Demand-Side Management Optimization Using Genetic Algorithms: A Case Study
Abstract
:1. Introduction
1.1. General Considerations
1.2. Literature Review
1.3. Motivation and Contributions
2. Problem Formulation
Federal University of Pará: Case Study
3. Methodology
- i is the month of the year.
- Dc,i is the contracted demand agreed in the contract for the i-th month.
- Dm,i is the measured demand, the maximum active power measured in the i-th month.
- Ti is the demand tariff in the i-th month. It usually has two constant values; the first one is constant between January and July and the second from August to December, because the tariff changes every year in August.
- k1,i is the correction factor when all taxes are applied to the final price.
- k2,i is the correction factor when all taxes but icms are applied to the final price.
- pis and cofins are the taxes called “Social Integration Program” and “Contribution for Social Security Financing”, respectively. The tax rates used were collected from the energy bills.
- icms is a tax called “Tax on Circulation of Goods and Provision of Services”. It is not applied to idle demand, i.e., the difference between contracted and measured demand when the measured one is the smallest.
- TR is the correction factor for taxes retained on their sources, like income tax or base values for pis, cofins, and icms. It mainly reduces the final energy price.
- Nv is the number of variables of the function that is being optimized;
- Ncd is the number of different contracted demands in a single year.
- wA is the chromosome value for parent A;
- wB is the chromosome value for parent B;
- wC is the chromosome value for child C.
4. Results and Discussion
5. Performance Analysis
- CPU—Intel Core i7-5500U 2.4 GHz.
- GPU—Nvidia GeForce 920 M.
6. Conclusions
7. Future Research Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
EE | Energy efficiency |
GA | Genetic algorithms |
IEA | International Energy Agency |
LD | Linear dichroism |
DSM | Demand-side management |
DR | Demand response |
FP | Fixed price |
TOU | Time of use |
CPP | Critical peak pricing |
CEAMAZON | Center of Excellence in Energy Efficiency in the Amazon |
UFPA | Federal University of Pará |
CD | Contracted demand |
References
- Perspectives for the Energy Transition: The Role of Energy Efficiency—Analysis. IEA. Available online: https://www.iea.org/reports/the-role-of-energy-efficiency (accessed on 17 November 2022).
- Guelpa, E.; Verda, V. Demand response and other demand side management techniques for district heating: A review. Energy 2021, 219, 11944. [Google Scholar] [CrossRef]
- Eid, C.; Koliou, E.; Valles, M.; Reneses, J.; Hakvoort, R. Time-based pricing and electricity demand response: Existing barriers and next steps. Util. Policy 2016, 40, 15–25. [Google Scholar] [CrossRef]
- Finn, P.; Fitzpatrick, C. Demand side management of industrial electricity consumption: Promoting the use of renewable energy through real-time pricing. Appl. Energy 2014, 113, 11–21. [Google Scholar] [CrossRef]
- Chuang, A.; Gellings, C. Demand-Side Integration in a Restructured Electric Power Industry. CIGRE Gen. Sess, Paris 10. Available online: https://scholar.google.com/scholar_lookup?title=Demand-side%20Integration%20in%20a%20Restructured%20Electric%20Power%20Industry&author=A.%20Chuang&publication_year=2008 (accessed on 22 January 2024).
- Albadi, M.H.; El-Saadany, E.F. A summary of demand response in electricity markets. Electr. Power Syst. Res. 2008, 78, 1989–1996. [Google Scholar] [CrossRef]
- Torriti, J.; Hassan, M.G.; Leach, M. Demand response experience in Europe: Policies, programmes and implementation. Energy 2010, 35, 1575–1583. [Google Scholar] [CrossRef]
- Gellings, C.W. The concept of demand-side management for electric utilities. Proc. IEEE 1985, 73, 1468–1470. [Google Scholar] [CrossRef]
- Behrangrad, M. A review of demand side management business models in the electricity market. Renew. Sustain. Energy Rev. 2015, 47, 270–283. [Google Scholar] [CrossRef]
- Meyabadi, A.F.; Deihimi, M.H. A review of demand-side management: Reconsidering theoretical framework. Renew. Sustain. Energy Rev. 2017, 80, 367–379. [Google Scholar] [CrossRef]
- Steen, D.; Tuan, L.A.; Carlson, O. Effects of Network Tariffs on Residential Distribution Systems and Price-Responsive Customers under Hourly Electricity Pricing. IEEE Trans. Smart Grid 2016, 7, 617–626. [Google Scholar] [CrossRef]
- Repositório da Universidade de Lisboa: Evaluation of the Potential of Demand Side Management Strategies in PV System in Rural Areas. Available online: https://repositorio.ul.pt/handle/10451/30607 (accessed on 17 November 2022).
