Choosing the Most Suitable Working Fluid for a CTEC
Abstract
:1. Introduction
- -
- Mini OTEC-CC, 50 kW (1979), a closed-cycle system, was operated on a US Navy barge 2 km off the coast of Keahole Point, Hawaii. This plant operated for three months in 1979, using ammonia as a working fluid, generating 50 kW of gross power and net power of 10–17 kW [5].
- -
- OTEC-1 MW (1980) was deployed on a US Navy tanker anchored off Kawaihae, on the coast of Kona, Hawaii. It was used to test heat exchangers and other components of a closed cycle plant, and for research into environmental effects on the ocean [6].
- -
- OTEC-CC 100 kW (1981), the first land-based system, was installed in the Republic of Nauru in Micronesia, by Toshiba, TEPCO, and Tokyo Electric Power Services [7].
- -
- A 210 kW OC-OTEC experimental plant was installed on land in Hawaii, and operated from 1993 until 1998 as a test bank for future modifications and improvements in the OTEC process, producing electricity and desalinated water [8].
- -
- A 1 MW floating OTEC plant, approximately 60 km southeast of the Port of Tuticorin, India, was installed by Saga University, Japan and NIOT of India in 2000, using ammonia as the working fluid [9].
- -
- A 20 kW closed loop was designed in 2012 by KRISO (Korea Research Institute of Ships and Ocean Engineering), together with KIOST (Korea Institute of Ocean Science and Technology). It served as a prototype for a later plant of 1 [MW], installed in 2013. The working fluid was the refrigerant R-32 [10].
- -
- A 10 MW plant was developed by Lockheed Martin and the Beijing Based Reignwood Group. It was installed on the south coast of China in 2013 [10].
- -
- A 100 kW plant was installed in Hawaii in 2015, working in a closed cycle, with ammonia as the working fluid. It can supply electricity to 120 houses [11].
2. Materials and Methods
2.1. Subsection
- Ozone layer destruction potential (ODP)
- Heating power, GWP (Global Warming Potential)
- Boiling pressure at 15.56 °C
- Flammability
- Toxicity
- Parameters for sizing the turbine and heat exchanger.
- Cost of the working fluid
2.2. Laboratory Model
- Outer cylinder inner diameter (Di): 0.163 m
- Flexible tubing inner diameter (id): 0.005 m
- Flexible tubing outside diameter (OD): 0.007 m
- Average propeller diameter (Dh): 0.13 m
2.3. CFD Modeling
2.3.1. Boundary Conditions
2.3.2. Mesh and Residuals
3. Results
3.1. Selection of the Working Fluid
3.2. Experimental Results
3.3. Numerical Model Results
Results with Steam
3.4. Results with Working Fluids
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
OTEC | Ocean Thermal Energy Converter |
CTEC | Coastal Thermal Energy Converter |
CFD | Computational Fluid Dynamics |
W | Watts |
kW | Kilo Watts |
MW | Mega Watts |
ORC | Organic Rankine Cycle |
ODP | Ozone layer destruction potential |
GWP | Global Warming Potential |
B | Sizing parameter |
ΔHlg | Enthalpy change due to phase change |
pv | Saturation pressure at 1 atm in kPa |
M | Molecular weight (g/mol) |
Cp | Specific heat |
a | Exchanger area (m2) |
Heat flux | |
U0 | Global coefficient of the exchanger |
k | Thermal conductivity |
ρl | Density (kg/m3) |
θ | Pipe diameter (m) |
μl | Dynamic viscosity (Pa s) |
p | Pressure |
h | enthalpy |
τ | shear stress tensor |
Ω | dissipation function |
u | absolute velocity |
urel | relative velocity |
ω | angular velocity |
keff | effective thermal conductivity |
Re | Reynolds number |
Mase rate |
References
- Elavarasan, R.M. The motivation for renewable energy and its comparison with other energy sources: A review. Eur. J. Sustain. Dev. Res. 2019, 3, em0076. [Google Scholar] [CrossRef] [PubMed]
- Barros, C.P.; Peypoch, N. Technical efficiency of thermoelectric power plants. Energy Econ. 2008, 30, 3118–3127. [Google Scholar] [CrossRef]
- Garduño-Ruiz, E.P.; Silva, R.; Rodríguez-Cueto, Y.; García-Huante, A.; Olmedo-González, J.; Martínez, M.L.; Wojtarowski, A.; Martell-Dubois, R.; Cerdeira-Estrada, S. Criteria for optimal site selection for ocean thermal energy conversion (Otec) plants in Mexico. Energies 2021, 14, 2121. [Google Scholar] [CrossRef]
