The Future Design of Smart Energy Systems with Energy Flexumers: A Constructive Literature Review
Abstract
:1. Introduction
2. Holistic Resource Optimization
3. Adaptive Intelligence
- Data collection layer: This layer’s tasks are to detect and gather data from physical devices using sensors, actuators, and wireless sensor networks (WSN). The data obtained from the sensors is later displayed on interfaces, converted into movement by actuators, or sent over the networks for subsequent analysis.
- Data communication layer: This layer is the heart of the configuration, as it includes several connectivity facilities [120]. The local area network (LAN) and wide area network (WAN) are the main parts of the layer. The LAN handles the connection between the devices of the data collection layer and the local gateway devices (i.e., end-user devices), utilizing Bluetooth, Wi-Fi, near-field communication (NFC), etc. Data transmission from LAN to the data processing layer is the task of WAN. WAN utilizes different technologies, such as narrowband Internet of Things (NB-IoT)/long-term evolution (LTE), Sigfox, and LoRa/LoRaWAN for data transmission.
- Data processing layer: This layer acts as the brain of the entire architecture. It functions as a central hub, processing, managing, and storing data, as well as providing in-depth analysis. Consequently, insights are presented to both service providers and end users in a user-friendly format. Different computing services (e.g., cloud computing, fog computing, edge computing) are employed in this layer. Cloud computing provides centralized computing resources over the internet. Fog and edge computing bring computing capabilities closer to data sources, offering advantages such as reduced latency, improved reliability, and enhanced privacy and security. Advanced techniques like machine learning and computer vision can also be employed here to unlock deeper insights from the data.
- Business: This layer focuses on the business side of information exchange within smart grids. It considers regulatory frameworks and economic structures that govern data flows.
- Function: The focus of this layer is on the various services offered by the smart grid and how they interact with each other architecturally.
- Information: This layer delves into the details of the information being exchanged. It defines the specific data objects and the standardized data models used to ensure clear communication.
- Communication: This layer specifies the protocols and mechanisms that enable components within the smart grid to exchange information seamlessly.
- Component: This layer represents the physical makeup of the smart grid. It details the physical distribution of all the elements involved.
- Market: This zone deals with business activities related to energy trading across the entire energy conversion chain.
- Enterprise: This zone encompasses the commercial and organizational processes of various entities such as utilities, service providers, and traders.
- Operation: This zone focuses on real-time control of power systems within specific domains and includes systems for generation and transmission, as well as management systems for microgrids, virtual power plants (aggregating distributed energy resources), and electric vehicle charging fleets.
- Station: This zone acts as an aggregation point for data and functionalities at the field level and handles tasks like substation automation, local supervisory control and data acquisition (SCADA), plant supervision, and data concentration.
- Field: This zone encompasses equipment responsible for protecting, controlling, and monitoring the physical power system and includes devices that collect and utilize process data.
- Process: This zone represents the core physical infrastructure for energy conversion and includes the physical equipment involved (generators, transformers, lines, etc.) as well as sensors and actuators directly connected to the energy transformation process.
- Domains in SGAM represent the different stages of the energy conversion chain:
- Bulk generation: This domain focuses on large-scale electricity production from various sources. Energy generators typically connect to the transmission system.
- Transmission: This domain encompasses the high-voltage infrastructure responsible for transporting electricity over long distances.
- Distribution: This domain deals with the network that delivers electricity directly to consumers.
- Distributed energy resources (DER): This domain includes small-scale power generation technologies connected directly to the local distribution grid, and might be under the direct control of the distribution system operator (DSO).
- Customer premises: This domain encompasses the locations where electricity is used and potentially produced.
4. Future Environmental Harmony
5. Human-Centered Design
- Green: Environmentally friendly infrastructure that lessens carbon emissions and protects the environment.
- Smart: The ability to analyze real-time data to generate valuable insights for city management.
- Interconnected: A robust broadband network that fuels the digital economy.
- Innovative and knowledge-based: A focus on fostering creativity and leveraging a skilled workforce to drive continuous innovation.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Houghton, J. The science of global warming. Interdiscipl. Sci. Rev. 2001, 26, 247–257. [Google Scholar] [CrossRef]
- Höök, M.; Tang, X. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy 2013, 52, 797–809. [Google Scholar] [CrossRef]
- Martins, F.; Felgueiras, C.; Smitkova, M.; Caetano, N. Analysis of fossil fuel energy consumption and environmental impacts in European countries. Energies 2019, 12, 964. [Google Scholar] [CrossRef]
- Kamijo, Y.; Komiya, A.; Mifune, N.; Saijo, T. Negotiating with the future: Incorporating imaginary future generations into negotiations. Sustain. Sci. 2017, 12, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Saijo, T. Future Design: Incorporating Preferences of Future Generations for Sustainability. In Economics, Law, and Institutions in Asia Pacific; Saijo, T., Ed.; Springer: Singapore, 2020. [Google Scholar]
- Wolfe, J.; Moehn, H. Understanding the Iroquois Constitution; Enslow Publishing, LLC: New York, NY, USA, 2015. [Google Scholar]
- United Nations. The Paris Agreement. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement (accessed on 28 January 2024).
- Zhang, W.; Maleki, A.; Rosen, M.A. A heuristic-based approach for optimizing a small independent solar and wind hybrid power scheme incorporating load forecasting. J. Clean. Prod. 2019, 241, 117920. [Google Scholar] [CrossRef]
- Lu, T.; Sherman, P.; Chen, X.; Chen, S.; Lu, X.; McElroy, M. India’s potential for integrating solar and on-and offshore wind power into its energy system. Nat. Commun. 2020, 11, 4750. [Google Scholar] [CrossRef]
- Aghamolaei, R.; Shamsi, M.H.; Tahsildoost, M.; O’Donnell, J. Review of district-scale energy performance analysis: Outlooks towards holistic urban frameworks. Sustain. Cities Soc. 2018, 41, 252–264. [Google Scholar] [CrossRef]
- Su, Y. Smart energy for smart built environment: A review for combined objectives of affordable sustainable green. Sustain. Cities Soc. 2020, 53, 101954. [Google Scholar] [CrossRef]
- Crossley, P.; Beviz, A. Smart energy systems: Transitioning renewables onto the grid. Renew. Energy Focus 2010, 11, 54–59. [Google Scholar] [CrossRef]
- Orecchini, F.; Santiangeli, A. Beyond smart grids—The need of intelligent energy networks for a higher global efficiency through energy vectors integration. Int. J. Hydrogen Energy 2011, 36, 8126–8133. [Google Scholar] [CrossRef]
- Kwon, P.S.; Østergaard, P. Assessment and evaluation of flexible demand in a Danish future energy scenario. Appl. Energy 2014, 134, 309–320. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J. Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustain. Cities Soc. 2017, 31, 183–212. [Google Scholar] [CrossRef]
- Khatua, P.K.; Ramachandaramurthy, V.K.; Kasinathan, P.; Yong, J.Y.; Pasupuleti, J.; Rajagopalan, A. Application and assessment of Internet of Things toward the sustainability of energy systems: Challenges and issues. Sustain. Cities Soc. 2020, 53, 101957. [Google Scholar] [CrossRef]
- Reynolds, J.; Rezgui, Y.; Hippolyte, J.L. Upscaling energy control from building to districts: Current limitations and future perspectives. Sustain. Cities Soc. 2017, 35, 816–829. [Google Scholar] [CrossRef]
- Lund, H.; Andersen, A.N.; Østergaard, P.A.; Mathiesen, B.V.; Connolly, D. From electricity smart grids to smart energy systems—A market operation based approach and understanding. Energy 2012, 42, 96–102. [Google Scholar] [CrossRef]
- Hansen, K.; Breyer, C.; Lund, H. Status and perspectives on 100% renewable energy systems. Energy 2019, 175, 471–480. [Google Scholar] [CrossRef]
- IBM. IBM Builds a Smarter Planet. Available online: https://www.ibm.com/smarterplanet/us/en/ (accessed on 28 January 2024).
- Lohr, S. The New York Times. I.B.M. Has Tech Answer for Woes of Economy. Available online: https://www.nytimes.com/2008/11/06/technology/business-computing/06blue.html (accessed on 7 February 2024).
- Lund, H.; Hvelplund, F.; Mathiesen, B.V.; Østergaard, P.A.; Christensen, P.; Connolly, D.; Schaltz, E.; Pillay, J.R.; Nielsen, M.P.; Felby, C.; et al. Coherent Energy and Environmental System Analysis; Aalborg University: Aalborg, Denmark, 2011. [Google Scholar]
- Lund, H. Renewable Energy Systems: A Smart Energy Systems Approach to the Choice and Modeling of 100% Renewable Solutions, 2nd ed.; Elsevier: Massachusetts, MA, USA, 2014. [Google Scholar]
- Smart Energy Networks. Vision for Smart Energy in Denmark 2015. Available online: https://ens.dk/sites/ens.dk/files/Forskning_og_udvikling/vision_for_smart_energy_in_denmark_2015.pdf (accessed on 7 February 2024).