- Steen, D.; Le, T.; Bertling, L. Price-based demand-side management for reducing peak demand in electrical distribution systems—With examples from Gothenburg. In Proceedings of the Nordic Conference Electricity Distribution System Management and Development (NORDAC), Espoo, Finland, 10–11 September 2012; pp. 1–11. [Google Scholar]
- Hong, Y.-Y.; Yo, P.-S. Novel Genetic Algorithm-Based Energy Management in a Factory Power System Considering Uncertain Photovoltaic Energies. Appl. Sci. 2017, 7, 438. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Carli, R.; Parisio, A.; Dotoli, M. Robust Decentralized Charge Control of Electric Vehicles under Uncertainty on Inelastic Demand and Energy Pricing. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14 October 2020; pp. 1834–1839. [Google Scholar] [CrossRef]
- Benefits of Demand Response in Electricity Markets and Recommendations for Achieving Them. A Report to the United States Congress Pursuant to Section 1252 of the Energy Policy Act of 2005 (February 2006). Available online: https://www.energy.gov/oe/downloads/benefits-demand-response-electricity-markets-and-recommendations-achieving-them-report (accessed on 21 November 2022).
- Koliou, E. Demand Response Policies for the Implementation of Smart Grids. 2016. Available online: https://repository.tudelft.nl/islandora/object/uuid%3Ae0f7045a-8cbf-42fb-8ba2-4fb15514f197 (accessed on 21 November 2022).
- Koliou, E.; Eid, C.; Hakvoort, R.A. Development of Demand Side Response in liberalized electricity markets: Policies for effective market design in Europe. In Proceedings of the 2013 10th International Conference on the European Energy Market (EEM), Stockholm, Sweden, 27–31 May 2013; pp. 1–8. [Google Scholar] [CrossRef]
- Opoku, R.; Obeng, G.Y.; Osei, L.K.; Kizito, J.P. Optimization of industrial energy consumption for sustainability using time-series regression and gradient descent algorithm based on historical electricity consumption data. Sustain. Anal. Model. 2022, 2, 100004. [Google Scholar] [CrossRef]
- Javaid, N.; Ahmed, A.; Iqbal, S.; Ashraf, M. Day Ahead Real Time Pricing and Critical Peak Pricing Based Power Scheduling for Smart Homes with Different Duty Cycles. Energies 2018, 11, 1464. [Google Scholar] [CrossRef]
- Mohsenian-Rad, A.-H.; Wong, V.W.S.; Jatskevich, J.; Schober, R. Optimal and autonomous incentive-based energy consumption scheduling algorithm for smart grid. In Proceedings of the 2010 Innovative Smart Grid Technologies (ISGT), Gaithersburg, MD, USA, 19–21 January 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Aslam, S.; Iqbal, Z.; Javaid, N.; Khan, Z.A.; Aurangzeb, K.; Haider, S.I. Towards Efficient Energy Management of Smart Buildings Exploiting Heuristic Optimization with Real Time and Critical Peak Pricing Schemes. Energies 2017, 10, 65. [Google Scholar] [CrossRef]
- Logenthiran, T.; Srinivasan, D.; Shun, T.Z. Demand Side Management in Smart Grid Using Heuristic Optimization. IEEE Trans. Smart Grid 2012, 3, 1244–1252. [Google Scholar] [CrossRef]
- Bharathi, C.; Rekha, D.; Vijayakumar, V. Genetic Algorithm Based Demand Side Management for Smart Grid. Wirel. Pers. Commun. 2017, 93, 481–502. [Google Scholar] [CrossRef]
- Talha, M.; Saeed, M.S.; Mohiuddin, G.; Ahmad, M.; Nazar, M.J.; Javaid, N. Energy Optimization in Home Energy Management System Using Artificial Fish Swarm Algorithm and Genetic Algorithm. In Advances in Intelligent Networking and Collaborative Systems; Springer: Cham, Switzerland, 2018; pp. 203–213. [Google Scholar] [CrossRef]
- Khan, A.; Mushtaq, N.; Faraz, S.H.; Khan, O.A.; Sarwar, M.A.; Javaid, N. Genetic Algorithm and Earthworm Optimization Algorithm for Energy Management in Smart Grid. In Advances on P2P, Parallel, Grid, Cloud and Internet Computing; Springer Nature: Cham, Switzerland, 2018; pp. 447–459. [Google Scholar] [CrossRef]
