Modelling and Design of a Novel Integrated Heat Exchange Reactor for Oxy-Fuel Combustion Flue Gas Deoxygenation
Abstract
:1. Introduction
2. One-Dimensional Transient Reduced-Order Reactor Model
2.1. Governing Equations
2.2. Solution Structure
2.3. Reaction Kinetics
3. Design of the PCHE
3.1. Process Constraints
3.2. Base Case Geometry and Operating Conditions
3.3. Comparison of 1D ROM to 3D Simulations Using the Base Geometry Design and Five Reaction Stages
3.4. Impact of the Number of Reaction Stages on PCHE Design
3.5. Heat Exchanger Design for the Multi-Stage Packed Bed Designs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
ac | Specific surface area of the particle [m2/m3] |
cg | Gas specific heat capacity [J/(kg·K)] |
dh | Flow channel hydraulic diameter [m] |
dsv | Sauter mean diameter of the particle [m] |
h | Convective heat transfer coefficient [W/(m2·K)] |
k | Thermal conductivity [W/(m·K)] |
km | Mass transfer coefficient [m/s] |
Mass flow rate [kg/s] | |
qR | Heat of reaction [W/m3] |
t | Time [s] |
u | Superficial velocity [m/s] |
Ac | Cross-sectional area of flow channel [m2] |
D | Mass diffusivity [m2/s] |
Deff | Axial dispersion coefficient [m2/s] |
P | Pressure [Pa] |
H | Enthalpy [J/kg] |
Pr | [-] |
R | Rate of reaction [1/s] |
Re | [-] |
Rep | [-] |
Nu | [-] |
Sc | [-] |
Sh | [-] |
T | Temperature [K] |
Y | Mass fraction [-] |
Bed void fraction [-] | |
Dynamic viscosity [Pa·s] | |
Density [kg/m3] | |
Subscripts | |
g | Gas phase |
s | Solid phase |
References
- Zhang, Y.; Xie, Y.; Zhu, Y.; Lu, X.; Ji, X. Energy consumption analysis for CO2 separation from gas mixtures with liquid absorbents. Energy Procedia 2014, 61, 2695–2698. [Google Scholar] [CrossRef]
- Zheng, L. Oxy-Fuel Combustion for Power Generation and Carbon Dioxide (CO2) Capture; Woodhead Pub: Philadelphia, PA, USA, 2011. [Google Scholar]
- Hetland, J. Flue gas processing: Strategies for water management. Water removal and moisture control via dew point modelling. In Proceedings of the IEA Greenhouse Gas R & D Programme (Ieaghg), Ponferrada, Spain, 9–13 September 2013. [Google Scholar]
- de Visser, E.; Hendriks, C. DYNAMIS CO2 Quality Recommendations; DYNAMIS Consortium: Brussels, Belgium, 2007. [Google Scholar]
- Isothermal Reactor. Linde Engineering. Available online: https://www.linde-engineering.com/en/process-plants/hydrogen_and_synthesis_gas_plants/gas_generation/isothermal_reactor/index.html#:~:text=The%20Linde%20isothermal%20reactor%20is,of%20a%20straight%20tube%20reactor (accessed on 12 December 2023).
- Turton, R.; Shaeiwitz, J.A. Chemical Process Equipment Design; Prentice Hall: Boston, MA, USA, 2017. [Google Scholar]
- Anxionnaz, Z.; Cabassud, M.; Gourdon, C.; Tochon, P. Heat exchanger/reactors (HEX reactors): Concepts, technologies: State-of-the-art. Chem. Eng. Process. 2008, 47, 2029–2050. [Google Scholar] [CrossRef]
- Heat Exchangers for Chemical Processing Industries. Available online: https://www.heatric.com/heat-exchangers/industry-applications/chemical-processing-industry/ (accessed on 3 July 2023).
- Characteristics of Diffusion-Bonded Heat Exchangers. Available online: https://www.heatric.com/heat-exchangers/features/characteristics/ (accessed on 1 March 2024).
