Multihousehold Load Forecasting Based on a Convolutional Neural Network Using Moment Information and Data Augmentation
Abstract
:1. Introduction
2. Problem Description
2.1. Multihousehold Load Forecasting Based on CNN
2.2. Effectiveness of CNN with Low-Shifting Data
2.3. Reordering Load Series Based on Tail Length for Reducing Shifting Variance
3. Proposed Multihousehold Load Forecasting Method
3.1. Tail Length Estimation of the PDF of Electricity Load
3.2. Reordering Input Load Series
3.3. Data Augmentation for Single-Household Load Series
3.4. Proposed Multihousehold Load Forecasting
4. Simulation Results
4.1. Data Description and CNN Architecture Modeling
4.2. Performance Evaluation Metrics
4.3. Single-Household Load Forecasting
4.4. Average Single-Household Load Forecasting
4.5. Comparison with Pooled and Data Augmentation Methodologies
4.6. Augmentation vs. Ordered Strategies
5. Discussion
6. Conclusions
- Multihousehold forecasting research is significant for residential living areas such as apartment blocks, community buildings, or even small towns where each household’s electricity consumption is different from others’;
- The electricity consumption characteristics of each household are explicitly demonstrated in the load series PDF. Based on tail information in each load series’ PDF, CMM ordering was developed;
- The proposed multihousehold load forecasting technique uses the CMM to index the order of the load series. The CMM produces an ordered load series by computing the overall moment measure of the PDF generated from the load series;
- The ordered multiple series maintain a minimum or constant shifting variance in the load-series dataset inputted to the CNN. A data augmentation method is used for each load series of the input multihousehold group to solve the existing data requirement issues of the CNN;
- A comparison of the average forecasting results for single households helped validate the efficacy of the proposed method;
- A higher load forecasting accuracy for both single and multiple households could be realized by utilizing the CMM, data augmentation, and CNN, which solves the peak load demand issue encountered in the residential sector.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Box, E.P.G.; Jenkins, G.M.; Gwilym, R.C.G.; Ljung, G.M. Time Series Analysis Forecasting and Control, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Gram-Hanssen, K. Standby consumption in households analyzed with a practice theory approach. J. Ind. Ecol. 2010, 14, 150–165. [Google Scholar] [CrossRef]
- Richardson, I.; Thomson, M.; Infield, D.; Clifford, C. Domestic electricity use: A high resolution energy demand model. Energy Build. 2010, 42, 1878–1887. [Google Scholar] [CrossRef]
- Stephen, B.; Tang, X.; Harvey, P.R.; Galloway, S.; Jennett, K.I. Incorporating Practice Theory in Sub-Profile Models for Short term aggregated Residential Load Forecasting. IEEE Trans. Smart Grid 2017, 8, 1591–1598. [Google Scholar] [CrossRef]
- Abbas, F.; Feng, D.; Habib, S.; Rahman, U.; Rasool, A.; Yan, Z. Short term residential load forecasting: An improved optimal nonlinear auto regressive (NARX) method with exponential weight decay function. Electronics 2018, 7, 432. [Google Scholar] [CrossRef]
- Welikala, S.; Dinesh, C.; Ekanayake, M.P.B.; Godaliyadda, R.I.; Ekanayake, J. Incorporating appliance usage patterns for non-Intursive load monitoring and load forecasting. IEEE Trans. Smart Grid 2017, 10, 448–461. [Google Scholar] [CrossRef]