- Bačeković, I.; Østergaard, P.A. A smart energy system approach vs a non-integrated renewable energy system approach to designing a future energy system in Zagreb. Energy 2018, 155, 824–837. [Google Scholar] [CrossRef]
- Dominković, D.F.; Dobravec, V.; Jiang, Y.; Nielsen, P.S.; Krajačić, G. Modelling smart energy systems in tropical regions. Energy 2018, 155, 592–609. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, D.; Dai, H.; Wu, T. Intelligent modeling and optimization for smart energy hub. IEEE Trans. Ind. Electron. 2019, 66, 9898–9908. [Google Scholar] [CrossRef]
- Connolly, D.; Lund, H.; Mathiesen, B.V. Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union. Renew. Sustain. Energy Rev. 2016, 60, 1634–1653. [Google Scholar] [CrossRef]
- Hansen, K.; Mathiesen, B.V.; Skov, I.R. Full energy system transition towards 100% renewable energy in Germany in 2050. Renew. Sustain. Energy Rev. 2019, 102, 1–13. [Google Scholar] [CrossRef]
- Marczinkowski, H.M.; Barros, L. Technical approaches and institutional alignment to 100% renewable energy system transition of Madeira Island—Electrification, smart energy and the required flexible market conditions. Energies 2020, 13, 4434. [Google Scholar] [CrossRef]
- Maier, S. Smart energy systems for smart city districts: Case study Reininghaus District. Energy Sustain. Soc. 2016, 6, 1–20. [Google Scholar] [CrossRef]
- Drysdale, D.; Mathiesen, B.V.; Paardekooper, S. Transitioning to a 100% renewable energy system in Denmark by 2050: Assessing the impact from expanding the building stock at the same time. Energy Effic. 2019, 12, 37–55. [Google Scholar] [CrossRef]
- Ćosić, B.; Krajačić, G.; Duić, N. A 100% renewable energy system in the year 2050: The case of Macedonia. Energy 2012, 48, 80–87. [Google Scholar] [CrossRef]
- Lammers, I.; Hoppe, T. Watt rules? Assessing decision-making practices on smart energy systems in Dutch city districts. Energy Res. Soc. Sci. 2019, 47, 233–246. [Google Scholar] [CrossRef]
- Connolly, D.; Lund, H.; Mathiesen, B.V.; Østergaard, P.A.; Möller, B.; Nielsen, S.; Ridjan, I.; Hvelplund, F.; Sperling, K.; Karnøe, P.; et al. Smart Energy Systems: Holistic and Integrated Energy Systems for the Era of 100% Renewable Energy. Available online: https://vbn.aau.dk/ws/files/78422810/Smart_Energy_Systems_Aalborg_University.pdf (accessed on 9 February 2024).
- Thellufsen, J.Z.; Lund, H.; Sorknæs, P.; Østergaard, P.A.; Chang, M.; Drysdale, D.; Nielsen, S.; Djørup, S.R.; Sperling, K. Smart energy cities in a 100% renewable energy context. Renew. Sustain. Energy Rev. 2020, 129, 109922. [Google Scholar] [CrossRef]
- Mathiesen, B.V.; Lund, H.; Connolly, D.; Wenzel, H.; Østergaard, P.A.; Möller, B.; Nielsen, S.; Ridjan, I.; Karnøe, P.; Sperling, K.; et al. Smart Energy Systems for coherent 100% renewable energy and transport solutions. Appl. Energy 2015, 145, 139–154. [Google Scholar] [CrossRef]
- Fernando, W.P. A Feasibility Study of Development and Implementation of Smart Energy System for 100% Renewable Energy and Transport Solutions in Sri Lanka. Ph.D. Thesis, Edinburgh Napier University, Edinburgh, UK, 2020. [Google Scholar]
- Li, J.; Zou, W.; Yang, Q.; Bao, H. Towards net-zero smart system: An power synergy management approach of hydrogen and battery hybrid system with hydrogen safety consideration. Energy Convers. Manag. 2022, 263, 115717. [Google Scholar] [CrossRef]
- Uspenskaia, D.; Specht, K.; Kondziella, H.; Bruckner, T. Challenges and Barriers for Net-Zero/Positive Energy Buildings and Districts—Empirical Evidence from the Smart City Project SPARCS. Buildings 2021, 11, 78. [Google Scholar] [CrossRef]
- Sun, Q.; Li, H.; Ma, Z.; Wang, C.; Campillo, J.; Zhang, Q.; Wallin, F.; Guo, J. A comprehensive review of smart energy meters in intelligent energy networks. IEEE Internet Things J. 2015, 3, 464–479. [Google Scholar] [CrossRef]
- Dincer, I.; Acar, C. A review on clean energy solutions for better sustainability. Int. J. Energy Res. 2015, 39, 585–606. [Google Scholar] [CrossRef]
- Xu, Y.; Yan, C.; Liu, H.; Wang, J.; Yang, Z.; Jiang, Y. Smart energy systems: A critical review on design and operation optimization. Sustain. Cities Soc. 2020, 62, 102369. [Google Scholar] [CrossRef]
- Nielsen, M.H.; Christensen, J.S.; Behnke, K.; Jensen, J.K.; Ranis, T.; Garver, H.; Thellersen, M. DTU Sector Development Report: Smart Energy Systems Are the Way Forward. Available online: https://www.dtu.dk/-/media/DTUdk/Samarbejde/Virksomheder-og-erhverv/sektorudvikling/Smarte_Energisystemer/2020-06-19-DTU-Sector-Development-Project-about-Smart-Energy-Systems-UK-Summary-of-report.ashx (accessed on 9 February 2024).
- Zhu, H.; Goh, H.H.; Zhang, D.; Ahmad, T.; Liu, H.; Wang, S.; Li, S.; Liu, T.; Dai, H.; Wu, T. Key technologies for smart energy systems: Recent developments, challenges, and research opportunities in the context of carbon neutrality. J. Clean. Prod. 2022, 331, 129809. [Google Scholar] [CrossRef]
- Chow, T.T. A review on photovoltaic/thermal hybrid solar technology. Appl. Energy 2010, 87, 365–379. [Google Scholar] [CrossRef]
- Pelay, U.; Luo, L.; Fan, Y.; Stitou, D.; Rood, M. Thermal energy storage systems for concentrated solar power plants. Renew. Sustain. Energy Rev. 2017, 79, 82–100. [Google Scholar] [CrossRef]
- Njiri, J.G.; Söffker, D. State-of-the-art in wind turbine control: Trends and challenges. Renew. Sustain. Energy Rev. 2016, 60, 377–393. [Google Scholar] [CrossRef]
- Hoang, A.T.; Nguyen, X.P. Integrating renewable sources into energy system for smart city as a sagacious strategy towards clean and sustainable process. J. Clean. Prod. 2021, 305, 127161. [Google Scholar] [CrossRef]
- Bridgwater, T. Biomass for energy. J. Sci. Food Agric. 2006, 86, 1755–1768. [Google Scholar] [CrossRef]
- Fridleifsson, I.B. Geothermal energy for the benefit of the people. Renew. Sustain. Energy Rev. 2001, 5, 299–312. [Google Scholar] [CrossRef]
- Dumas, P. A European perspective of the development of deep geothermal in urban areas: Smart thermal grids, geothermal integration into smart cities. Geomech. Tunn. 2016, 9, 447–450. [Google Scholar] [CrossRef]
- Faramarzi, S.; Esmat, P.; Karimi, E.; Abdollahi, S.A. Energy, exergy, economic, and sensitivity analyses of an enhanced liquid hydrogen production cycle within an innovative multi-generation system. J. Therm. Anal. Calorim. 2024, 149, 3513–3530. [Google Scholar] [CrossRef]
- Lund, J.W.; Toth, A.N. Direct utilization of geothermal energy 2020 worldwide review. Geothermics 2021, 90, 101915. [Google Scholar] [CrossRef]
- Arin, K.P.; Braunfels, E. The resource curse revisited: A Bayesian model averaging approach. Energy Econ. 2018, 70, 170–178. [Google Scholar] [CrossRef]
- Marques, A.C.; Pires, P.S. Is there a resource curse phenomenon for natural gas? Evidence from countries with abundant natural gas. Resour. Policy 2019, 63, 101466. [Google Scholar] [CrossRef]
- Lin, B.; Xu, B. How does fossil energy abundance affect China’s economic growth and CO2 emissions? Sci. Total Environ. 2020, 719, 137503. [Google Scholar] [CrossRef] [PubMed]
- Lazkano, I.; Nøstbakken, L.; Pelli, M. From fossil fuels to renewables: The role of electricity storage. Eur. Econ. Rev. 2017, 99, 113–129. [Google Scholar] [CrossRef]
- Celik, A.N. Optimisation and techno-economic analysis of autonomous photovoltaic–wind hybrid energy systems in comparison to single photovoltaic and wind systems. Energy Convers. Manag. 2002, 43, 2453–2468. [Google Scholar] [CrossRef]