- Chung, S.; Lee, S.W.; Kim, N.; Shin, S.M.; Kim, M.H.; Jo, H. Experimental study of printed-circuit heat exchangers with airfoil and straight channels for optimized recuperators in nitrogen Brayton cycle. Appl. Therm. Eng. 2023, 218, 119348. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, G. 4E multi-objective optimization of cold electricity co-generation system based on supercritical CO2 Brayton cycle. Energy Convers. Manag. 2023, 283, 116952. [Google Scholar] [CrossRef]
- Shin, C.W.; No, H.C. Experimental study for pressure drop and flow instability of two-phase flow in the PCHE-type steam generator for SMRs. Nucl. Eng. Des. 2017, 318, 109–118. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, L.; Xuan, W.; Chen, T.; Li, Y.; Tian, H.; Shu, G. Analysis of printed circuit heat exchanger (PCHE) potential in exhaust waste heat recovery. Appl. Therm. Eng. 2022, 204, 117863. [Google Scholar] [CrossRef]
- Haynes, B.S.; Johnston, A.M. Process design and performance of a microstructured convective steam-methane reformer. Catal. Today 2011, 178, 34–41. [Google Scholar] [CrossRef]
- Banister, J.A.; Rumbold, S.O. A compact gas-to-methanol process and its application to improved oil recovery. In Proceedings of the Gas Processors Association Europe Annual Conference, Warsaw, Poland, 21–23 September 2005. [Google Scholar]
- Goodwin, G.; Speth, R.L.; Moffatand, H.K.; Weber, B.W. Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes, Version 2.5.1; Zenodo: Geneva, Switzerland, 2021. Available online: https://www.cantera.org (accessed on 1 October 2023). [CrossRef]
- Levenspiel, O. Chemical Reacting Engineering, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Gunn, D. Transfer of heat or mass to particles in fixed and fluidised beds. Int. J. Heat Mass Transf. 1978, 21, 467–476. [Google Scholar] [CrossRef]
- Nasr, S.; Semagina, N.; Hayes, R.E. Kinetic Modelling of Co3O4- and Pd/Co3O4-Catalyzed Wet Lean Methane Combustion. Emiss. Control Sci. Technol. 2020, 6, 269–278. [Google Scholar] [CrossRef]
- Shen, J.; Hayes, R.E.; Semagina, N. On the contribution of oxygen from Co3O4 to the Pd-catalyzed methane combustion. Catal. Today 2021, 360, 435–443. [Google Scholar] [CrossRef]
- OpenFOAM|Free CFD Software|The OpenFOAM Foundation. Available online: https://openfoam.org/ (accessed on 1 October 2023).
- Bergman, T.L.; Lavine, A.S.; Incropera, F.P.; Dewitt, D.P. Fundamentals of Heat and Mass Transfer, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Gnielinski, V. Neue Gleichungen für den Wärme- und den Stoffübergang in turbulent durchströmten Rohren und Kanälen. Forsch. Ingenieurwes./Eng. Res. 1975, 41, 8–16. [Google Scholar] [CrossRef]
Parameter | Pre-Exponential Factor [L/(g∙s)] | Activation Energy [J/mol] |
---|---|---|
Value | 46,365 | 90,738 |
Value | Unit | |
---|---|---|
Height | 14 | mm |
Width | 10 | mm |
Length | 60 | mm |
Particle diameter | 2 | mm |
Catalyst coating thickness | 0.4 | mm |
Catalyst weight | 13.3 | g |
Packed bed porosity | 0.45 | - |
Process fluid inlet flow rate | 7.62 | kg/h |
Fuel inlet flow rate | 0.01 | kg/h |
Process fluid CO2 mass fraction (1st stage) | 0.978 | - |
Process fluid inlet O2 mass fraction (1st stage) | 0.022 | - |
Inlet fluid pressure (1st stage) | 1000 | kPa |
Inlet fluid temperature (1st stage) | 500 | °C |
Axial dispersion coefficient | 0.005 | m2/s |
Attribute | Parameter | Value |
---|---|---|
