Influences of Average Temperature Difference and Measurement Period on Estimation of In Situ Thermal Transmittance of Building Exterior Walls Using the Average Method of ISO 9869-1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Wall
2.2. In Situ Measurement
2.3. Data Analysis
- (1)
- The duration of the test exceeds three days.
- (2)
- The R-value obtained at the end of the test did not deviate by more than ±5% from the value obtained a day prior.
- (3)
- The R-value obtained by analyzing the data during the first time period of INT (2 × DT/3) days did not deviate by more than ±5% from the value obtained during the data from the last time period of the same duration, where DT is the test duration in days and INT is an integer.
3. Results and Discussion
3.1. In Situ U-Value Obtained via Average Method
3.2. Influence on Convergence Characteristics
3.3. Influence on Accuracy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- ISO 6946:2017; Building Components and Building Elements—Thermal Resistance and Thermal Transmittance—Calculation Method. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/65708.html (accessed on 26 May 2023).
- Bienvenido-Huertas, D.; Moyano, J.; Marín, D.; Fresco-Contreras, R. Review of in situ methods for assessing the thermal transmittance of walls. Renew. Sustain. Energy Rev. 2019, 102, 356–371. [Google Scholar] [CrossRef]
- Teni, M.; Krstić, H.; Kosiński, P. Review and comparison of current experimental approaches for in-situ measurements of building walls thermal transmittance. Energy Build. 2019, 203, 109417. [Google Scholar] [CrossRef]
- Soares, N.; Martins, C.; Gonçalves, M.; Santos, P.; Silva, L.S.; Costa, J.J. Laboratory and in-situ non-destructive methods to evaluate the thermal transmittance and behavior of walls, windows, and construction elements with innovative materials: A review. Energy Build. 2019, 182, 88–110. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Z.; Wu, T.V.; Sempey, A. In situ methodology for thermal performance evaluation of building: A review. Int. J. Therm. Sci. 2022, 181, 107686. [Google Scholar] [CrossRef]
- Nardi, I.; Lucchi, E. In situ thermal transmittance assessment of the building envelope: Practical advice and outlooks for standard and innovative procedures. Energies 2023, 16, 3319. [Google Scholar] [CrossRef]
- ISO 9869-1:2014; Building Elements—In-Situ Measurement of Thermal Resistance and Thermal Transmittance—Part 1: Heat Flow Meter Method. ISO: Geneva, Switzerland, 2014. Available online: https://www.iso.org/standard/59697.html (accessed on 26 May 2023).
- Atsonios, I.A.; Mandilaras, I.D.; Kontogeorgos, D.A.; Founti, M.A. A comparative assessment of the standardized methods for the in–situ measurement of the thermal resistance of building walls. Energy Build. 2017, 154, 198–206. [Google Scholar] [CrossRef]
- Gaspar, K.; Casals, M.; Gangolells, M. A comparison of standardized calculation methods for in situ measurements of façades U-value. Energy Build. 2016, 130, 592–599. [Google Scholar] [CrossRef]
- Deconinck, A.H.; Roels, S. Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements. Energy Build. 2016, 130, 309–320. [Google Scholar] [CrossRef]
- Gaspar, K.; Casals, M.; Gangolells, M. Review of criteria for determining HFM minimum test duration. Energy Build. 2018, 176, 360–370. [Google Scholar] [CrossRef]
- Flores Larsen, S.; Silvana, M.; Castro, N.; González, S. Comparison of four in-situ methods for the determination of walls thermal resistance in free-running buildings with alternating heat flux in different seasons. Constr. Build. Mater. 2019, 224, 455–473. [Google Scholar] [CrossRef]
- Wang, C.; Fu, X.; Tao, X.; Li, X.; An, J. A novel response factor-based method for in situ measurement of wall thermal resistance. Buildings 2023, 13, 1986. [Google Scholar] [CrossRef]
- Rasooli, A.; Itard, L. In-situ characterization of walls’ thermal resistance: An extension to the ISO 9869 standard method. Energy Build. 2018, 179, 374–383. [Google Scholar] [CrossRef]
- Shi, X.; Gong, G.; Peng, P.; Liu, Y. Investigation of a new kind of in-situ measurement method of thermal resistance of building envelope. Energy Build. 2022, 258, 111803. [Google Scholar] [CrossRef]
- Cesaratto, P.G.; De Carli, M.; Marinetti, S. Effect of different parameters on the in situ thermal conductance evaluation. Energy Build. 2011, 43, 1792–1801. [Google Scholar] [CrossRef]
- Desogus, G.; Mura, S.; Ricciu, R. Comparing different approaches to in situ measurement of building components thermal resistance. Energy Build. 2011, 43, 2613–2620. [Google Scholar] [CrossRef]
