An Efficient and Robust ILU(k) Preconditioner for Steady-State Neutron Diffusion Problem Based on MOOSE
Abstract
:1. Introduction
2. Numerical Methods
2.1. Neutron Diffusion k-Eigenvalue Problem and JFNK Method
2.2. Preconditioning Techniques in MOOSE
3. Numerical Techniques in Preconditioning
3.1. Coloring
Algorithm 1 Sequential (greedy) coloring algorithm |
Procedure SEQ() |
Formulate a vertex ordering |
Assign as color |
For to do |
Assign the smallest color not used by any of its neighbors |
End for |
End procedure |
3.2. Incomplete LU Factorization Method
3.3. Reordering
4. Results and Discussions
4.1. Preconditioning Matrix Construction Techniques
4.2. Preconditioning Matrix Factorization Techniques
5. Conclusions
- The finite difference technique combined with the coloring algorithm is utilized to automatically construct a preconditioning matrix, whose computational efficiency could be about 60 times higher than that without the coloring algorithm.
- With the increase in fill-in level k, the factorization time of ILU(k) with natural ordering grows up significantly, indicating its computational performance is relatively sensitive to the choice of fill-in level k, since the additional non-zero fill-in element increases rapidly.
- The reordering algorithms are utilized to reduce the non-zero fill-in element in ILU(k). The reordering-based ILU(k) algorithm is a robust preconditioning matrix factorization method. Moreover, its performance under different fill-in levels are comparable to the optimal computational cost with natural ordering.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, Y.; Liu, B.; Zhang, H.; Guo, J.; Li, F. A multi-level nonlinear elimination-based JFNK method for multi-scale multi-physics coupling problem in pebble-bed HTR. Ann. Nucl. Energy 2022, 176, 109281. [Google Scholar] [CrossRef]
- Novak, A.; Peterson, J.; Zou, L.; Andrš, D.; Slaybaugh; Martineau, R. Validation of Pronghorn friction-dominated porous media thermal-hydraulics model with the SANA experiments. Nucl. Eng. Des. 2019, 350, 182–194. [Google Scholar] [CrossRef]
- Benzi, M. Preconditioning Techniques for Large Linear Systems: A Survey. J. Comput. Phys. 2002, 182, 418–477. [Google Scholar] [CrossRef]
- Simon, Y.; David, R. Development and Testing of TRACE/PARCS ECI Capability for Modelling CANDU Reactors with Reactor Regulating System Response. Sci. Technol. Nucl. Install. 2022, 2022, 7500629. [Google Scholar]
- Li, S.; Liu, Z.; Chen, J.; Zhang, M.; Cao, L.; Wu, H. Development of high-fidelity neutronics/thermal-hydraulics coupling system for the hexagonal reactor cores based on NECP-X/CTF. Ann. Nucl. Energy 2023, 188, 109822. [Google Scholar] [CrossRef]
- Pinem, S.; Dibyo, S.; Luthfi, W.; Wardhani, V.I.S.; Hartanto, D. An Improved Steady-State and Transient Analysis of the RSG-GAS Reactor Core under RIA Conditions Using MTR-DYN and EUREKA-2/RR Codes. Sci. Technol. Nucl. Install. 2022, 2022, 6030504. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, B.; Zhang, H.; Zhu, K.; Kong, B.; Guo, J.; Li, F. Accuracy and efficient solution of helical coiled once-through steam generator model using JFNK method. Ann. Nucl. Energy 2021, 159, 108290. [Google Scholar] [CrossRef]