- Cheng, C.; Sa-Ngasoongsong, A.; Beyca, O.; Le, T.; Yang, H.; Kong, Z.J.; Bukkapatnam, S.T.S. Time series forecasting for nonlinear and non-stationary processes: A review and comparative study. IIE Trans. 2015, 47, 1053–1071. [Google Scholar] [CrossRef]
- Xie, G.; Chen, X.; Weng, Y. An integrated Gaussian process modelling framework for residential load prediction. IEEE Trans. Power Syst. 2018, 33, 7238–7248. [Google Scholar] [CrossRef]
- Ghofrani, M.; Ghayekhloo, M.; Arabali, A.; Ghayekhloo, A. A hybrid short-term load forecasting with a new input selection framework. Energy 2015, 81, 777–786. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Gan, D.; Yang, J.; Kirschen, D.S.; Kang, C. Deep learning-based socio-demographic information identification from smart meter data. IEEE Trans. Smart Grid 2018, 10, 2593–2602. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, W.; Xu, R.; Black, J. A cluster-based method for calculating baselines for residential loads. IEEE Trans. Smart Grid 2015, 7, 2368–2377. [Google Scholar] [CrossRef]
- Zhong, S.; Tam, K.S. Hierarchical classification of load Profies based on their characteristics attributes in Frequecy domain. IEEE Trans. Power Syst. 2015, 30, 1–8. [Google Scholar] [CrossRef]
- Quilumba, F.L.; Lee, W.J.; Huang, H.; Wang, D.Y.; Szabados, R.L. Using smart meter data to improve the accuracy of intraday load forecasting considering customer behavior similarities. IEEE Trans. Smart Grid 2014, 6, 911–918. [Google Scholar] [CrossRef]
- Cecati, C.; Kolbusz, J.; Rozycki, P.; Siano, P.; Wilamowski, B.M. A novel RBP training algorithm for Shor-term electric load forecasting and comparative studies. IEEE Trans. Ind. Electron. 2015, 62, 6519–6529. [Google Scholar] [CrossRef]
- Ding, N.; Benoit, C.; Foggia, G.; Besanger, Y.; Wurtz, F. Neural network-based model design for short-term load forecast in distributed systems. IEEE Trans. Power Syst. 2016, 31, 72–81. [Google Scholar] [CrossRef]
- Shi, H.; Xu, M.; Li, R. Deep learning for household load forecasting-A novel pooling deep RNN. IEEE Trans. Smart Grid 2018, 9, 5271–5280. [Google Scholar] [CrossRef]
- Acharya, S.K.; Wi, Y.-M.; Lee, J. Short-term load forecasting for a single household based on convolution neural networks using data augmentation. Energies 2019, 12, 3560. [Google Scholar] [CrossRef]
- Claessencs, B.J.; Varancx, P.; Ruelens, F. Convolution Neural Network for Automatic State-Time Feature Extraction in Reinforcement Learning Applied to Residential Load Control. Trans. Smart Grid 2018, 9, 3259–3269. [Google Scholar] [CrossRef]
- Kong, W.; Dong, Z.Y.; Jia, Y.; Hill, D.J.; Xu, Y.; Zhang, Y. Short-Term Residential Load Forecasting based on LSTM Recurrent Neural Network. IEEE Trans. Smart Grid 2017, 10, 841–851. [Google Scholar] [CrossRef]
- Bessani, M.; Massignan, J.A.; Santos, T.M.; London, J.B., Jr.; Maciel, C.D. Multiple households very short-term load forecasting using bayesian networks. Electr. Power Syst. Res. 2020, 189, 106733. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, X.; Li, W.; Wang, L.; Yin, X.; Jia, L. Hybrid Multitask Multi-Information Fusion Deep Learning for Household Short-Term Load Forecasting. IEEE Trans. Smart Grid 2021, 12, 5362–5372. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y. Convolution Neural Networks for Images, Speech and Time Series; MIT Press: Cambridge, MA, USA, 1988. