building Design: Clustering vs. Tree. Energies 2022, 15, 6620. [Google Scholar] [CrossRef]
- Wang, R.; Lu, S.; Li, Q. Multi-Criteria Comprehensive Study on Predictive Algorithm of Hourly Heating Energy Consumption for Residential Buildings. Sustain. Cities Soc. 2019, 49, 101623. [Google Scholar] [CrossRef]
- Kazmi, H.; Fu, C.; Miller, C. Ten Questions Concerning Data-Driven Modelling and Forecasting of Operational Energy Demand at Building and Urban Scale. Build. Environ. 2023, 239, 110407. [Google Scholar] [CrossRef]
- Manfren, M.; Nastasi, B. Interpretable Data-Driven Building Load Profiles Modelling for Measurement and Verification 2.0. Energy 2023, 283, 128490. [Google Scholar] [CrossRef]
- Manfren, M.; James, P.A.B.; Aragon, V.; Tronchin, L. Lean and Interpretable Digital Twins for Building Energy Monitoring—A Case Study with Smart Thermostatic Radiator Valves and Gas Absorption Heat Pumps. Energy AI 2023, 14, 100304. [Google Scholar] [CrossRef]
- Nastasi, B.; Manfren, M.; Groppi, D.; Lamagna, M.; Mancini, F.; Astiaso Garcia, D. Data-Driven Load Profile Modelling for Advanced Measurement and Verification (M&V) in a Fully Electrified Building. Build Environ 2022, 221, 109279. [Google Scholar] [CrossRef]
- Staffell, I.; Pfenninger, S.; Johnson, N. A Global Model of Hourly Space Heating and Cooling Demand at Multiple Spatial Scales. Nat. Energy 2023, 8, 1328–1344. [Google Scholar] [CrossRef]
- Manfren, M.; Tommasino, M.C.; Tronchin, L. Data-Driven Building Energy Modelling—Generalisation Potential of Energy Signatures through Interpretable Machine Learning. In Proceedings of the Buiding Simulation Applications—BSA 2022, Bozen-Bolzano, Italy, 29 June–1 July 2022; Available online: https://bupress.unibz.it/en/produkt/building-simulation-applications-bsa-2022-ebook/ (accessed on 8 February 2024).
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-Informed Machine Learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Bradley, W.; Kim, J.; Kilwein, Z.; Blakely, L.; Eydenberg, M.; Jalvin, J.; Laird, C.; Boukouvala, F. Perspectives on the Integration between First-Principles and Data-Driven Modeling. Comput. Chem. Eng. 2022, 166, 107898. [Google Scholar] [CrossRef]
- Gunnell, L.; Nicholson, B.; Hedengren, J.D. Equation-Based and Data-Driven Modeling: Open-Source Software Current State and Future Directions. Comput. Chem. Eng. 2024, 181, 108521. [Google Scholar] [CrossRef]
- Tian, W.; Heo, Y.; de Wilde, P.; Li, Z.; Yan, D.; Park, C.S.; Feng, X.; Augenbroe, G. A Review of Uncertainty Analysis in Building Energy Assessment. Renew. Sustain. Energy Rev. 2018, 93, 285–301. [Google Scholar] [CrossRef]
- Tronchin, L.; Manfren, M.; Nastasi, B. Energy Efficiency, Demand Side Management and Energy Storage Technologies—A Critical Analysis of Possible Paths of Integration in the Built Environment. Renew. Sustain. Energy Rev. 2018, 95, 341–353. [Google Scholar] [CrossRef]
- Hong, T.; Chen, Y.; Luo, X.; Luo, N.; Lee, S.H. Ten Questions on Urban Building Energy Modeling. Build. Environ. 2020, 168, 106508. [Google Scholar] [CrossRef]
- Shin, M.; Haberl, J.S. Thermal Zoning for Building HVAC Design and Energy Simulation: A Literature Review. Energy Build. 2019, 203, 109429. [Google Scholar] [CrossRef]