- Yang, H.X.; Lu, L.; Burnett, J. Weather data and probability analysis of hybrid photovoltaic–wind power generation systems in Hong Kong. Renew. Energy 2003, 28, 1813–1824. [Google Scholar] [CrossRef]
- Diaf, S.; Notton, G.; Belhamel, M.; Haddadi, M.; Louche, A. Design and techno-economical optimization for hybrid PV/wind system under various meteorological conditions. Appl. Energy 2008, 85, 968–987. [Google Scholar] [CrossRef]
- Nema, P.; Nema, R.K.; Rangnekar, S. A current and future state of art development of hybrid energy system using wind and PV-solar: A review. Renew. Sustain. Energy Rev. 2009, 13, 2096–2103. [Google Scholar] [CrossRef]
- Yang, H.; Wei, Z.; Chengzhi, L. Optimal design and techno-economic analysis of a hybrid solar–wind power generation system. Appl. Energy 2009, 86, 163–169. [Google Scholar] [CrossRef]
- Zhou, W.; Lou, C.; Li, Z.; Lu, L.; Yang, H. Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems. Appl. Energy 2010, 87, 380–389. [Google Scholar] [CrossRef]
- Ekren, O.; Ekren, B.Y. Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing. Appl. Energy 2010, 87, 592–598. [Google Scholar] [CrossRef]
- Ma, T.; Yang, H.; Lu, L. A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island. Appl. Energy 2014, 121, 149–158. [Google Scholar] [CrossRef]
- Anoune, K.; Bouya, M.; Astito, A.; Abdellah, A.B. Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review. Renew. Sustain. Energy Rev. 2018, 93, 652–673. [Google Scholar] [CrossRef]
- Sawle, Y.; Gupta, S.C.; Bohre, A.K. Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system. Renew. Sustain. Energy Rev. 2018, 81, 2217–2235. [Google Scholar] [CrossRef]
- Ashok, S. Optimised model for community-based hybrid energy system. Renew. Energy 2007, 32, 1155–1164. [Google Scholar] [CrossRef]
- Duivenvoorden, E.; Hartmann, T.; Brinkhuijsen, M.; Hesselmans, T. Managing public space—A blind spot of urban planning and design. Cities 2021, 109, 103032. [Google Scholar] [CrossRef]
- Lu, M.; Fu, G.; Osman, N.B.; Konbr, U. Green energy harvesting strategies on edge-based urban computing in sustainable internet of things. Sustain. Cities Soc. 2021, 75, 103349. [Google Scholar] [CrossRef]
- Garvin, A.; Brands, R. Public Parks: The Key to Livable Communites; W.W. Norton and Co.: New York, NY, USA, 2011. [Google Scholar]
- Ozgun, K.; Cushing, D.; Buys, L. Renewable energy distribution in public spaces: Analyzing the case of Ballast Point Park in Sydney, using a triple bottom line approach. Jola J. Landsc. Archit. 2015, 10, 18–31. [Google Scholar] [CrossRef]
- Zhao, Y.; Leung, V.C.M.; Zhu, C.; Gao, H.; Chen, Z.; Ji, H. Energy-Efficient Sub-Carrier and Power Allocation in Cloud-Based Cellular Network with Ambient RF Energy Harvesting. IEEE Access 2017, 5, 1340–1352. [Google Scholar] [CrossRef]
- Moussa, R.R.; Ismaeel, W.S.E.; Solban, M.M. Energy generation in public buildings using piezoelectric flooring tiles; A case study of a metro station. Sustain. Cities Soc. 2022, 77, 103555. [Google Scholar] [CrossRef]
- Al Ahmad, M.; Allataifeh, A. Piezoelectric-Based Energy Harvesting for Smart City Application. In Information Innovation Technology in Smart Cities; Springer: Berlin/Heidelberg, Germany, 2018; pp. 343–356. [Google Scholar]
- Elahi, H.; Eugeni, M.; Gaudenzi, P. A review on mechanisms for piezoelectric-based energy harvesters. Energies 2018, 11, 1850. [Google Scholar] [CrossRef]
- Elhalwagy, A.M.; Ghoneem, M.Y.M.; Elhadidi, M. Feasibility Study for Using Piezoelectric Energy Harvesting Floor in Buildings’ Interior Spaces. Energy Procedia 2017, 115, 114–126. [Google Scholar] [CrossRef]
- Solban, M.M.; Moussa, R.R. Piezoelectric Tiles Is a Sustainable Approach for Designing Interior Spaces and Creating Self-Sustain Projects. IOP Conf. Ser. Earth Environ. Sci. 2019, 397, 012020. [Google Scholar] [CrossRef]
- Abedanzadeh, A.; Ghasempour, R.; Jahangir, M.H. Modeling and parametric analysis of the energy generation by the piezoelectric energy harvesters: A case study. Energy Rep. 2023, 10, 1875–1887. [Google Scholar] [CrossRef]
- Mondal, S.; Sanyal, A.; Brahmachari, S.; Bhattacharjee, B.; Mujumdar, P.D.; Raviteja, J.; Nag, D. Utilization of constrained urban spaces for distributed energy generation—Development of solar paved pedestrian walkway. Energy Procedia 2017, 130, 114–121. [Google Scholar] [CrossRef]
- Lewandowska, A.; Chodkowska-Miszczuk, J.; Rogatka, K.; Starczewski, T. Smart energy in a smart city: Utopia or reality? Evidence from Poland. Energies 2020, 13, 5795. [Google Scholar] [CrossRef]
- Kalair, A.; Abas, N.; Saleem, M.S.; Kalair, A.R.; Khan, N. Role of energy storage systems in energy transition from fossil fuels to renewables. Energy Storage 2021, 3, e135. [Google Scholar] [CrossRef]
- Schorn, F.; Breuer, J.L.; Samsun, R.C.; Schnorbus, T.; Heuser, B.; Peters, R.; Stolten, D. Methanol as a renewable energy carrier: An assessment of production and transportation costs for selected global locations. Adv. Appl. Energy 2021, 3, 100050. [Google Scholar] [CrossRef]
- Frijns, J.; Hofman, J.; Nederlof, M. The potential of (waste)water as energy carrier. Energy Convers. Manag. 2013, 65, 357–363. [Google Scholar] [CrossRef]
- Wan, Z.; Tao, Y.; Shao, J.; Zhang, Y.; You, H. Ammonia as an effective hydrogen carrier and a clean fuel for solid oxide fuel cells. Energy Convers. Manag. 2021, 228, 113729. [Google Scholar] [CrossRef]
- Kojima, Y.; Yamaguchi, M. Ammonia as a hydrogen energy carrier. Int. J. Hydrogen Energy 2022, 47, 22832–22839. [Google Scholar] [CrossRef]
- Eppinger, J.; Huang, K.W. Formic Acid as a Hydrogen Energy Carrier. ACS Energy Lett. 2017, 2, 188–195. [Google Scholar] [CrossRef]
- Auner, N.; Holl, S. Silicon as energy carrier—Facts and perspectives. Energy 2006, 31, 1395–1402. [Google Scholar] [CrossRef]
- Shkolnikov, E.I.; Zhuk, A.Z.; Vlaskin, M.S. Aluminum as energy carrier: Feasibility analysis and current technologies overview. Renew. Sustain. Energy Rev. 2011, 15, 4611–4623. [Google Scholar] [CrossRef]
- Møller, K.T.; Jensen, T.R.; Akiba, E.; Li, H. Hydrogen—A sustainable energy carrier. Prog. Nat. Sci. Mater. Int. 2017, 27, 34–40. [Google Scholar] [CrossRef]
- Modu, B.; Abdullah, M.P.; Bukar, A.L.; Hamza, M.F. A systematic review of hybrid renewable energy systems with hydrogen storage: Sizing, optimization, and energy management strategy. Int. J. Hydrogen Energy 2023, 48, 38354–38373. [Google Scholar] [CrossRef]
- Folgado, F.J.; González, I.; Calderón, A.J. Data acquisition and monitoring system framed in Industrial Internet of Things for PEM hydrogen generators. Internet Things 2023, 22, 100795. [Google Scholar] [CrossRef]
- Mazloomi, K.; Gomes, C. Hydrogen as an energy carrier: Prospects and challenges. Renew. Sustain. Energy Rev. 2012, 16, 3024–3033. [Google Scholar] [CrossRef]
- Rosen, M.A.; Koohi-Fayegh, S. The prospects for hydrogen as an energy carrier: An overview of hydrogen energy and hydrogen energy systems. Energy Ecol. Environ. 2016, 1, 10–29. [Google Scholar] [CrossRef]
- Ho, W.S.; Macchietto, S.; Lim, J.S.; Hashim, H.; Muis, Z.A.; Liu, W.H. Optimal scheduling of energy storage for renewable energy distributed energy generation system. Renew. Sustain. Energy Rev. 2016, 58, 1100–1107. [Google Scholar] [CrossRef]
- Rathor, S.K.; Saxena, D. Energy management system for smart grid: An overview and key issues. Int. J. Energy Res. 2020, 44, 4067–4109. [Google Scholar] [CrossRef]
- China, C.R. IBM. Optimizing Energy Production with the Latest Smart Grid Technologies. Available online: https://www.ibm.com/blog/optimizing-energy-production-with-the-latest-smart-grid-technologies/ (accessed on 10 February 2024).