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the International Conference on Neural Information Processing Systems, Stateline, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Pedregosa, F.; Varoquax, G.; Gramfort, A. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Badeau, R.; Plumbley, M.D. Multichannel HR-NMF for modelling convolute mixtures of nonstationary signals in the time-frequency domain. In Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, USA, 20–23 October 2013; Volume 2013, pp. 1–4. [Google Scholar] [CrossRef]
- Jeong, J.; Kim, H. Multi-site photovoltaic forecasting exploiting space-time convolutional neural network. Energies 2019, 12, 4490. [Google Scholar] [CrossRef]
- Chen, W.; Xie, D.; Zhang, Y.; Pu, S. All you need is a few shifts: Designing efficient convolutional neural networks for image classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7234–7243. [Google Scholar] [CrossRef]
- Chaman, A.; Dokmanic, I. Truly shift-invariant convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 3772–3782. [Google Scholar] [CrossRef]
- Fan, G.-F.; Guo, Y.-H.; Zheng, J.-M.; Hong, W.-C. Application of the weighted K-nearest neighbor algorithm for short-term load forecasting. Energies 2019, 12, 916. [Google Scholar] [CrossRef]
- Ioffe, X.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Huang, Q.; Li, J.; Zhu, M. An Improved convolution neural network with load range discretization for probabilistic load forecasting. Energy 2020, 203, 117902. [Google Scholar] [CrossRef]
- Zhang, R. Making convolutional networks shift-invariant again. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 7324–7334. [Google Scholar]
- Kwac, J.; Flora, J.; Rajagopal, R. Household energy consumption segmentation using hourly data. IEEE Trans. Smart Grid 2015, 5, 420–430. [Google Scholar] [CrossRef]
- Marini, L.; Gutierrez-Polo, I.; Kooper, R.; Satheesan, S.P.; Burnette, M.; Lee, J.; Nicholson, T.; Zhao, Y.; McHenry, K.; Zhao, Y.; et al. Clowder: Open source data management for long tail data. In Proceedings of the Practice and Experience on Advanced Research Computing, Pittsburgh, PA, USA, 22–26 July 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Tensor Flow: Large Scale Machine Learning on Heterogeneous Distrusted Systems. arXiv 2016, arXiv:1603.04467.
- Acharya, S.K.; Wi, Y.-M.; Lee, J. Weather data mixing models for day-ahead PV forecasting in small-scale PV plants. Energies 2021, 14, 2998. [Google Scholar] [CrossRef]
- Pattanayek, S. Pro Deep Learning with TensorFlow; Apress: Bangalore, India, 2017. [Google Scholar]
Method | Hidden Layers | Hidden Nodes/Filters | No. of Epochs(Iteration) | Activation Function | Optimizer |
---|---|---|---|---|---|
CNN | 2 | 96 | 150 | ReLU | RMSprop |
LSTM | 2 | 72 | 300 | Sigmoid, tanh | RMSprop |
CNN–LSTM | 2 | 96 | 150 | ReLU | RMSprop |
Household | MAPE (%) | RMSE (kWh) | ||||
---|---|---|---|---|---|---|
LSTM | CNN | CNN–LSTM | LSTM | CNN | CNN–LSTM | |
1 | 18.45 | 22.55 | 23.18 | 0.071 | 0.093 | 0.090 |
2 | 17.43 | 16.49 | 18.32 | 0.106 | 0.105 | 0.122 |
3 | 21.11 | 27.72 | 27.14 | 0.078 | 0.104 | 0.103 |
4 | 32.18 | 23.67 | 26.10 | 0.109 | 0.108 | 0.142 |
5 | 32.81 | 20.66 | 28.10 | 0.164 | 0.136 | 0.162 |
6 | 18.56 | 26.10 | 25.74 | 0.125 | 0.155 | 0.152 |
7 | 45.10 | 32.82 | 37.85 | 0.130 | 0.111 | 0.116 |