- Fan, J.; Gou, J.; Huang, J.; Shan, J. A fully-implicit numerical algorithm of two-fluid two-phase flow model using Jacobian-free Newton–Krylov method. Int. J. Numer. Methods Fluids 2022, 95, 361–390. [Google Scholar] [CrossRef]
- Hu, G.; Zou, L.; O’Grady, D.J.; Hu, R. An integrated coupling model for solving multiscale fluid-fluid coupling problems in SAM code. Nucl. Eng. Des. 2023, 404, 112186. [Google Scholar] [CrossRef]
- Liu, L.; Wu, Y.; Liu, B.; Zhang, H.; Guo, J.; Li, F. A modified JFNK method for solving the fundamental eigenmode in k-eigenvalue problem. Ann. Nucl. Energy 2022, 167, 108823. [Google Scholar] [CrossRef]
- Ahmed, N.; Singh, S.; Kumar, N. Physics-based preconditioning of Jacobian-free Newton–Krylov solver for Navier–Stokes equations using nodal integral method. Int. J. Numer. Methods Fluids 2024, 96, 138–160. [Google Scholar] [CrossRef]
- Gaston, D.R.; Permann, C.J.; Peterson, J.W.; Slaughter, A.E.; Andrš, D.; Wang, Y.; Short, M.P.; Perez, D.M.; Tonks, M.R.; Ortensi, J.; et al. Physics-based multiscale coupling for full core nuclear reactor simulation. Ann. Nucl. Energy 2015, 84, 45–54. [Google Scholar] [CrossRef]
- Belcourt, N.; Pawlowski, R.P.; Schmidt, R.C.; Hooper, R.W. An Introduction to LIME 1.0 and Its Use in Coupling Codes for Multiphysics Simulations; Sandia National Laboratories: Albuquerque, NM, USA, 2011.
- Belcourt, N.; Bartlett, R.A.; Pawlowski, R.P.; Schmidt, R.C.; Hooper, R.W. A Theory Manual for Multi-Physics Code Coupling in LIME; Sandia National Laboratories: Albuquerque, NM, USA, 2011.
- DeHart, M.; Gleicher, F.; Harter, J.; Labour, V.; Ortensi, J.; Schunert, S.; Wan, Y. MAMMOTH Theory Manual; Technical Report INL/EXT-19-54252; Idaho National Laboratory: Idaho Falls, ID, USA, 2019.
- Lee, J.; Balestra, P.; Hassan, Y.A.; Muyshondt, R.; Nguyen, D.T.; Skifton, R. Validation of Pronghorn Pressure Drop Correlations Against Pebble Bed Experiments. Nucl. Technol. 2022, 208, 1769–1805. [Google Scholar] [CrossRef]
- Andrs, D.; Berry, R.; Gaston, D.; Martineau, R.; Peterson, J.; Zhang, H.; Zhao, H.; Zou, L. RELAP-7 Level 2 Milestone Report: Demonstration of a Steady State Single Phase PWR Simulation with RELAP-7; Technical Report; Idaho National Lab. (INL): Idaho Falls, ID, USA, 2012.
- Liu, Z.; Xu, X.; Wu, H.; Cao, L. Multidimensional multi-physics simulations of the supercritical water-cooled fuel rod behaviors based on a new fuel performance code developed on the MOOSE platform. Nucl. Eng. Des. 2021, 375, 111085. [Google Scholar] [CrossRef]
- Hales, J.; Novascone, S.; Spencer, B.; Williamson, R.; Pastore, G.; Perez, D. Verification of the BISON fuel performance code. Ann. Nucl. Energy 2014, 71, 81–90. [Google Scholar] [CrossRef]
- Lin, C.J.; More, J.J. Incomplete Cholesky factorizations with limited memory. SIAM J. Sci. Comput. 1999, 21, 24. [Google Scholar] [CrossRef]
- Cuthill, E.; Mckee, J. Reducing the bandwidth of sparse symmetric matrices. In Proceedings of the 24th National Conference ACM 1969, New York, NY, USA, 26–28 August 1969; pp. 157–172. [Google Scholar]
- Benchmark Problem Book, ANL-7416-Suppl. 2; Argonne National Laboratory: Lemont, IL, USA, 1979.
- Executioner for Eigenvalue Problems. INL. Available online: https://mooseframework.inl.gov/source/executioners/NonlinearEigen.html (accessed on 1 October 2022).