- Calvillo, C.F.; Sánchez-Miralles, A.; Villar, J. Energy management and planning in smart cities. Renew. Sustain. Energy Rev. 2016, 55, 273–287. [Google Scholar] [CrossRef]
- Zhou, B.; Li, W.; Chan, K.W.; Cao, Y.; Kuang, Y.; Liu, X.; Wang, X. Smart home energy management systems: Concept, configurations, and scheduling strategies. Renew. Sustain. Energy Rev. 2016, 61, 30–40. [Google Scholar] [CrossRef]
- Shareef, H.; Ahmed, M.S.; Mohamed, A.; Al Hassan, E. Review on home energy management system considering demand responses, smart technologies, and intelligent controllers. IEEE Access 2018, 6, 24498–24509. [Google Scholar] [CrossRef]
- Babar, M.; Khattak, A.S.; Jan, M.A.; Tariq, M.U. Energy aware smart city management system using data analytics and Internet of Things. Sustain. Energy Technol. Assess. 2021, 44, 100992. [Google Scholar] [CrossRef]
- Neuhoff, K.; Ehrenmann, A.; Butler, L.; Cust, J.; Hoexter, H.; Keats, K.; Kreczko, A.; Sinden, G. Space and time: Wind in an investment planning model. Energy Econ. 2008, 30, 1990–2008. [Google Scholar] [CrossRef]
- Pedro, H.T.; Coimbra, C.F. Assessment of forecasting techniques for solar power production with no exogenous inputs. Sol. Energy 2012, 86, 2017–2028. [Google Scholar] [CrossRef]
- Zhou, K.; Yang, S.; Chen, Z.; Ding, S. Optimal load distribution model of microgrid in the smart grid environment. Renew. Sustain. Energy Rev. 2014, 35, 304–310. [Google Scholar] [CrossRef]
- Kagiannas, A.G.; Askounis, D.T.; Psarras, J. Power generation planning: A survey from monopoly to competition. Int. J. Electr. Power Energy Syst. 2004, 26, 413–421. [Google Scholar] [CrossRef]
- Chen, Q.; Kang, C.; Xia, Q.; Zhong, J. Power generation expansion planning model towards low-carbon economy and its application in China. IEEE Trans. Power Syst. 2010, 25, 1117–1125. [Google Scholar] [CrossRef]
- Jeddi, B.; Vahidinasab, V. A modified harmony search method for environmental/economic load dispatch of real-world power systems. Energy Convers. Manag. 2014, 78, 661–675. [Google Scholar] [CrossRef]
- Amjady, N.; Keynia, F. A new neural network approach to short term load forecasting of electrical power systems. Energies 2011, 4, 488–503. [Google Scholar] [CrossRef]
- López, J.J.; Aguado, J.A.; Martin, F.; Munoz, F.; Rodriguez, A.; Ruiz, J.E. Hopfield–K-Means clustering algorithm: A proposal for the segmentation of electricity customers. Electr. Power Syst. Res. 2011, 81, 716–724. [Google Scholar] [CrossRef]
- Cho, H.; Goude, Y.; Brossat, X.; Yao, Q. Modeling and forecasting daily electricity load curves: A hybrid approach. J. Am. Stat. Assoc. 2013, 108, 7–21. [Google Scholar] [CrossRef]
- Hasan, K.N.; Preece, R.; Milanović, J.V. Existing approaches and trends in uncertainty modelling and probabilistic stability analysis of power systems with renewable generation. Renew. Sustain. Energy Rev. 2019, 101, 168–180. [Google Scholar] [CrossRef]
- Sapountzoglou, N.; Lago, J.; Raison, B. Fault diagnosis in low voltage smart distribution grids using gradient boosting trees. Electr. Power Syst. Res. 2020, 182, 106254. [Google Scholar] [CrossRef]
- Viet, N.T.; Kravets, A.G. The new method for analyzing technology trends of smart energy asset performance management. Energies 2022, 15, 6613. [Google Scholar] [CrossRef]
- Zhou, K.; Fu, C.; Yang, S. Big data driven smart energy management: From big data to big insights. Renew. Sustain. Energy Rev. 2016, 56, 215–225. [Google Scholar] [CrossRef]
- Karnouskos, S.; Terzidis, O.; Karnouskos, P. An advanced metering infrastructure for future energy networks. In New Technologies, Mobility and Security; Labiod, H., Badra, M., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 597–606. [Google Scholar]
- Marinakis, V.; Doukas, H.; Tsapelas, J.; Mouzakitis, S.; Sicilia, Á.; Madrazo, L.; Sgouridis, S. From big data to smart energy services: An application for intelligent energy management. Future Gener. Comput. Syst. 2020, 110, 572–586. [Google Scholar] [CrossRef]
- Saleem, M.U.; Usman, M.R.; Shakir, M. Design, implementation, and deployment of an IoT based smart energy management system. IEEE Access 2021, 9, 59649–59664. [Google Scholar] [CrossRef]
- Jia, M.; Komeily, A.; Wang, Y.; Srinivasan, R.S. Adopting Internet of Things for the development of smart buildings: A review of enabling technologies and applications. Autom. Constr. 2019, 101, 111–126. [Google Scholar] [CrossRef]
- Abir, S.A.A.; Anwar, A.; Choi, J.; Kayes, A.S.M. Iot-enabled smart energy grid: Applications and challenges. IEEE Access 2021, 9, 50961–50981. [Google Scholar] [CrossRef]
- Mazhar, T.; Irfan, H.M.; Haq, I.; Ullah, I.; Ashraf, M.; Shloul, T.A.; Ghadi, Y.Y.; Imran; Elkamchouchi, D.H. Analysis of Challenges and Solutions of IoT in Smart Grids Using AI and Machine Learning Techniques: A Review. Electronics 2023, 12, 242. [Google Scholar] [CrossRef]
- Qays, M.O.; Ahmad, I.; Abu-Siada, A.; Hossain, M.L.; Yasmin, F. Key communication technologies, applications, protocols and future guides for IoT-assisted smart grid systems: A review. Energy Rep. 2023, 9, 2440–2452. [Google Scholar] [CrossRef]
- Hu, Q.; Li, F. Hardware design of smart home energy management system with dynamic price response. IEEE Trans. Smart Grid 2013, 4, 1878–1887. [Google Scholar] [CrossRef]
- Viani, F.; Robol, F.; Polo, A.; Rocca, P.; Oliveri, G.; Massa, A. Wireless Architectures for Heterogeneous Sensing in Smart Home Applications: Concepts and Real Implementation. Proc. IEEE 2013, 101, 2381–2396. [Google Scholar] [CrossRef]
- Uslar, M.; Rohjans, S.; Neureiter, C.; Andrén, F.P.; Velasquez, J.; Steinbrink, C.; Efthymiou, V.; Migliavacca, G.; Horsmanheimo, S.; Brunner, H.; et al. Applying the Smart Grid Architecture Model for Designing and Validating System-of-Systems in the Power and Energy Domain: A European Perspective. Energies 2019, 12, 258. [Google Scholar] [CrossRef]
- Englert, H.; Uslar, M. Europäisches Architekturmodell für Smart Grids-Methodik und Anwendung der Ergebnisse der Arbeitsgruppe Referenzarchitektur des EU Normungsmandats M/490; Tagungsband VDE-Kongress: Berlin, Germany, 2012. [Google Scholar]
- Uslar, M. Energy Informatics: Definition, State-of-the-Art and New Horizons. In Proceedings of the ComForEn 2015—6th Symposium Communications for Energy Systems, OVE-Schriftenreihe Nr. 80 Oesterreichischer Verband fuer Elektrotechnik Austrian Electrotechnical Association, Vienna, Austria, 7 September 2015; Volume 5, pp. 15–26. [Google Scholar]
- Smart Grid Coordination Group. Smart Grid Reference Architecture; Technical Report; CEN-CENELEC-ETSI: Brussels, Belgium, 2012. [Google Scholar]
- Rifkin, J. The Third Industrial Revolution: How Lateral Power Is Transforming Energy, the Economy, and the World; Palgrave Macmillan: New York, NY, USA, 2011. [Google Scholar]
- Shahinzadeh, H.; Moradi, J.; Gharehpetian, G.B.; Nafisi, H.; Abedi, M. Internet of Energy (IoE) in Smart Power Systems. In Proceedings of the 2019 IEEE 5th Conference on Knowledge Based Engineering and Innovation, KBEI 2019, Tehran, Iran, 28 February–1 March 2019; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019; pp. 627–636. [Google Scholar]
- Bui, N.; Castellani, A.; Casari, P.; Zorzi, M. The internet of energy: A web-enabled smart grid system. IEEE Netw. 2012, 26, 39–45. [Google Scholar] [CrossRef]
- Hussain, H.M.; Narayanan, A.; Nardelli, P.H.; Yang, Y. What is energy internet? Concepts, technologies, and future directions. IEEE Access 2020, 8, 183127–183145. [Google Scholar] [CrossRef]
- Kafle, Y.R.; Mahmud, K.; Morsalin, S.; Town, G.E. Towards an internet of energy. In Proceedings of the 2016 IEEE International Conference on Power System Technology (POWERCON), Wollongong, NSW, Australia, 28 September–1 October 2016. [Google Scholar]