- Dogan, T.; Reinhart, C. Shoeboxer: An Algorithm for Abstracted Rapid Multi-Zone Urban Building Energy Model Generation and Simulation. Energy Build. 2017, 140, 140–153. [Google Scholar] [CrossRef]
- Battini, F.; Pernigotto, G.; Gasparella, A. A Shoeboxing Algorithm for Urban Building Energy Modeling: Validation for Stand-Alone Buildings. Sustain. Cities Soc. 2023, 89, 104305. [Google Scholar] [CrossRef]
- Chong, A.; Gu, Y.; Jia, H. Calibrating Building Energy Simulation Models: A Review of the Basics to Guide Future Work. Energy Build. 2021, 253, 111533. [Google Scholar] [CrossRef]
- Li, Y.; O’Neill, Z.; Zhang, L.; Chen, J.; Im, P.; DeGraw, J. Grey-Box Modeling and Application for Building Energy Simulations—A Critical Review. Renew. Sustain. Energy Rev. 2021, 146, 111174. [Google Scholar] [CrossRef]
- Boodi, A.; Beddiar, K.; Amirat, Y.; Benbouzid, M. Building Thermal-Network Models: A Comparative Analysis, Recommendations, and Perspectives. Energies 2022, 15, 1328. [Google Scholar] [CrossRef]
- Vivian, J.; Zarrella, A.; Emmi, G.; De Carli, M. An Evaluation of the Suitability of Lumped-Capacitance Models in Calculating Energy Needs and Thermal Behaviour of Buildings. Energy Build. 2017, 150, 447–465. [Google Scholar] [CrossRef]
- Michalak, P. The Development and Validation of the Linear Time Varying Simulink-Based Model for the Dynamic Simulation of the Thermal Performance of Buildings. Energy Build. 2017, 141, 333–340. [Google Scholar] [CrossRef]
- Michalak, P. A Thermal Network Model for the Dynamic Simulation of the Energy Performance of Buildings with the Time Varying Ventilation Flow. Energy Build. 2019, 202, 109337. [Google Scholar] [CrossRef]
- De Rosa, M.; Brennenstuhl, M.; Andrade Cabrera, C.; Eicker, U.; Finn, D.P. An Iterative Methodology for Model Complexity Reduction in Residential Building Simulation. Energies 2019, 12, 2448. [Google Scholar] [CrossRef]
- Kircher, K.J.; Max Zhang, K. On the Lumped Capacitance Approximation Accuracy in RC Network Building Models. Energy Build. 2015, 108, 454–462. [Google Scholar] [CrossRef]
- Serale, G.; Fiorentini, M.; Capozzoli, A.; Bernardini, D.; Bemporad, A. Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities. Energies 2018, 11, 631. [Google Scholar] [CrossRef]
- Drgoňa, J.; Arroyo, J.; Cupeiro Figueroa, I.; Blum, D.; Arendt, K.; Kim, D.; Ollé, E.P.; Oravec, J.; Wetter, M.; Vrabie, D.L.; et al. All You Need to Know about Model Predictive Control for Buildings. Annu. Rev. Control 2020, 50, 190–232. [Google Scholar] [CrossRef]
- Andriamamonjy, A.; Klein, R.; Saelens, D. Automated Grey Box Model Implementation Using BIM and Modelica. Energy Build. 2019, 188–189, 209–225. [Google Scholar] [CrossRef]
- Kämpf, J.H.; Robinson, D. A Simplified Thermal Model to Support Analysis of Urban Resource Flows. Energy Build. 2007, 39, 445–453. [Google Scholar] [CrossRef]
- Fonseca, J.A.; Schlueter, A. Integrated Model for Characterization of Spatiotemporal Building Energy Consumption Patterns in Neighborhoods and City Districts. Appl. Energy 2015, 142, 247–265. [Google Scholar] [CrossRef]
- Prataviera, E.; Romano, P.; Carnieletto, L.; Pirotti, F.; Vivian, J.; Zarrella, A. EUReCA: An Open-Source Urban Building Energy Modelling Tool for the Efficient Evaluation of Cities Energy Demand. Renew. Energy 2021, 173, 544–560. [Google Scholar] [CrossRef]