- Zhang, H.; Guo, J.; Li, F.; Xu, Y.; Downar, T. Efficient simultaneous solution of multi-physics multi-scale nonlinear coupled system in HTR reactor based on nonlinear elimination method. Ann. Nucl. Energy 2018, 114, 301–310. [Google Scholar] [CrossRef]
- Greenbaum, A.; Pták, V.; Strakoš, Z.E.K. Any Nonincreasing Convergence Curve is Possible for GMRES. SIAM J. Matrix Anal. Appl. 1996, 17, 465–469. [Google Scholar] [CrossRef]
- Saad, Y. Iterative Methods for Sparse Linear Systems; PWS Publishing: Boston, MA, USA, 1996. [Google Scholar]
- Bruun, A. Direct Methods for Sparse Matrices. Math. Comput. 1980, 9, 874. [Google Scholar]
- Hossain, A.K.M.S.; Steihaug, T. Computing a Sparse Jacobian Matrix by Rows and Columns. Optim. Methods Softw. 1998, 10, 33–48. [Google Scholar] [CrossRef]
- Hovland, P.D. Combinatorial problems in automatic differentiation. In Proceedings of the SIAM Workshop on Combinatorial Scientific Computing, San Fransisco, CA, USA, 28 February 2004. [Google Scholar]
- Bondy, J. Bounds for the chromatic number of a graph. J. Comb. Theory 1969, 7, 96–98. [Google Scholar] [CrossRef]
- Brooks, R.L. On coloring the nodes of a network. Proc. Camb. Philos. Soc. 1941, 37, 194–197. [Google Scholar] [CrossRef]
- Welsh, D.J.A.; Powell, M.B. An upper bound for the chromatic number of a graph and its application to timetabling problems. Comput. J. 1967, 10, 85–86. [Google Scholar] [CrossRef]
- Coleman, T.F.; Moré, J.J. Estimation of Sparse Jacobian Matrices and Graph Coloring Problems. SIAM J. Numer. Anal. 1983, 20, 187–209. [Google Scholar] [CrossRef]
- Matula, D.W.; Marble, G.; Isaacson, J.D. Graph Coloring Algorithms. In Graph Theory and Computing; Academic Press: Cambridge, MA, USA, 1972; pp. 109–122. [Google Scholar]
- Bozdağ, D.; Catalyurek, U.; Gebremedhin, A.H.; Manne, F.; Boman, E.G.; Özgüner, F. A parallel distance-2 graph coloring algorithm for distributed memory computers. In Proceedings of the International Conference on High Performance Computing & Communications, Sorrento, Italy, 21–23 September 2005; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Iii, W.; James, W. A Conjugate Gradient-Truncated Direct Method for the Iterative Solution of the Reservoir Simulation Pressure Equation. Soc. Pet. Eng. J. 1981, 21, 345–353. [Google Scholar]
- Saad, Y. Finding Exact and Approximate Block Structures for ILU Preconditioning. SIAM J. Sci. Comput. 2003, 24, 1107–1123. [Google Scholar] [CrossRef]
- Gustafsson, I. A class of first order factorization methods. BIT Numer. Math. 1978, 18, 142–156. [Google Scholar] [CrossRef]
- Saad, Y. ILUT: A dual threshold incomplete LU factorization. Numer. Linear Algebra Appl. 1994, 1, 387–402. [Google Scholar] [CrossRef]
- Bolstad, J.H.; Leaf, G.K.; Lindeman, A.J.; Kaper, H.G. An Empirical Investigation of Reordering and Data Management for Finite Element Systems of Equations; Rep. ANL-8056; Argonne National Laboratory: Lemont, IL, USA, 1973.