- Wang, K.; Hu, X.; Li, H.; Li, P.; Zeng, D.; Guo, S. A Survey on Energy Internet Communications for Sustainability. Proc. IEEE Trans. Sustain. Comput. 2017, 2, 231–254. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhang, D. Using the internet of things in smart energy systems and networks. Sustain. Cities Soc. 2021, 68, 102783. [Google Scholar] [CrossRef]
- Hu, J.; Vasilakos, A.V. Energy big data analytics and security: Challenges and opportunities. IEEE Trans. Smart Grid 2016, 7, 2423–2436. [Google Scholar] [CrossRef]
- Potdar, V.; Chandan, A.; Batool, S.; Patel, N. Big energy data management for smart grids—Issues, challenges and recent developments. In Smart Cities: Development and Governance Frameworks; Mahmood, Z., Ed.; Springer: Cham, Switzerland, 2018; pp. 177–205. [Google Scholar]
- Al-Turjman, F.M. Information-centric sensor networks for cognitive IoT: An overview. Ann. Telecommun. 2017, 72, 3–18. [Google Scholar] [CrossRef]
- Allam, Z.; Dhunny, Z.A. On big data, artificial intelligence and smart cities. Cities 2019, 89, 80–91. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, C.; Jiang, L.; Xie, S.; Zhang, Y. Intelligent edge computing for IoT-based energy management in smart cities. IEEE Netw. 2019, 33, 111–117. [Google Scholar] [CrossRef]
- Ullah, Z.; Al-Turjman, F.; Mostarda, L.; Gagliardi, R. Applications of artificial intelligence and machine learning in smart cities. Comput. Commun. 2020, 154, 313–323. [Google Scholar] [CrossRef]
- Huseien, G.F.; Shah, K.W. A review on 5G technology for smart energy management and smart buildings in Singapore. Energy AI 2022, 7, 100116. [Google Scholar] [CrossRef]
- Samuel, A.L. Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 1959, 3, 210–229. [Google Scholar] [CrossRef]
- Mitchell, T. Introduction to machine learning. Mach. Learn. 1997, 7, 2–5. [Google Scholar]
- François-Lavet, V.; Henderson, P.; Islam, R.; Bellemare, M.G.; Pineau, J. An introduction to deep reinforcement learning. Found. Trends Mach. Learn. 2018, 11, 219–354. [Google Scholar] [CrossRef]
- Sutton, R.S. Temporal Credit Assignment in Reinforcement Learning. Ph.D. Thesis, University of Massachusetts Amherst, Amherst, MA, USA, 1984. [Google Scholar]
- Minsky, M.L. Theory of Neural-Analog Reinforcement Systems and Its Application to the Brain-Model Problem. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 1954. [Google Scholar]
- Barto, A.G. Reinforcement learning. In Neural Systems for Control; Omidvar, O., Elliott, D.L., Eds.; Academic Press: San Diego, CA, USA, 1997; pp. 7–30. [Google Scholar]
- Kelleher, J.D. Deep Learning; MIT Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Ramchurn, S.D.; Vytelingum, P.; Rogers, A.; Jennings, N.R. Putting the ‘smarts’ into the smart grid: A grand challenge for artificial intelligence. Commun. ACM 2012, 55, 86–97. [Google Scholar] [CrossRef]
- Cheng, L.; Yu, T. A new generation of AI: A review and perspective on machine learning technologies applied to smart energy and electric power systems. Int. J. Energy Res. 2019, 43, 1928–1973. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2014; pp. 2672–2680. [Google Scholar]
- Li, L.; Lin, Y.; Zheng, N.; Wang, F.Y. Parallel learning: A perspective and a framework. IEEE/CAA J. Autom. Sin. 2017, 4, 389–395. [Google Scholar] [CrossRef]
- Liu, T.; Tian, B.; Ai, Y.; Li, L.; Cao, D.; Wang, F.Y. Parallel reinforcement learning: A framework and case study. IEEE/CAA J. Autom. Sin. 2018, 5, 827–835. [Google Scholar] [CrossRef]
- Demertzis, K.; Iliadis, L.S.; Anezakis, V.D. An innovative soft computing system for smart energy grids cybersecurity. Adv. Build. Energy Res. 2018, 12, 3–24. [Google Scholar] [CrossRef]
- Sani, A.S.; Yuan, D.; Jin, J.; Gao, L.; Yu, S.; Dong, Z.Y. Cyber security framework for Internet of Things-based Energy Internet. Future Gener. Comput. Syst. 2019, 93, 849–859. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhang, D.; Huang, C.; Zhang, H.; Dai, N.; Song, Y.; Chen, H. Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities. J. Clean. Prod. 2021, 289, 125834. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, P.; Zhang, X.; Lin, J.; Yu, W. Toward a Gaussian-mixture model-based detection scheme against data integrity attacks in the smart grid. IEEE Internet Things J. 2016, 4, 147–161. [Google Scholar]
- Ashok, A.; Govindarasu, M.; Wang, J. Cyber-physical attack-resilient wide-area monitoring, protection, and control for the power grid. Proc. IEEE 2017, 105, 1389–1407. [Google Scholar] [CrossRef]
- Minoli, D.; Sohraby, K.; Occhiogrosso, B. IoT considerations, requirements, and architectures for smart buildings—Energy optimization and next-generation building management systems. IEEE Internet Things J. 2017, 4, 269–283. [Google Scholar] [CrossRef]
- Dibaji, S.M.; Pirani, M.; Flamholz, D.B.; Annaswamy, A.M.; Johansson, K.H.; Chakrabortty, A. A systems and control perspective of CPS security. Annu. Rev. Control 2019, 47, 394–411. [Google Scholar] [CrossRef]
- Karimipour, H.; Dehghantanha, A.; Parizi, R.M.; Choo, K.K.R.; Leung, H. A deep and scalable unsupervised machine learning system for cyber-attack detection in large-scale smart grids. IEEE Access 2019, 7, 80778–80788. [Google Scholar] [CrossRef]
- Lun, Y.Z.; D’Innocenzo, A.; Smarra, F.; Malavolta, I.; Di Benedetto, M.D. State of the art of cyber-physical systems security: An automatic control perspective. J. Syst. Softw. 2019, 149, 174–216. [Google Scholar]
- Almalaq, A.; Albadran, S.; Mohamed, M.A. Deep machine learning model-based cyber-attacks detection in smart power systems. Mathematics 2022, 10, 2574. [Google Scholar] [CrossRef]
- Deng, T.; Zhang, K.; Shen, Z.-J. A Systematic Review of a Digital Twin City: A New Pattern of Urban Governance toward Smart Cities. J. Manag. Sci. Eng. 2021, 6, 125–134. [Google Scholar] [CrossRef]
- Grieves, M.; Vickers, J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary Perspectives on Complex Systems; Springer: Cham, Switzerland, 2017; pp. 85–113. [Google Scholar]
- Zheng, Y.; Yang, S.; Cheng, H. An application framework of digital twin and its case study. J. Ambient Intell. Humaniz. Comput. 2019, 10, 1141–1153. [Google Scholar] [CrossRef]
- Cioara, T.; Anghel, I.; Antal, M.; Salomie, I.; Antal, C.; Ioan, A.G. An Overview of Digital Twins Application Domains in Smart Energy Grid. arXiv 2021, arXiv:2104.07904. [Google Scholar]
- Agostinelli, S.; Cumo, F.; Guidi, G.; Tomazzoli, C. Cyber-Physical Systems Improving Building Energy Management: Digital Twin and Artificial Intelligence. Energies 2021, 14, 2338. [Google Scholar] [CrossRef]
- Wang, H.; Chen, X.; Jia, F.; Cheng, X. Digital twin-supported smart city: Status, challenges and future research directions. Expert Syst. Appl. 2023, 217, 119531. [Google Scholar] [CrossRef]
- Faliagka, E.; Christopoulou, E.; Ringas, D.; Politi, T.; Kostis, N.; Leonardos, D.; Tranoris, C.; Antonopoulos, C.P.; Denazis, S.; Voros, N. Trends in Digital Twin Framework Architectures for Smart Cities: A Case Study in Smart Mobility. Sensors 2024, 24, 1665. [Google Scholar] [CrossRef] [PubMed]
- Bach, W. Fossil fuel resources and their impacts on environment and climate. Int. J. Hydrogen Energy 1981, 6, 185–201. [Google Scholar] [CrossRef]
- Häfele, W.; Anderer, J.; McDonald, A.; Nakicenovic, N. Energy in a Finite World: Volume 1, Paths to a Sustainable Future; Ballinger: Cambridge, MA, USA, 1981. [Google Scholar]
- World Energy Council. Comparison of Energy Systems Using Life Cycle Assessment 2004. Available online: https://www.worldenergy.org/assets/downloads/PUB_Comparison_of_Energy_Systens_using_lifecycle_2004_WEC.pdf (accessed on 12 March 2024).