- Fischer, D.; Wolf, T.; Scherer, J.; Wille-Haussmann, B. A Stochastic Bottom-up Model for Space Heating and Domestic Hot Water Load Profiles for German Households. Energy Build. 2016, 124, 120–128. [Google Scholar] [CrossRef]
- Koene, F.G.H.F.; Eslami-Mossallam, B.B. Space Heating Demand Profiles of Districts Considering Temporal Dispersion of Thermostat Settings in Individual Buildings. Build. Environ. 2023, 228, 109839. [Google Scholar] [CrossRef]
- Schütz, T.; Schiffer, L.; Harb, H.; Fuchs, M.; Müller, D. Optimal Design of Energy Conversion Units and Envelopes for Residential Building Retrofits Using a Comprehensive MILP Model. Appl. Energy 2017, 185, 1–15. [Google Scholar] [CrossRef]
- Schütz, T.; Schraven, M.H.; Remy, S.; Granacher, J.; Kemetmüller, D.; Fuchs, M.; Müller, D. Optimal Design of Energy Conversion Units for Residential Buildings Considering German Market Conditions. Energy 2017, 139, 895–915. [Google Scholar] [CrossRef]
- Bianco, G.; Bracco, S.; Delfino, F.; Gambelli, L.; Robba, M.; Rossi, M. A Building Energy Management System Based on an Equivalent Electric Circuit Model. Energies 2020, 13, 1689. [Google Scholar] [CrossRef]
- Zhang, Y.; Vand, B.; Baldi, S. A Review of Mathematical Models of Building Physics and Energy Technologies for Environmentally Friendly Integrated Energy Management Systems. Buildings 2022, 12, 238. [Google Scholar] [CrossRef]
- Hazyuk, I.; Ghiaus, C.; Penhouet, D. Optimal Temperature Control of Intermittently Heated Buildings Using Model Predictive Control: Part I—Building Modeling. Build. Environ. 2012, 51, 379–387. [Google Scholar] [CrossRef]
- Hazyuk, I.; Ghiaus, C.; Penhouet, D. Optimal Temperature Control of Intermittently Heated Buildings Using Model Predictive Control: Part II—Control Algorithm. Build. Environ. 2012, 51, 388–394. [Google Scholar] [CrossRef]
- Oldewurtel, F.; Parisio, A.; Jones, C.N.; Gyalistras, D.; Gwerder, M.; Stauch, V.; Lehmann, B.; Morari, M. Use of Model Predictive Control and Weather Forecasts for Energy Efficient Building Climate Control. Energy Build. 2012, 45, 15–27. [Google Scholar] [CrossRef]
- Lehmann, B.; Gyalistras, D.; Gwerder, M.; Wirth, K.; Carl, S. Intermediate Complexity Model for Model Predictive Control of Integrated Room Automation. Energy Build. 2013, 58, 250–262. [Google Scholar] [CrossRef]
- Smith, R.S.; Behrunani, V.; Lygeros, J. Control of Multicarrier Energy Systems from Buildings to Networks. Annu. Rev. Control Robot. Auton. Syst. 2023, 6, 391–414. [Google Scholar] [CrossRef]
- Fontenot, H.; Dong, B. Modeling and Control of Building-Integrated Microgrids for Optimal Energy Management—A Review. Appl. Energy 2019, 254, 113689. [Google Scholar] [CrossRef]
- Oliveira Panão, M.J.N.; Mateus, N.M.; Carrilho da Graça, G. Measured and Modeled Performance of Internal Mass as a Thermal Energy Battery for Energy Flexible Residential Buildings. Appl. Energy 2019, 239, 252–267. [Google Scholar] [CrossRef]
- Askeland, M.; Georges, L.; Korpås, M. Low-Parameter Linear Model to Activate the Flexibility of the Building Thermal Mass in Energy System Optimization. Smart Energy 2023, 9, 100094. [Google Scholar] [CrossRef]