solver and tolerance | ||
nAlphaCorr | alpha.* | 1 |
nAlphaSubCycles | alpha.* | 1 |
solver | p_rgh/p_rghFinal | GAMG |
U.*/U.*Final | smoothSolver | |
(h|e).*/(h|e).*Final | smoothSolver | |
(Yi).* | PBiCGStab | |
smoother | p_rgh/p_rghFinal | DIC |
U.*/U.*Final | symGaussSeidel | |
(h|e).*/(h|e).*Final | symGaussSeidel | |
preconditioner | (Yi).* | DILU |
tolerance | p_rgh/p_rghFinal | 1 × 10−7 |
U.*/U.*Final | 1 × 10−7 | |
(h|e).*/(h|e).*Final | 1 × 10−7 | |
(Yi).* | 1 × 10−12 | |
relative tolerance | p_rghFinal | 0 |
U.*Final | 0 | |
(h|e).*Final | 0 | |
(Yi).* | 0 |
Number of Reaction Stages | Fuel Flow Rate per Stage [kg/h] | Inlet Temperature [°C] | Average Temperature [°C] | Stage Length [m] | per Stage [kPa] |
---|---|---|---|---|---|
5 | 0.01 | 500 | 532 | 0.031 | 6.2 |
6 | 0.0081 | 509 | 534 | 0.0275 | 5.4 |
7 | 0.0068 | 517 | 537 | 0.024 | 4.6 |
8 | 0.0058 | 522 | 539 | 0.0215 | 4.1 |
9 | 0.0051 | 525 | 539 | 0.02 | 3.8 |
10 | 0.0046 | 528 | 540 | 0.0185 | 3.5 |
11 | 0.0041 | 531 | 542 | 0.017 | 3.2 |
Number of Reaction Stages | Fuel Flow Rate [kg/h] | Inlet Temperature [°C] | Average Temperature [°C] | Stage Length [m] | [kPa] |
---|---|---|---|---|---|
5 | 0.00191 | 540 | 547 | 0.0275 | 5.7 |
6 | 0.00153 | 542 | 547 | 0.025 | 5.1 |
7 | 0.00129 | 543 | 547 | 0.023 | 4.7 |
8 | 0.00111 | 544 | 547 | 0.0215 | 4.4 |
9 | 0.00097 | 545 | 548 | 0.02 | 4.1 |
10 | 0.00087 | 546 | 548 | 0.0185 | 3.8 |
11 | 0.00078 | 546 | 548 | 0.017 | 3.5 |
Number of Reaction Stages | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|
Steam flow rate [kg/h] | Repeating section | 71.36 | 55.97 | 46.22 | 39.24 | 33.64 | 29.47 | 25.29 |
Final section | 15.42 | 9.86 | 9.78 | 8.43 | 5.65 | 5.65 | 4.22 | |
Number of utility channels | Repeating section | 29 | 21 | 17 | 14 | 12 | 11 | 9 |
Final section | 6 | 4 | 4 | 3 | 2 | 2 | 2 | |
Length of utility channels [m] | 0.3 | |||||||
Number of process channels | 60 | |||||||
Length of process channels [m] | Repeating section | 0.29 | 0.21 | 0.17 | 0.14 | 0.12 | 0.11 | 0.09 |
Final section | 0.06 | 0.04 | 0.04 | 0.03 | 0.02 | 0.02 | 0.02 | |
Total length of process channels [m] | 0.93 | 0.88 | 0.89 | 0.87 | 0.86 | 0.9 | 0.83 | |
Total ΔP from process channels [kPa] | 29.6 | 28.1 | 28.6 | 28.1 | 27.8 | 29.2 | 27.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, H.; Furlong, A.J.; Champagne, S.; Hughes, R.W.; Haelssig, J.B.; Macchi, A. Modelling and Design of a Novel Integrated Heat Exchange Reactor for Oxy-Fuel Combustion Flue Gas Deoxygenation. Energies 2024, 17, 1474. https://doi.org/10.3390/en17061474
Ge H, Furlong AJ, Champagne S, Hughes RW, Haelssig JB, Macchi A. Modelling and Design of a Novel Integrated Heat Exchange Reactor for Oxy-Fuel Combustion Flue Gas Deoxygenation. Energies. 2024; 17(6):1474. https://doi.org/10.3390/en17061474
Chicago/Turabian StyleGe, Hongtian, Andrew J. Furlong, Scott Champagne, Robin W. Hughes, Jan B. Haelssig, and Arturo Macchi. 2024. "Modelling and Design of a Novel Integrated Heat Exchange Reactor for Oxy-Fuel Combustion Flue Gas Deoxygenation" Energies 17, no. 6: 1474. https://doi.org/10.3390/en17061474
APA StyleGe, H., Furlong, A. J., Champagne, S., Hughes, R. W., Haelssig, J. B., & Macchi, A. (2024). Modelling and Design of a Novel Integrated Heat Exchange Reactor for Oxy-Fuel Combustion Flue Gas Deoxygenation. Energies, 17(6), 1474. https://doi.org/10.3390/en17061474