- Schlömer, S.; Bruckner, T.; Fulton, L.; Hertwich, E.; McKinnon, A.; Perczyk, D.; Roy, J.; Schaeffer, R.; Sims, R.; Smith, P. IPCC. Annex III: Technology-Specific Cost and Performance Parameters. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_annex-iii.pdf (accessed on 12 March 2024).
- Jacobson, M.Z. Review of solutions to global warming, air pollution, and energy security. Energy Environ. Sci. 2009, 2, 148–173. [Google Scholar] [CrossRef]
- Nuclear Energy Institute (NEI). Nuclear Energy: Part of A Clean Energy Portfolio. South Dakota Public Utilities Commission. Available online: https://puc.sd.gov/commission/Presentations/EnergyConference2009/AdrianHeymerNEINuclear051209.pdf (accessed on 15 March 2024).
- Parliamentary Office of Science and Technology. Carbon Footprint of Electricity Generation, Postnote 2006 No. 268. Available online: https://www.parliament.uk/globalassets/documents/post/postpn268.pdf (accessed on 15 March 2024).
- Oliveira, M.D.D. Sugarcane and ethanol production and carbon dioxide balances. In Biofuels, Solar and Wind as Renewable Energy Systems: Benefits and Risks; Pimentel, D., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 215–230. [Google Scholar]
- Hill, J.; Nelson, E.; Tilman, D.; Polasky, S.; Tiffany, D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Nat. Acad. Sci. USA 2006, 103, 11206–11210. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; You, F. Can renewable generation, energy storage and energy efficient technologies enable carbon neutral energy transition? Appl. Energy 2020, 279, 115889. [Google Scholar] [CrossRef]
- Ahmad, F.; Alam, M.S. Feasibility study, design and implementation of smart polygeneration microgrid at AMU. Sustain. Cities Soc. 2017, 35, 309–322. [Google Scholar] [CrossRef]
- Lund, P.D.; Mikkola, J.; Ypyä, J. Smart energy system design for large clean power schemes in urban areas. J. Clean. Prod. 2015, 103, 437–445. [Google Scholar] [CrossRef]
- Malinauskaite, J.; Jouhara, H.; Czajczyńska, D.; Stanchev, P.; Katsou, E.; Rostkowski, P.; Thorne, R.J.; Colon, J.; Ponsá, S.; Al-Mansour, F. Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. Energy 2017, 141, 2013–2044. [Google Scholar] [CrossRef]
- Tomić, T.; Schneider, D.R. The role of energy from waste in circular economy and closing the loop concept—Energy analysis approach. Renew. Sustain. Energy Rev. 2018, 98, 268–287. [Google Scholar] [CrossRef]
- Sharma, S.; Basu, S.; Shetti, N.P.; Aminabhavi, T.M. Waste-to-energy nexus for circular economy and environmental protection: Recent trends in hydrogen energy. Sci. Total Environ. 2020, 713, 136633. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, S.M.; Samsatli, S. Technologies and infrastructures underpinning future CO2 value chains: A comprehensive review and comparative analysis. Renew. Sustain. Energy Rev. 2018, 85, 46–68. [Google Scholar] [CrossRef]
- Krey, V.; Luderer, G.; Clarke, L.; Kriegler, E. Getting from here to there–energy technology transformation pathways in the EMF27 scenarios. Clim. Chang. 2014, 123, 369–382. [Google Scholar] [CrossRef]
- Mikulčić, H.; Skov, I.R.; Dominković, D.F.; Alwi, S.R.W.; Manan, Z.A.; Tan, R.; Duić, N.; Mohamad, S.N.H.; Wang, X. Flexible Carbon Capture and Utilization technologies in future energy systems and the utilization pathways of captured CO2. Renew. Sustain. Energy Rev. 2019, 114, 109338. [Google Scholar] [CrossRef]
- Mondal, M.K.; Balsora, H.K.; Varshney, P. Progress and trends in CO2 capture/separation technologies: A review. Energy 2012, 46, 431–441. [Google Scholar] [CrossRef]
- Li, B.; Duan, Y.; Luebke, D.; Morreale, B. Advances in CO2 capture technology: A patent review. Appl. Energy 2013, 102, 1439–1447. [Google Scholar] [CrossRef]
- Koytsoumpa, E.I.; Bergins, C.; Kakaras, E. The CO2 economy: Review of CO2 capture and reuse technologies. J. Supercrit. Fluids 2018, 132, 3–16. [Google Scholar] [CrossRef]
- Madejski, P.; Chmiel, K.; Subramanian, N.; Kuś, T. Methods and techniques for CO2 capture: Review of potential solutions and applications in modern energy technologies. Energies 2022, 15, 887. [Google Scholar] [CrossRef]
- Lund, H.; Arler, F.; Østergaard, P.A.; Hvelplund, F.; Connolly, D.; Mathiesen, B.V.; Karnøe, P. Simulation versus optimisation: Theoretical positions in energy system modelling. Energies 2017, 10, 840. [Google Scholar] [CrossRef]
- Rojas-Zerpa, J.C.; Yusta, J.M. Application of multicriteria decision methods for electric supply planning in rural and remote areas. Renew. Sustain. Energy Rev. 2015, 52, 557–571. [Google Scholar] [CrossRef]
- Tan, Y.; Meegahapola, L.; Muttaqi, K.M. A review of technical challenges in planning and operation of remote area power supply systems. Renew. Sustain. Energy Rev. 2014, 38, 876–889. [Google Scholar] [CrossRef]
- Silvente, J.; Kopanos, G.M.; Pistikopoulos, E.N.; Espuña, A. A rolling horizon optimization framework for the simultaneous energy supply and demand planning in microgrids. Appl. Energy 2015, 155, 485–501. [Google Scholar] [CrossRef]
- Askarzadeh, A. Developing a discrete harmony search algorithm for size optimization of wind–photovoltaic hybrid energy system. Sol. Energy 2013, 98, 190–195. [Google Scholar] [CrossRef]
- Twaha, S.; Ramli, M.A. A review of optimization approaches for hybrid distributed energy generation systems: Off-grid and grid-connected systems. Sustain. Cities Soc. 2018, 41, 320–331. [Google Scholar] [CrossRef]
- Alanne, K.; Saari, A. Distributed energy generation and sustainable development. Renew. Sustain. Energy Rev. 2006, 10, 539–558. [Google Scholar] [CrossRef]