- Azadeh, A.; Ghaderi, S.F.; Tarverdian, S.; Saberi, M. Integration of Artificial Neural Networks and Genetic Algorithm to Predict Electrical Energy consumption. In Proceedings of the IECON 2006—32nd Annual Conference on IEEE Industrial Electronics, Paris, France, 7–10 November 2006; pp. 2552–2557. [Google Scholar] [CrossRef]
- Liao, J.; Yu, H.; Jiang, W.; Lin, R.; Wang, J. Optimal resource allocation method for energy harvesting based underlay Cognitive Radio networks. PLoS ONE 2023, 18, e0279886. [Google Scholar] [CrossRef]
- Hu, Y.-C. A genetic-algorithm-based remnant grey prediction model for energy demand forecasting. PLoS ONE 2017, 12, e0185478. [Google Scholar] [CrossRef]
- Ramezanpour, M.R.; Farajpour, M. Application of artificial neural networks and genetic algorithm to predict and optimize greenhouse banana fruit yield through nitrogen, potassium and magnesium. PLoS ONE 2022, 17, e0264040. [Google Scholar] [CrossRef]
- Tabora, J.M.; Paixão Júnior, U.C.; Rodrigues, C.E.M.; Bezerra, U.H.; Tostes, M.E.D.L.; Albuquerque, B.S.D.; Nascimento, A.A.D. Hybrid System Assessment in On-Grid and Off-Grid Conditions: A Technical and Economical Approach. Energies 2021, 14, 5284. [Google Scholar] [CrossRef]
- Tabora, J.M.; Carlos Eduardo, M.R.; Soares, T.M.; do Nascimento, A.A.; Paixão, U.J. Power Quality Assessment in E-Bus Charging Cycle. CBQEE 2021, 1, 135822. [Google Scholar] [CrossRef]
- Tabora, J.M.; Correa dos Santos Júnior, L.; Ortiz de Matos, E.; Mota Soares, T.; Arrifano Manito, A.R.; de Lima Tostes, M.E.; Holanda Bezerra, U. Exploring the Effects of Voltage Variation and Load on the Electrical and Thermal Performance of Permanent-Magnet Synchronous Motors. Energies 2024, 17, 8. [Google Scholar] [CrossRef]
- Mendes, N.; Tabora, J.M.; de Lima Tostes, M.E.; de Matos, E.O.; Bezerra, U.H.; Moura, P.; de Almeida, A.T. ANN for Motor Loading Diagnosis under Voltage Variation Conditions. In Proceedings of the 2023 IEEE Kansas Power and Energy Conference (KPEC), Manhattan, KS, USA, 24–25April 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Tabora, J.M.; Júnior, L.C.D.S.; de Lima Tostes, M.E.; de Matos, E.O.; Bezerra, U.H. Efficient Electric Motors Performance under Voltage Variation Conditions. In Proceedings of the E2023 IEEE Kansas Power and Energy Conference (KPEC), Manhattan, KS, USA, 24–25April 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Tabora, J.M.; Júnior, L.C.D.S.; de Lima Tostes, M.E.; de Matos, E.O.; Bezerra, U.H. Electric Motor Degradation Indicator in Non-Ideal Supply Conditions. In Proceedings of the 2023 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), Cali, Colombia, 5–6 October 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Tabora, J.M.; Andrade, V.B.; Lima, C.M.; de Moura Carvalho, C.C.M.; Paixão, U.J.; Da Silva, J.C.A.; Bezerra, U.H. Induction Motors Assessment: A Substitution Case Analysis. In Proceedings of the 2021 14th IEEE International Conference on Industry Applications (INDUSCON), São Paulo, Brazil, 16–18 August 2021; pp. 783–789. [Google Scholar] [CrossRef]
- Tabora, J.M.; Tshoombe, B.K.; Fonseca, W.D.S.; Tostes, M.E.D.L.; Matos, E.O.D.; Bezerra, U.H.; Silva, M.D.O.E. Virtual Modeling and Experimental Validation of the Line-Start Permanent Magnet Motor in the Presence of Harmonics. Energies 2022, 15, 8603. [Google Scholar] [CrossRef]
- Modelagem e Validação de um Sistema Multiplataforma Para Gerenciamento de Energia Elétrica—SISGEE. Galoá Proceedings. Available online: https://proceedings.science/sbai-2019/papers/modelagem-e-validacao-de-um-sistema-multiplataforma-para-gerenciamento-de-energia-eletrica—–sisgee-3 (accessed on 21 November 2022).