- Bueno, B.; Norford, L.; Pigeon, G.; Britter, R. A Resistance-Capacitance Network Model for the Analysis of the Interactions between the Energy Performance of Buildings and the Urban Climate. Build. Environ. 2012, 54, 116–125. [Google Scholar] [CrossRef]
- Mosteiro-Romero, M.; Maiullari, D.; Pijpers-van Esch, M.; Schlueter, A. An Integrated Microclimate-Energy Demand Simulation Method for the Assessment of Urban Districts. Front. Built Environ. 2020, 6, 553946. [Google Scholar] [CrossRef]
- Ramallo-González, A.P.; Eames, M.E.; Natarajan, S.; Fosas-de-Pando, D.; Coley, D.A. An Analytical Heat Wave Definition Based on the Impact on Buildings and Occupants. Energy Build. 2020, 216, 109923. [Google Scholar] [CrossRef]
- Pfafferott, J.; Rißmann, S.; Halbig, G.; Schröder, F.; Saad, S. Towards a Generic Residential Building Model for Heat-Health Warning Systems. Int. J. Environ. Res. Public Health 2021, 18, 13050. [Google Scholar] [CrossRef]
- Raillon, L.; Ghiaus, C. An Efficient Bayesian Experimental Calibration of Dynamic Thermal Models. Energy 2018, 152, 818–833. [Google Scholar] [CrossRef]
- Rouchier, S. Solving Inverse Problems in Building Physics: An Overview of Guidelines for a Careful and Optimal Use of Data. Energy Build. 2018, 166, 178–195. [Google Scholar] [CrossRef]
- Kristensen, M.H.; Hedegaard, R.E.; Petersen, S. Hierarchical Calibration of Archetypes for Urban Building Energy Modeling. Energy Build. 2018, 175, 219–234. [Google Scholar] [CrossRef]
- Jin, X.; Zhang, C.; Xiao, F.; Li, A.; Miller, C. A Review and Reflection on Open Datasets of City-Level Building Energy Use and Their Applications. Energy Build. 2023, 285, 112911. [Google Scholar] [CrossRef]
- Malhotra, A.; Bischof, J.; Nichersu, A.; Häfele, K.-H.; Exenberger, J.; Sood, D.; Allan, J.; Frisch, J.; van Treeck, C.; O’Donnell, J.; et al. Information Modelling for Urban Building Energy Simulation—A Taxonomic Review. Build. Environ. 2022, 208, 108552. [Google Scholar] [CrossRef]
- Manfren, M.; Nastasi, B.; Groppi, D.; Astiaso Garcia, D. Open Data and Energy Analytics—An Analysis of Essential Information for Energy System Planning, Design and Operation. Energy 2020, 213, 118803. [Google Scholar] [CrossRef]
- Hu, S.; Wang, J.; Hoare, C.; Li, Y.; Pauwels, P.; O’Donnell, J. Building Energy Performance Assessment Using Linked Data and Cross-Domain Semantic Reasoning. Autom. Constr. 2021, 124, 103580. [Google Scholar] [CrossRef]
- Földváry Ličina, V.; Cheung, T.; Zhang, H.; de Dear, R.; Parkinson, T.; Arens, E.; Chun, C.; Schiavon, S.; Luo, M.; Brager, G.; et al. Development of the ASHRAE Global Thermal Comfort Database II. Build. Environ. 2018, 142, 502–512. [Google Scholar] [CrossRef]
- Dong, B.; Liu, Y.; Mu, W.; Jiang, Z.; Pandey, P.; Hong, T.; Olesen, B.; Lawrence, T.; O’Neil, Z.; Andrews, C.; et al. A Global Building Occupant Behavior Database. Sci. Data 2022, 9, 369. [Google Scholar] [CrossRef]
Level | Description | Motivation for Selection |
---|---|---|
1 | Interpretability of AI/ML, AI ethics, emerging paradigms enabled by digitalisation. | The rapidly evolving landscape of research in the broad area of AI/ML poses technical problems that need to be considered while developing applications in the energy and built environment domains. |