- Dekker, J.; Nthontho, M.; Chowdhury, S.; Chowdhury, S.P. Economic analysis of PV/diesel hybrid power systems in different climatic zones of South Africa. Int. J. Electr. Power Energy Syst. 2012, 40, 104–112. [Google Scholar] [CrossRef]
- Buoro, D.; Casisi, M.; De Nardi, A.; Pinamonti, P.; Reini, M. Multicriteria optimization of a distributed energy supply system for an industrial area. Energy 2013, 58, 128–137. [Google Scholar] [CrossRef]
- Prebeg, P.; Gasparovic, G.; Krajacic, G.; Duic, N. Long-term energy planning of Croatian power system using multi-objective optimization with focus on renewable energy and integration of electric vehicles. Appl. Energy 2016, 184, 1493–1507. [Google Scholar] [CrossRef]
- Lian, J.; Zhang, Y.; Ma, C.; Yang, Y.; Chaima, E. A review on recent sizing methodologies of hybrid renewable energy systems. Energy Convers. Manag. 2019, 199, 112027. [Google Scholar] [CrossRef]
- Cabrera, P.; Lund, H.; Carta, J.A. Smart renewable energy penetration strategies on islands: The case of Gran Canaria. Energy 2018, 162, 421–443. [Google Scholar] [CrossRef]
- Alves, M.; Segurado, R.; Costa, M. On the road to 100% renewable energy systems in isolated islands. Energy 2020, 198, 117321. [Google Scholar] [CrossRef]
- He, W.; Tao, L.; Han, L.; Sun, Y.; Campana, P.E.; Yan, J. Optimal analysis of a hybrid renewable power system for a remote island. Renew. Energy 2021, 179, 96–104. [Google Scholar] [CrossRef]
- Ford, R.; Maidment, C.; Vigurs, C.; Fell, M.J.; Morris, M. Smart local energy systems (SLES): A framework for exploring transition, context, and impacts. Technol. Forecast. Soc. Chang. 2021, 166, 120612. [Google Scholar] [CrossRef]
- Son, Y.S.; Pulkkinen, T.; Moon, K.D.; Kim, C. Home energy management system based on power line communication. IEEE Trans. Consum. Electron. 2010, 56, 1380–1386. [Google Scholar] [CrossRef]
- Asare-Bediako, B.; Kling, W.L.; Ribeiro, P.F. Home energy management systems: Evolution, trends and frameworks. In Proceedings of the 2012 47th International Universities Power Engineering Conference (UPEC), London, UK, 4–7 September 2012; pp. 1–5. [Google Scholar]
- Avancini, D.B.; Rodrigues, J.J.; Rabêlo, R.A.; Das, A.K.; Kozlov, S.; Solic, P. A new IoT-based smart energy meter for smart grids. Int. J. Energy Res. 2021, 45, 189–202. [Google Scholar] [CrossRef]
- Tsui, K.M.; Chan, S.C. Demand response optimization for smart home scheduling under real-time pricing. IEEE Trans. Smart Grid 2012, 3, 1812–1821. [Google Scholar] [CrossRef]
- Pau, G.; Collotta, M.; Ruano, A.; Qin, J. Smart home energy management. Energies 2017, 10, 382. [Google Scholar] [CrossRef]
- Kolokotsa, D.; Pouliezos, A.; Stavrakakis, G.; Lazos, C. Predictive control techniques for energy and indoor environmental quality management in buildings. Build. Environ. 2009, 44, 1850–1863. [Google Scholar] [CrossRef]
- Al Dakheel, J.; Del Pero, C.; Aste, N.; Leonforte, F. Smart buildings features and key performance indicators: A review. Sustain. Cities Soc. 2020, 61, 102328. [Google Scholar] [CrossRef]
- Ock, J.; Issa, R.R.; Flood, I. Smart building energy management systems (BEMS) simulation conceptual framework. In Proceedings of the 2016 Winter Simulation Conference (WSC), Arlington, VA, USA, 11–14 December 2016; pp. 3237–3245. [Google Scholar]
- Kang, S.J.; Park, J.; Oh, K.Y.; Noh, J.G.; Park, H. Scheduling-based real time energy flow control strategy for building energy management system. Energy Build. 2014, 75, 239–248. [Google Scholar] [CrossRef]
- European Union. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings (Recast). Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:153:0013:0035:en:PDF (accessed on 13 April 2024).
- Ahmed, A.; Ge, T.; Peng, J.; Yan, W.C.; Tee, B.T.; You, S. Assessment of the renewable energy generation towards net-zero energy buildings: A review. Energy Build. 2022, 256, 111755. [Google Scholar] [CrossRef]
- D’Agostino, D.; Mazzarella, L. What is a Nearly zero energy building? Overview, implementation and comparison of definitions. J. Build. Eng. 2019, 21, 200–212. [Google Scholar] [CrossRef]
- D’Agostino, D.; Parker, D. A framework for the cost-optimal design of nearly zero energy buildings (NZEBs) in representative climates across Europe. Energy 2018, 149, 814–829. [Google Scholar] [CrossRef]
- Attia, S.; Kurnitski, J.; Kosiński, P.; Borodiņecs, A.; Belafi, Z.D.; István, K.; Krstić, H.; Moldovan, M.; Visa, I.; Mihailov, N.; et al. Overview and future challenges of nearly zero-energy building (nZEB) design in Eastern Europe. Energy Build. 2022, 267, 112165. [Google Scholar] [CrossRef]
- Attia, S.; Eleftheriou, P.; Xeni, F.; Morlot, R.; Ménézo, C.; Kostopoulos, V.; Betsi, M.; Kalaitzoglou, I.; Pagliano, L.; Cellura, M.; et al. Overview and future challenges of nearly zero energy buildings (nZEB) design in Southern Europe. Energy Build. 2017, 155, 439–458. [Google Scholar] [CrossRef]
- Magrini, A.; Lentini, G.; Cuman, S.; Bodrato, A.; Marenco, L. From nearly zero energy buildings (NZEB) to positive energy buildings (PEB): The next challenge—The most recent European trends with some notes on the energy analysis of a forerunner PEB example. Dev. Built Environ. 2020, 3, 100019. [Google Scholar] [CrossRef]
- Brozovsky, J.; Gustavsen, A.; Gaitani, N. Zero Emission Neighbourhoods and Positive Energy Districts—A State-of-the-Art Review. Sustain. Cities Soc. 2021, 72, 103013. [Google Scholar] [CrossRef]
- WronoWski, M. Conceptual design of plus energy single family house in Warsaw, Poland. REHVA J. 2013. Available online: https://www.rehva.eu/fileadmin/REHVA_Journal/REHVA_Journal_2013/RJ_issue_5/P.58/wronowski.pdf (accessed on 15 April 2024).