- Memon, M.; Siddique, M.; Mekhilef, S.; Mubin, M. Asynchronous Particle Swarm Optimization-Genetic Algorithm (APSO-GA) Based Selective Harmonic Elimination in a Cascaded H-Bridge Multilevel Inverter. IEEE Trans. Ind. Electron. 2022, 69, 1477–1487. [Google Scholar] [CrossRef]
- Resolução Normativa ANEEL No 1.000, de 7 de Dezembro de 2021. Available online: https://www2.aneel.gov.br/cedoc/ren20211000.html (accessed on 16 November 2022).
- Procedimentos de Regulação Tarifária—Proret—Módulo 7—Estrutura Tarifária das Concessionárias de Distribuição de Energia Elétrica—Submódulo 7.1—Procedimentos Gerais. Available online: https://www.gov.br/aneel/pt-br/centrais-de-conteudos/procedimentos-regulatorios/proret (accessed on 16 November 2022).
- Perguntas Frequentes—Ministério de Minas e Energia. Available online: http://antigo.mme.gov.br/web/guest/perguntas-frequentes/secretarias/energia-eletrica/acoes-e-programas/acoes (accessed on 16 November 2022).
Method | Execution Time | |||
---|---|---|---|---|
2017 | 2018 | 2019 | 2022 | |
GA | 0.369 s | 0.324 s | 0.491 s | 0.363 s |
SA | 1.076 s | 0.820 s | 0.872 s | 1.139 s |
NM | 0.035 s | 0.032 s | 0.041 s | 0.075 s |
Method | Cost | |||
---|---|---|---|---|
2017 | 2018 | 2019 | 2022 | |
GA | 1.983 mi BRL | 2.264 mi BRL | 2.457 mi BRL | 2.454 mi BRL |
SA | 1.982 mi BRL | 2.264 mi BRL | 2.455 mi BRL | 2.449 mi BRL |
NM | 2.057 mi BRL | 2.367 mi BRL | 2.484 mi BRL | 2.509 mi BRL |
Method | Execution Time | |||
---|---|---|---|---|
2017 | 2018 | 2019 | 2022 | |
GA | 1.052 s | 0.805 s | 1.405 s | 1.562 s |
SA | 1.684 s | 1.458 s | 1.522 s | 1.713 s |
NM | 0.086 s | 0.071 s | 0.093 s | 0.088 s |
Method | Cost | |||
---|---|---|---|---|
2017 | 2018 | 2019 | 2022 | |
GA | 1.052 mi BRL | 2.256 mi BRL | 2.451 mi BRL | 2.404 mi BRL |
SA | 1.970 mi BRL | 2.251 mi BRL | 2.449 mi BRL | 2.404 mi BRL |
NM | 2.103 mi BRL | 2.395 mi BRL | 2.543 mi BRL | 2.451 mi BRL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos Junior, L.C.; Tabora, J.M.; Reis, J.; Andrade, V.; Carvalho, C.; Manito, A.; Tostes, M.; Matos, E.; Bezerra, U. Demand-Side Management Optimization Using Genetic Algorithms: A Case Study. Energies 2024, 17, 1463. https://doi.org/10.3390/en17061463
dos Santos Junior LC, Tabora JM, Reis J, Andrade V, Carvalho C, Manito A, Tostes M, Matos E, Bezerra U. Demand-Side Management Optimization Using Genetic Algorithms: A Case Study. Energies. 2024; 17(6):1463. https://doi.org/10.3390/en17061463
Chicago/Turabian Styledos Santos Junior, Lauro Correa, Jonathan Muñoz Tabora, Josivan Reis, Vinicius Andrade, Carminda Carvalho, Allan Manito, Maria Tostes, Edson Matos, and Ubiratan Bezerra. 2024. "Demand-Side Management Optimization Using Genetic Algorithms: A Case Study" Energies 17, no. 6: 1463. https://doi.org/10.3390/en17061463