2 | Digital twins in buildings, normalisation of energy statistics and benchmarking, interpretable data-driven methods for energy in buildings. | In the acceleration of energy transition, data-driven applications in buildings can use methods that have already proven to be effective in field applications. |
3 | Simplification of detailed building energy simulation models while retaining physical interpretation of models. | Detailed building energy modelling at the state-of-the-art level can be simplified while providing adequate accuracy and retaining the physical structure of models. |
Search Number | Keywords and Query | Scopus | Web of Science |
---|---|---|---|
1 | “Interpretability” AND “Energy” AND “Buildings” AND “Regression” | 32 | 40 |
2 | “Interpretability” AND “Energy” AND “Buildings” AND “M&V” | 2 | 2 |
3 | “Interpretability” AND “Energy” AND “Buildings” AND “Degree-Days” | 1 | 1 |
4 | “Interpretability” AND “Energy” AND “Buildings” AND “Bayesian” | 6 | 5 |
5 | “Interpretability” AND “Energy” AND “Buildings” AND “Deep Learning” | 21 | 27 |
6 | “Interpretability” AND “Energy” AND “Buildings” AND ”Random Forest” | 9 | 9 |
7 | “Interpretability” AND “Energy” AND “Buildings AND “Optimal trees” | 4 | 3 |
Level 1 | Level 2 | Level 3 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Interpretability | Temporal Scale | Spatial Scale | Causality | |||||||||||
Source | Year | Search Number | Ante Hoc | Post Hoc | Yearly | Monthly | Daily | Hourly | Building Systems | Whole Building | Building Stock | Community | Counterfactual Analysis | Physical Constraints |
Østergård et al. [85] | 2018 | 1 | ✔ | ✔ | ✔ | ✔ | ||||||||
Li et al. [86] | 2019 | 1 | ✔ | ✔ | ✔ | ✔ | ✔ | |||||||
Wang et al. [87] | 2019 | 1 | ✔ | ✔ | ✔ | ✔ | ||||||||
Khamma et al. [88] | 2020 | 1 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||
Li et al. [89] | 2020 | 1 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ||||
Feng et al. [90] | 2021 | 1 | ✔ | ✔ | ✔ | ✔ | ||||||||
Zhang et al. [91] | 2022 | 1 | ✔ | ✔ | ✔ | |||||||||
Ding et al. [92] | 2022 | 1 | ✔ | ✔ | ✔ | ✔ | ✔ | |||||||
Chen et al. [93] | 2022 | 1 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ||||||
Liu et al. [94] | 2022 | 1 | ✔ | ✔ | ✔ | ✔ | ✔ | |||||||
Yue et al. [95] | 2023 | 1 | ✔ | ✔ | ✔ | ✔ | ||||||||
Manfren et al. [96] | 2022 | 2 | ✔ | ✔ | ✔ | ✔ | ✔ | |||||||
E. Wang [97] | 2017 | 3 | ✔ | ✔ | ✔ | ✔ | ||||||||
Shen et al. [98] | 2023 | 4 | ✔ | ✔ | ✔ | ✔ | ✔ | |||||||
J. Wang et al. [99] | 2022 | 4 | ✔ | ✔ | ✔ | ✔ | ||||||||
Chen et al. [100] | 2022 | 4 | ✔ | ✔ | ✔ | |||||||||
Zhang et al. [101] | 2020 | 5 | ✔ | ✔ | ✔ | ✔ | ✔ | |||||||
Gao et al. [102] | 2021 | 5 | ✔ | ✔ | ✔ | ✔ | ||||||||
Ao Li et al. [103] | 2021 | 5 | ✔ | ✔ | ✔ | ✔ | ||||||||
G Liu et al. [104] | 2022 | 5 | ✔ | ✔ | ✔ | ✔ | ✔ | |||||||
Gokhale et al. [105] | 2022 | 5 | ✔ | ✔ | ✔ | ✔ | ✔ | |||||||
Jie Lu et al. [106] | 2022 | 6 | ✔ | ✔ | ✔ | ✔ | ||||||||
Choi et al. [107] | 2022 | 6 | ✔ | ✔ | ✔ | |||||||||
Ran Wang et al. [108] | 2019 | 7 | ✔ | ✔ | ✔ | ✔ |
Modelling Approach | Planning–Design | Operation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Source | Year | Forward | Inverse | Urban-Scale Planning | Building Stock Modelling | Early-Stage Optimisation | Energy Management | MPC Control | Grid Interaction and Flexibility | Environmental Monitoring | Calibration under Uncertainty |