- Davis, T.A.; Gilbert, J.R.; Larimore, S.I.; Ng, E.G. A column approximate minimum degree ordering algorithm. ACM Trans. Math. Softw. 2004, 30, 353–376. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, H.; Wu, Y.; Liu, B.; Guo, J.; Li, F. A modified JFNK with line search method for solving k-eigenvalue neutronics problems with thermal-hydraulics feedback. Nucl. Eng. Technol. 2023, 55, 310–323. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, J.; Lu, J.; Niu, J.; Li, F.; Xu, Y. The comparison between nonlinear and linear preconditioning JFNK method for transient neutronics/thermal-hydraulics coupling problem. Ann. Nucl. Energy 2019, 132, 357–368. [Google Scholar] [CrossRef]
Region | Material | |||||
---|---|---|---|---|---|---|
1 | Fuel 1 with rod | 1 | 1.255 | 0.008252 | 0.004602 | 0.02533 |
2 | 0.211 | 0.1003 | 0.1091 | - | ||
2 | Fuel 1 without rod | 1 | 1.268 | 0.007181 | 0.004609 | 0.02767 |
2 | 0.1902 | 0.07047 | 0.08675 | - | ||
3 | Fuel 2 with rod | 1 | 1.259 | 0.008002 | 0.004663 | 0.02617 |
2 | 0.2091 | 0.08344 | 0.1021 | - | ||
4 | Fuel 2 without rod | 1 | 1.259 | 0.008002 | 0.004663 | 0.02617 |
2 | 0.2091 | 0.073324 | 0.1021 | - | ||
5 | Reflector | 1 | 1.257 | 0.0006034 | 0.0 | 0.04754 |
2 | 0.1592 | 0.01911 | 0.0 | - |
Smallest-Last | Large-First | Incidence-Degree | No-Coloring | |
---|---|---|---|---|
Total computational time (s) | 120.563 | 122.516 | 121.030 | 7276.910 |
Speed-up ratio | 60.35 | 59.40 | 60.12 | 1 |
Preconditioner construction time (s) | 1.872 | 1.882 | 1.858 | 7163.736 |
Numbers of residual evaluations | 535 | 585 | 537 | 23,658 |
Colors used | 31 | 41 | 32 | - |
Nonlinear steps | 5 | 5 | 5 | 5 |
Total linear steps | 123 | 123 | 123 | 123 |
Natural | 1WD | ND | QMD | RCM | |
---|---|---|---|---|---|
Total computational time | 34.996 | 30.609 | 29.756 | 31.193 | 29.871 |
Non-zeros after factorizations | 3,884,202 | 2,442,293 | 1,879,544 | 2,337,351 | 1,919,274 |
Number of residual evaluations | 556 | 556 | 556 | 556 | 556 |
Nonlinear steps | 11 | 11 | 11 | 11 | 11 |
Linear steps | 225 | 225 | 225 | 225 | 225 |
Natural | ND | RCM | 1WD | QMD | |
---|---|---|---|---|---|
Fill-in level | 3 | 11 | 8 | 7 | 11 |
Total computational time (s) | 30.89 | 30.76 | 31.02 | 31.08 | 30.93 |
Factorization time (s) | 23.26 | 26.35 | 24.33 | 24.26 | 26.52 |
Total nonlinear steps | 6 | 3 | 4 | 4 | 3 |
Total linear steps | 119 | 38 | 55 | 57 | 38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Zhang, H.; Liu, L.; Tang, H.; Dou, Q.; Guo, J.; Li, F. An Efficient and Robust ILU(k) Preconditioner for Steady-State Neutron Diffusion Problem Based on MOOSE. Energies 2024, 17, 1499. https://doi.org/10.3390/en17061499
Wu Y, Zhang H, Liu L, Tang H, Dou Q, Guo J, Li F. An Efficient and Robust ILU(k) Preconditioner for Steady-State Neutron Diffusion Problem Based on MOOSE. Energies. 2024; 17(6):1499. https://doi.org/10.3390/en17061499
Chicago/Turabian StyleWu, Yingjie, Han Zhang, Lixun Liu, Huanran Tang, Qinrong Dou, Jiong Guo, and Fu Li. 2024. "An Efficient and Robust ILU(k) Preconditioner for Steady-State Neutron Diffusion Problem Based on MOOSE" Energies 17, no. 6: 1499. https://doi.org/10.3390/en17061499
APA StyleWu, Y., Zhang, H., Liu, L., Tang, H., Dou, Q., Guo, J., & Li, F. (2024). An Efficient and Robust ILU(k) Preconditioner for Steady-State Neutron Diffusion Problem Based on MOOSE. Energies, 17(6), 1499. https://doi.org/10.3390/en17061499