- Ala-Juusela, M.; Rehman, H.U.; Hukkalainen, M.; Reda, F. Positive energy building definition with the framework, elements and challenges of the concept. Energies 2021, 14, 6260. [Google Scholar] [CrossRef]
- Hawila, A.A.W.; Pernetti, R.; Pozza, C.; Belleri, A. Plus energy building: Operational definition and assessment. Energy Build. 2022, 265, 112069. [Google Scholar] [CrossRef]
- Cole, R.J.; Fedoruk, L. Shifting from net-zero to net-positive energy buildings. Build. Res. Inf. 2015, 43, 111–120. [Google Scholar] [CrossRef]
- Kumar, G.M.S.; Cao, S. State-of-the-art review of positive energy building and community systems. Energies 2021, 14, 5046. [Google Scholar] [CrossRef]
- Rueda Castellanos, S.; Oregi, X. Positive Energy District (PED) selected projects assessment, study towards the development of further PEDs. Environ. Clim. Technol. 2021, 25, 281–294. [Google Scholar] [CrossRef]
- Hu, M. Net-positive Building and Alternative Energy in an Institutional Environment. In Summer Study on Energy Efficiency in Buildings; ACEEE: Pacific Grove, CA, USA, 2016. [Google Scholar]
- Skaar, C.; Solli, C.; Vevatne, J. Designing a ZEN Campus: An exploration of ambition levels and system boundaries. IOP Conf. Ser. Earth Environ. Sci. 2019, 352, 012025. [Google Scholar] [CrossRef]
- Roser, A.; Schakib-Ekbatan, K.; Weiler, V.; Eicker, U.; Lohse, R. Net Zero Energy Strategies and Planning Support Tools for Campuses and Residential Neighborhoods in Germany. ASHRAE Trans. 2020, 126, 849–857. [Google Scholar]
- Ur Rehman, H.; Reda, F.; Paiho, S.; Hasan, A. Towards positive energy communities at high latitudes. Energy Convers. Manag. 2019, 196, 175–195. [Google Scholar] [CrossRef]
- Sougkakis, V.; Lymperopoulos, K.; Nikolopoulos, N.; Margaritis, N.; Giourka, P.; Angelakoglou, K. An investigation on the feasibility of near-zero and positive energy communities in the Greek context. Smart Cities 2020, 3, 362–384. [Google Scholar] [CrossRef]
- Zeyad, M.; Ahmed, S.M.; Hasan, S.; Mahmud, D.M. Community microgrid: An approach towards positive energy community in an urban area of Dhaka, Bangladesh. Clean Energy 2023, 7, 926–939. [Google Scholar] [CrossRef]
- An, Y.S.; Kim, J.; Joo, H.J.; Han, G.W.; Kim, H.; Lee, W.; Kim, M.H. Retrofit of renewable energy systems in existing community for positive energy community. Energy Rep. 2023, 9, 3733–3744. [Google Scholar] [CrossRef]
- Toffler, A. The Third Wave; William Collins Sons & Co., Ltd.: London, UK, 1980. [Google Scholar]
- Mahmud, K.; Khan, B.; Ravishankar, J.; Ahmadi, A.; Siano, P. An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: An overview. Renew. Sustain. Energy Rev. 2020, 127, 109840. [Google Scholar] [CrossRef]
- Boiarkin, V.; Rajarajan, M.; Al-Zaili, J.; Asif, W. A novel dynamic pricing model for a microgrid of prosumers with photovoltaic systems. Appl. Energy 2023, 342, 121148. [Google Scholar] [CrossRef]
- Liu, J.; Hu, H.; Yu, S.S.; Trinh, H. Electricity Pricing and Its Role in Modern Smart Energy System Design: A Review. Designs 2023, 7, 76. [Google Scholar] [CrossRef]
- Kühnbach, M.; Bekk, A.; Weidlich, A. Towards improved prosumer participation: Electricity trading in local markets. Energy 2022, 239, 122445. [Google Scholar] [CrossRef]
- Wesche, J.P.; Dütschke, E. Organisations as electricity agents: Identifying success factors to become a prosumer. J. Clean. Prod. 2021, 315, 127888. [Google Scholar] [CrossRef]
- Hu, J.L.; Chuang, M.Y. The Importance of Energy Prosumers for Affordable and Clean Energy Development: A Review of the Literature from the Viewpoints of Management and Policy. Energies 2023, 16, 6270. [Google Scholar] [CrossRef]
- Wittmayer, J.M.; Campos, I.; Avelino, F.; Brown, D.; Doračić, B.; Fraaije, M.; Gährs, S.; Hinsch, A.; Assalini, S.; Becker, T.; et al. Thinking, Doing, Organising: Prefiguring Just and Sustainable Energy Systems via Collective Prosumer Ecosystems in Europe. Energy Res. Soc. Sci. 2022, 86, 102425. [Google Scholar] [CrossRef]
- Bärwaldt, G. Energy revolution needs interpreters. ATZelectronics Worldw. 2018, 13, 68. [Google Scholar] [CrossRef]
- Cai, S.; Gou, Z. Defining the Energy Role of Buildings as Flexumers: A Review of Definitions, Technologies, and Applications. Energy Build. 2023, 303, 113821. [Google Scholar] [CrossRef]
- Fleschutz, M.; Bohlayer, M.; Braun, M.; Murphy, M.D. From prosumer to flexumer: Case study on the value of flexibility in decarbonizing the multi-energy system of a manufacturing company. Appl. Energy 2023, 347, 121430. [Google Scholar] [CrossRef]
- Schölzel, J.D.; Henn, S.; Tings, M.; Streblow, R.; Müller, D. Comparative analysis of bidding strategies for auction-based local energy markets. Energy 2024, 291, 130211. [Google Scholar] [CrossRef]
- Jee, Y.; Lee, E.; Baek, K.; Ko, W.; Kim, J. Data-analytic assessment for flexumers under demand diversification in a power system. IEEE Access 2022, 10, 33313–33319. [Google Scholar] [CrossRef]
- Albino, V.; Berardi, U.; Dangelico, R.M. Smart cities: Definitions, dimensions, performance, and initiatives. J. Urban Technol. 2015, 22, 3–21. [Google Scholar] [CrossRef]
- O’Grady, M.; O’Hare, G. How smart is your city? Science 2012, 335, 1581–1582. [Google Scholar] [CrossRef] [PubMed]
- Zygiaris, S. Smart city reference model: Assisting planners to conceptualize the building of smart city innovation ecosystems. J. Knowl. Econ. 2013, 4, 217–231. [Google Scholar] [CrossRef]
- Liu, J.; Song, R.; Nasreen, S.; Hoang, A.T. Analysis of the Complementary Property of Solar Energy and Thermal Power Based on Coupling Model. Nat. Environ. Pollut. Technol. 2019, 18, 1675–1681. [Google Scholar]
- Mathiesen, B.V.; Lund, H.; Nørgaard, P. Integrated transport and renewable energy systems. Util. Policy 2008, 16, 107–116. [Google Scholar] [CrossRef]
- Mathiesen, B.V.; Lund, H.; Karlsson, K. 100% Renewable energy systems, climate mitigation and economic growth. Appl. Energy 2011, 88, 488–501. [Google Scholar] [CrossRef]
- Connolly, D.; Mathiesen, B.V.; Ridjan, I. A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system. Energy 2014, 73, 110–125. [Google Scholar] [CrossRef]
- Ridjan, I.; Mathiesen, B.V.; Connolly, D. Synthetic fuel production costs by means of solid oxide electrolysis cells. Energy 2014, 76, 104–113. [Google Scholar] [CrossRef]
- Hu, B.; Feng, Y.; Sun, J.; Gao, Y.; Tan, J. Driving preference analysis and electricity pricing strategy comparison for electric vehicles in smart city. Inf. Sci. 2019, 504, 202–220. [Google Scholar] [CrossRef]
- O’Dwyer, E.; Pan, I.; Acha, S.; Shah, N. Smart energy systems for sustainable smart cities: Current developments, trends and future directions. Appl. Energy 2019, 237, 581–597. [Google Scholar] [CrossRef]
- Joshi, M.; Vaidya, A.; Deshmukh, M. Sustainable transport solutions for the concept of smart city. In Sustainable Energy and Transportation: Technologies and Policy; Gautam, A., De, S., Dhar, A., Gupta, J.G., Pandey, A., Eds.; Springer: Singapore, 2018; pp. 21–42. [Google Scholar]
- Allen, J.G. Reasons for Commuter Rail Electrification: Early 20th Century and Since 2000. Transp. Res. Rec. 2019, 2673, 227–238. [Google Scholar] [CrossRef]
- Zenith, F.; Isaac, R.; Hoffrichter, A.; Thomassen, M.S.; Møller-Holst, S. Techno-economic analysis of freight railway electrification by overhead line, hydrogen and batteries: Case studies in Norway and USA. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2020, 234, 791–802. [Google Scholar] [CrossRef]
- Nocerino, R.; Colorni, A.; Lia, F.; Luè, A. E-bikes and E-scooters for smart logistics: Environmental and economic sustainability in pro-E-bike Italian pilots. Transp. Res. Proc. 2016, 14, 2362–2371. [Google Scholar] [CrossRef]
Energy Type | Carbon Footprint (gCO2/kWh) |
---|---|
Coal | 834–1026 [174], 740–910 [175] |
Oil | 657–866 [174] |
Natural gas | 398–499 [174], 410–650 [175] |
Geothermal | 6–79 [175], 15.1–55 [176] |
Nuclear | 3.7–110 [175], 9–70 [176] |
Hydropower | 2–48 [177] |
Wave and tidal | 14–119 [176] |
Wind | Onshore: 6.9–14.5 [174], 7–56 [175]; offshore: 9.1–22 [174], 8–35 [175] |
Solar PV | 12.5–104 [174]; rooftop: 26–60 [175]; utility: 18–180 [175] |
Solar thermal | 8.5–11.3 [176] |
Biomass | Woodchip: 25 [178], Miscanthus: 93 [178] |
Ethanol | Sugar cane: 19 [179], Corn: 81–85 [180] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.-L.; Bui, N.H.B. The Future Design of Smart Energy Systems with Energy Flexumers: A Constructive Literature Review. Energies 2024, 17, 2039. https://doi.org/10.3390/en17092039
Hu J-L, Bui NHB. The Future Design of Smart Energy Systems with Energy Flexumers: A Constructive Literature Review. Energies. 2024; 17(9):2039. https://doi.org/10.3390/en17092039
Chicago/Turabian StyleHu, Jin-Li, and Nhi Ha Bao Bui. 2024. "The Future Design of Smart Energy Systems with Energy Flexumers: A Constructive Literature Review" Energies 17, no. 9: 2039. https://doi.org/10.3390/en17092039
APA StyleHu, J. -L., & Bui, N. H. B. (2024). The Future Design of Smart Energy Systems with Energy Flexumers: A Constructive Literature Review. Energies, 17(9), 2039. https://doi.org/10.3390/en17092039