Kämpf et al. [135] | 2007 | ✔ | ✔ | ||||||||
Fonseca et al. [136] | 2015 | ✔ | ✔ | ||||||||
Prataviera et al. [137] | 2021 | ✔ | ✔ | ||||||||
Fischer et al. [138] | 2016 | ✔ | ✔ | ||||||||
Frans Koene et al. [139] | 2023 | ✔ | ✔ | ||||||||
Schütz et al. [140] | 2017 | ✔ | ✔ | ||||||||
Schütz et al. [141] | 2017 | ✔ | ✔ | ||||||||
Bianco et al. [142] | 2020 | ✔ | ✔ | ||||||||
Zhang et al. [143] | 2022 | ✔ | ✔ | ||||||||
Hazyuk et al. [144] | 2012 | ✔ | ✔ | ||||||||
Hazyuk et al. [145] | 2012 | ✔ | ✔ | ||||||||
Oldewurtel et al. [146] | 2012 | ✔ | ✔ | ||||||||
Lehmann et al. [147] | 2013 | ✔ | ✔ | ||||||||
Smith et al. [148] | 2023 | ✔ | ✔ | ||||||||
Fontenot et al. [149] | 2019 | ✔ | ✔ | ||||||||
Oliveira Panão et al. [150] | 2019 | ✔ | ✔ | ||||||||
Askeland et al. [151] | 2023 | ✔ | ✔ | ||||||||
Bueno et al. [152] | 2012 | ✔ | ✔ | ||||||||
Mosteiro-Romero et al. [153] | 2020 | ||||||||||
Ramallo-González et al. [154] | 2020 | ✔ | ✔ | ||||||||
Pfafferott et al. [155] | 2021 | ✔ | ✔ | ||||||||
Raillon et al. [156] | 2018 | ✔ | ✔ | ||||||||
Rouchier et al. [157] | 2018 | ✔ | ✔ | ||||||||
Kristensen et al. [158] | 2018 | ✔ | ✔ |
Level | Critical Connections | Gaps in Knowledge |
---|---|---|
1 | Interpretability and explainability, human oversight and “human in the loop” approach, ethics of AI and explicability principles, implications of these concepts in practical implementations. | Ambiguity in the definition of interpretability and explainability, definition of high-stake/high-risk decisions where interpretability matters and users have a “right to explanations”. |
2 | Interpretable data-driven methods in digital twins for building, counterfactual analysis and physical interpretation, M&V consolidated principles and practice. | Incorporation of M&V rigorous and standardised principles in interpretable data-driven methods, going beyond single models and providing integrated analytical workflows. |
3 | Physics-informed ML and grey-box physical–statistical models for building energy performance modelling. | Leveraging grey-box modelling formulations already tested which can be standardised further and used to enhance physics-informed ML formulations. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manfren, M.; Gonzalez-Carreon, K.M.; James, P.A.B. Interpretable Data-Driven Methods for Building Energy Modelling—A Review of Critical Connections and Gaps. Energies 2024, 17, 881. https://doi.org/10.3390/en17040881
Manfren M, Gonzalez-Carreon KM, James PAB. Interpretable Data-Driven Methods for Building Energy Modelling—A Review of Critical Connections and Gaps. Energies. 2024; 17(4):881. https://doi.org/10.3390/en17040881
Chicago/Turabian StyleManfren, Massimiliano, Karla M. Gonzalez-Carreon, and Patrick A. B. James. 2024. "Interpretable Data-Driven Methods for Building Energy Modelling—A Review of Critical Connections and Gaps" Energies 17, no. 4: 881. https://doi.org/10.3390/en17040881
APA StyleManfren, M., Gonzalez-Carreon, K. M., & James, P. A. B. (2024). Interpretable Data-Driven Methods for Building Energy Modelling—A Review of Critical Connections and Gaps. Energies, 17(4), 881. https://doi.org/10.3390/en17040881