- Trethowen, H. Measurement errors with surface-mounted heat flux sensors. Build. Environ. 1986, 21, 41–56. [Google Scholar] [CrossRef]
- Peng, C.; Wu, Z. In situ measuring and evaluating the thermal resistance of building construction. Energy Build. 2008, 40, 2076–2082. [Google Scholar] [CrossRef]
- Cucumo, M.; De Rosa, A.; Ferraro, V.; Kaliakatsos, D.; Marinelli, V. A method for the experimental evaluation in situ of the wall conductance. Energy Build. 2006, 38, 238–244. [Google Scholar] [CrossRef]
- Cucumo, M.; Ferraro, V.; Kaliakatsos, D.; Mele, M. On the distortion of thermal flux and of surface temperature induced by heat flux sensors positioned on the inner surface of buildings. Energy Build. 2018, 158, 677–683. [Google Scholar] [CrossRef]
- Ficco, G.; Iannetta, F.; Ianniello, E.; d’Ambrosio Alfano, F.R.; Dell’Isola, M. U-value in situ measurement for energy diagnosis of existing buildings. Energy Build. 2015, 104, 108–121. [Google Scholar] [CrossRef]
- Meng, X.; Yan, B.; Gao, Y.; Wang, J.; Zhang, W.; Long, E. Factors affecting the in situ measurement accuracy of the wall heat transfer coefficient using the heat flow meter method. Energy Build. 2015, 86, 754–765. [Google Scholar] [CrossRef]
- Gaspar, K.; Casals, M.; Gangolells, M. Influence of HFM thermal contact on the accuracy of in situ measurements of façades’ U-value in operational stage. Appl. Sci. 2021, 11, 979. [Google Scholar] [CrossRef]
- Zalewski, L.; Lassue, S.; Rousse, D.; Boukhalfa, K. Experimental and numerical characterization of thermal bridges in prefabricated building walls. Energy Convers. Manag. 2010, 51, 2869–2877. [Google Scholar] [CrossRef]
- Guattari, C.; Evangelisti, L.; Gori, P.; Asdrubali, F. Influence of internal heat sources on thermal resistance evaluation through the heat flow meter method. Energy Build. 2017, 135, 187–200. [Google Scholar] [CrossRef]
- Gaspar, K.; Casals, M.; Gangolells, M. In situ measurement of façades with a low U-value: Avoiding deviations. Energy Build. 2018, 170, 61–73. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Castell, A.; Medrano, M.; Martorell, I.; Perez, G.; Fernandez, I. Experimental study on the performance of insulation materials in Mediterranean construction. Energy Build. 2010, 42, 630–636. [Google Scholar] [CrossRef]
- Gori, V.; Elwell, C.A. Estimation of thermophysical properties from in-situ measurements in all seasons: Quantifying and reducing errors using dynamic grey-box methods. Energy Build. 2018, 167, 290–300. [Google Scholar] [CrossRef]
- Choi, D.S.; Ko, M.J. Analysis of convergence characteristics of average method regulated by ISO 9869-1 for evaluating in situ thermal resistance and thermal transmittance of opaque exterior walls. Energies 2019, 12, 1989. [Google Scholar] [CrossRef]
- Choi, D.S.; Lee, Y.J.; Moon, J.H.; Kim, Y.S.; Ko, M.J. Estimating in-situ R-value of highly insulated building walls based on the measurement of temperature and heat flux inside the wall. Energies 2023, 16, 5714. [Google Scholar] [CrossRef]
- Asdrubali, F.; D’Alessandro, F.; Baldinelli, G.; Bianchi, F. Evaluating in situ thermal transmittance of green buildings masonries—A case study. Case Stud. Constr. Mater. 2014, 1, 53–59. [Google Scholar] [CrossRef]
- Samardzioska, T.; Apostolska, R. Measurement of heat-flux of new type façade walls. Sustainability 2016, 8, 1031. [Google Scholar] [CrossRef]
- O’Hegarty, R.; Kinnane, O.; Lennon, D.; Colclough, S. In-situ U-value monitoring of highly insulated building envelopes: Review and experimental investigation. Energy Build. 2021, 252, 111447. [Google Scholar] [CrossRef]
- Walker, R.; Pavía, S. Thermal performance of a selection of insulation materials suitable for historic buildings. Build. Environ. 2015, 94, 155–165. [Google Scholar] [CrossRef]
- Ahmad, A.; Maslehuddin, M.; Al-Hadhrami, L.M. In situ measurement of thermal transmittance and thermal resistance of hollow reinforced precast concrete walls. Energy Build. 2014, 84, 132–141. [Google Scholar] [CrossRef]
- Wang, F.; Wang, D.; Wang, X.; Yao, J. A data analysis method for detecting wall thermal resistance considering wind velocity in situ. Energy Build. 2010, 42, 1647–1653. [Google Scholar] [CrossRef]
- Litti, G.; Khoshdel, S.; Audenaert, A.; Braet, J. Hygrothermal performance evaluation of traditional brick masonry in historic buildings. Energy Build. 2015, 105, 393–411. [Google Scholar] [CrossRef]
- Björk, F.; Enochsson, T. Properties of thermal insulation materials during extreme environment changes. Constr. Build. Mater. 2009, 23, 2189–2195. [Google Scholar] [CrossRef]