8 | 29.37 | 27.53 | 28.23 | 0.137 | 0.135 | 0.179 |
9 | 35.27 | 31.15 | 32.06 | 0.256 | 0.208 | 0.213 |
10 | 22.79 | 22.63 | 22.83 | 0.208 | 0.207 | 0.208 |
Multihousehold Groups | MAPE (%) | RMSE (kWh) | ||||
---|---|---|---|---|---|---|
LSTM | CNN | CNN–LSTM | LSTM | CNN | CNN–LSTM | |
N = 10 | 25.64 | 22.33 | 26.95 | 0.145 | 0.137 | 0.147 |
N = 20 | 31.83 | 27.32 | 30.27 | 0.151 | 0.157 | 0.177 |
N = 30 | 34.49 | 27.67 | 30.37 | 0.176 | 0.148 | 0.161 |
N = 50 | 37.74 | 31.16 | 35.69 | 0.237 | 0.172 | 0.209 |
N = 80 | 36.75 | 28.39 | 34.82 | 0.202 | 0.155 | 0.201 |
N = 100 | 38.36 | 32.43 | 36.16 | 0.171 | 0.131 | 0.162 |
Multihousehold Groups | Season | MAPE (%) | RMSE (kWh) | ||||
---|---|---|---|---|---|---|---|
Pooled CNN | Augmented CNN | Proposed | Pooled CNN | Augmented CNN | Proposed | ||
N = 20 | Spring | 36.23 | 29.28 | 25.46 | 0.236 | 0.198 | 0.122 |
Summer | 39.25 | 31.26 | 28.13 | 0.245 | 0.204 | 0.111 | |
Autumn | 41.25 | 35.36 | 27.32 | 0.275 | 0.207 | 0.157 | |
Winter | 42.63 | 33.23 | 26.63 | 0.277 | 0.213 | 0.118 | |
Average | 39.84 | 32.28 | 26.82 | 0.258 | 0.205 | 0.127 | |
N = 50 | Spring | 34.23 | 29.12 | 23.38 | 0.244 | 0.191 | 0.092 |
Summer | 36.15 | 30.93 | 27.92 | 0.251 | 0.201 | 0.107 | |
Autumn | 39.37 | 33.72 | 31.16 | 0.297 | 0.218 | 0.172 | |
Winter | 38.42 | 29.82 | 23.69 | 0.281 | 0.209 | 0.095 | |
Average | 37.04 | 30.89 | 26.53 | 0.268 | 0.204 | 0.116 | |
N = 80 | Spring | 33.15 | 28.12 | 22.26 | 0.256 | 0.181 | 0.075 |
Summer | 36.52 | 33.85 | 28.39 | 0.274 | 0.193 | 0.155 | |
Autumn | 35.26 | 30.09 | 25.15 | 0.269 | 0.212 | 0.095 | |
Winter | 34.29 | 27.06 | 22.15 | 0.264 | 0.195 | 0.088 | |
Average | 34.80 | 29.78 | 24.48 | 0.265 | 0.195 | 0.103 | |
N = 100 | Spring | 32.25 | 29.65 | 27.75 | 0.233 | 0.171 | 0.082 |
Summer | 34.68 | 31.17 | 27.99 | 0.241 | 0.182 | 0.081 | |
Autumn | 36.16 | 33.46 | 31.11 | 0.278 | 0.196 | 0.121 | |
Winter | 35.17 | 31.16 | 28.30 | 0.271 | 0.193 | 0.098 | |
Average | 34.56 | 31.36 | 28.78 | 0.255 | 0.185 | 0.095 |
Method | MAPE (%) | RMSE (kWh) | ||||||
---|---|---|---|---|---|---|---|---|
N = 20 | N = 50 | N = 80 | N = 100 | N = 20 | N = 50 | N = 80 | N = 100 | |
Augmentation | 30.09 | 28.92 | 26.15 | 29.31 | 0.217 | 0.117 | 0.096 | 0.087 |
Only ordered | 33.25 | 32.48 | 31.36 | 34.21 | 0.184 | 0.164 | 0.144 | 0.126 |
Proposed | 28.13 | 27.16 | 24.29 | 26.99 | 0.111 | 0.110 | 0.095 | 0.082 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acharya, S.K.; Yu, H.; Wi, Y.-M.; Lee, J. Multihousehold Load Forecasting Based on a Convolutional Neural Network Using Moment Information and Data Augmentation. Energies 2024, 17, 902. https://doi.org/10.3390/en17040902
Acharya SK, Yu H, Wi Y-M, Lee J. Multihousehold Load Forecasting Based on a Convolutional Neural Network Using Moment Information and Data Augmentation. Energies. 2024; 17(4):902. https://doi.org/10.3390/en17040902
Chicago/Turabian StyleAcharya, Shree Krishna, Hwanuk Yu, Young-Min Wi, and Jaehee Lee. 2024. "Multihousehold Load Forecasting Based on a Convolutional Neural Network Using Moment Information and Data Augmentation" Energies 17, no. 4: 902. https://doi.org/10.3390/en17040902
APA StyleAcharya, S. K., Yu, H., Wi, Y. -M., & Lee, J. (2024). Multihousehold Load Forecasting Based on a Convolutional Neural Network Using Moment Information and Data Augmentation. Energies, 17(4), 902. https://doi.org/10.3390/en17040902