- Evangelisti, L.; Guattari, C.; Gori, P.; De Lieto Vollaro, R.; Asdrubali, F. Experimental investigation of the influence of convective and radiative heat transfers on thermal transmittance measurements. Int. Commun. Heat Mass Transf. 2016, 78, 214–223. [Google Scholar] [CrossRef]
- Evangelisti, L.; Guattari, C.; Gori, P.; Bianchi, F. Heat transfer study of external convective and radiative coefficients for building applications. Energy Build. 2017, 151, 429–438. [Google Scholar] [CrossRef]
- Evangelisti, L.; Guattari, C.; Asdrubali, F.; De Lieto Vollaro, R. In situ thermal characterization of existing buildings aiming at NZEB standard: A methodological approach. Dev. Built Environ. 2020, 2, 100008. [Google Scholar] [CrossRef]
- Bienvenido-Huertas, D.; Bermúdez, J.; Moyano, J.; Marín, D. Influence of ICHTC correlations on the thermal characterization of façades using the quantitative internal infrared thermography method. Build. Environ. 2019, 149, 512–525. [Google Scholar] [CrossRef]
- Nowak, H.; Nowak, Ł. Non-destructive possibilities of thermal performance evaluation of the external walls. Materials 2021, 14, 7438. [Google Scholar] [CrossRef] [PubMed]
- Szagri, D.; Nagy, B. Experimental and numerical hygrothermal analysis of a refurbished double-skin flat roof. Case Stud. Therm. Eng. 2021, 25, 100941. [Google Scholar] [CrossRef]
- Orosz, M.; Nagy, B.; Tóth, E. Hygrothermal simulations and In-situ measurements of ultra-lightweight concrete panels. Pollack Period. 2017, 12, 69–83. [Google Scholar] [CrossRef]
- D’Orazio, M.; Maracchini, G. An experimental investigation on the indoor hygrothermal environment of a reinforced-EPS based temporary housing solution. Energy Build. 2019, 204, 109500. [Google Scholar] [CrossRef]
- Biswas, K.; Jogineedi, R.; Desjarlais, A. Experimental and numerical examination of naturally-aged foam-VIP composites. Energies 2019, 12, 2539. [Google Scholar] [CrossRef]
- KS L 9016; Test Methods for Thermal Transmission Properties of Thermal Insulations. Korean Standards Association: Seoul, Republic of Korea, 2022. Available online: https://www.kssn.net/search/stddetail.do?itemNo=K001010140629 (accessed on 14 February 2024).
- Evangelisti, L.; Guattari, C.; De Lieto Vollaro, E.; Asdrubali, F. Convergence criteria analysis for thermal conductance measurements of building walls: A case study. Case Stud. Therm. Eng. 2023, 49, 103249. [Google Scholar] [CrossRef]
Layer No. | Material Layer (Inside–Outside) | Thickness (m) | Thermal Conductivity (W/m·K) | Thermal Resistance (m2·K/W) |
---|---|---|---|---|
1 | Interior surface | 0.110 | ||
2 | Wallpaper | 0.005 | 0.170 | 0.029 |
3 | Gypsum board | 0.020 | 0.180 | 0.111 |
4 | Polyisocyanurate (PIR) insulation | 0.130 | 0.020 | 6.500 |
5 | Reinforced concrete | 0.200 | 2.300 | 0.087 |
6 | Cement mortar | 0.010 | 1.400 | 0.007 |
5 | Exterior surface | 0.043 |
Type of Equipment | Model and Manufacturer | Range | Accuracy |
---|---|---|---|
Temperature sensor | TC-PVC-T, Omega engineering Inc., Norwalk, CT, USA | −250–350 °C | ±0.5 °C |
Heat flux sensor | HFP01, Hukseflux, Delft, The Netherlands | ±2000 W/m2 | ±5% |
Data logger | GL-820, Graphtec America, Inc., Irvine, CA, USA | 20–50,000 mV | ±0.1% of reading |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-J.; Moon, J.-H.; Choi, D.-S.; Ko, M.-J. Influences of Average Temperature Difference and Measurement Period on Estimation of In Situ Thermal Transmittance of Building Exterior Walls Using the Average Method of ISO 9869-1. Energies 2024, 17, 1177. https://doi.org/10.3390/en17051177
Lee Y-J, Moon J-H, Choi D-S, Ko M-J. Influences of Average Temperature Difference and Measurement Period on Estimation of In Situ Thermal Transmittance of Building Exterior Walls Using the Average Method of ISO 9869-1. Energies. 2024; 17(5):1177. https://doi.org/10.3390/en17051177
Chicago/Turabian StyleLee, Ye-Ji, Ji-Hoon Moon, Doo-Sung Choi, and Myeong-Jin Ko. 2024. "Influences of Average Temperature Difference and Measurement Period on Estimation of In Situ Thermal Transmittance of Building Exterior Walls Using the Average Method of ISO 9869-1" Energies 17, no. 5: 1177. https://doi.org/10.3390/en17051177
APA StyleLee, Y. -J., Moon, J. -H., Choi, D. -S., & Ko, M. -J. (2024). Influences of Average Temperature Difference and Measurement Period on Estimation of In Situ Thermal Transmittance of Building Exterior Walls Using the Average Method of ISO 9869-1. Energies, 17(5), 1177. https://doi.org/10.3390/en17051177