- Avery, W.H.; Wu, C. Renewable Energy from the Ocean: A Guide to OTEC; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Liu, W.; Xu, X.; Chen, F.; Liu, Y.; Li, S.; Liu, L.; Chen, Y. A review of research on the closed thermodynamic cycles of ocean thermal energy conversion. Renew. Sustain. Energy Rev. 2020, 119, 109581. [Google Scholar] [CrossRef]
- Cohen, R. Energy from the ocean. Philosophical Transactions of the Royal Society of London. Ser. A Math. Phys. Sci. 1982, 307, 405–437. [Google Scholar]
- Mitsui, T.; Ito, F.; Seya, Y.; Nakamoto, Y. Outline of the 100 kw Otec Pilot Plant in the Republic of Naure. IEEE Trans. Onpower Appar. Syst. 1983, PAS-102, 3167–3171. [Google Scholar] [CrossRef]
- Vega, L.A. Ocean thermal energy conversion primer. Mar. Technol. Soc. J. 2002, 36, 25–35. [Google Scholar] [CrossRef]
- Academy, I.N.S. Pursuit and Promotion of Science: The Indian Experience; Indian National Science Academy: New Delhi, India, 2001. [Google Scholar]
- Rajagopalan, K.; Nihous, G.C. Estimates of global Ocean Thermal Energy Conversion (OTEC) resources using an ocean general circulation model. Renew. Energy 2013, 50, 532–540. [Google Scholar] [CrossRef]
- Vyawahare, M.; Climatewire. Hawaii First to Harness Deep-Ocean Temperatures for Power. Available online: https://www.scientificamerican.com/article/hawaii-first-to-harness-deep-ocean-temperatures-for-power/ (accessed on 5 April 2024).
- Zhang, C.; Wu, Z.; Wang, J.; Ding, C.; Gao, T.; Chen, Y. Thermodynamic performance of a radial-inflow turbine for ocean thermal energy conversion using ammonia. Renew. Energy 2023, 202, 907–920. [Google Scholar] [CrossRef]
- Ma, Q.; Gao, Z.; Huang, J.; Mahian, O.; Feng, X.; Lu, H.; Wang, S.; Wang, C.; Tang, R.; Li, J. Thermodynamic analysis and turbine design of a 100 kW OTEC-ORC with binary non-azeotropic working fluid. Energy 2023, 263, 126097. [Google Scholar] [CrossRef]
- Yang, M.H.; Yeh, R.H. Investigation of the potential of R717 blends as working fluids in the organic Rankine cycle (ORC) for ocean thermal energy conversion (OTEC). Energy 2022, 245, 123317. [Google Scholar] [CrossRef]
- Zheng, G.; Xu, P.; Li, L.; Fan, X. Investigations of the Formation Mechanism and Pressure Pulsation Characteristics of Pipeline Gas-Liquid Slug Flows. J. Mar. Sci. Eng. 2024, 12, 590. [Google Scholar] [CrossRef]
- Yan, Q.; Li, D.; Wang, K.; Zheng, G. Study on the Hydrodynamic Evolution Mechanism and Drift Flow Patterns of Pipeline Gas–Liquid Flow. Processes 2024, 12, 695. [Google Scholar] [CrossRef]
- da Silva, E.R.; Kyprianidis, K.G.; Camacho, R.G.R.; Säterskog, M.; Angulo, T.M.A. Preliminary design, optimization and CFD analysis of an organic rankine cycle radial turbine rotor. Appl. Therm. Eng. 2021, 195, 117103. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, C.; Rong, F.; Liang, W. Optimal coupling design for organic Rankine cycle and radial turbine rotor using CFD modeling, machine learning and genetic algorithm. Energy Convers. Manag. 2023, 275, 116493. [Google Scholar] [CrossRef]
- Obert, B.; Cinnella, P. Comparison of steady and unsteady RANS CFD simulation of a supersonic ORC turbine. Energy Procedia 2017, 129, 1063–1070. [Google Scholar] [CrossRef]
- Jayakumar, J.; Mahajani, S.; Mandal, J.; Vijayan, P.; Bhoi, R. Experimental and CFD estimation of heat transfer in helically coiled heat exchangers. Chem. Eng. Res. Des. 2008, 86, 221–232. [Google Scholar] [CrossRef]
- Deng, R.; Xie, L.; Lin, H.; Liu, J.; Han, W. Integration of thermal energy and seawater desalination. Energy 2010, 35, 4368–4374. [Google Scholar] [CrossRef]
- Yoon, J.I.; Son, C.H.; Baek, S.M.; Kim, H.J.; Lee, H.S. Efficiency comparison of subcritical OTEC power cycle using various working fluids. Heat Mass Transf. 2014, 50, 985–996. [Google Scholar] [CrossRef]
- Cerezo-Acevedo, E.; Cupul, J.G.T.; Medina, V.M.R.; Barragan, E.G.; Mendieta, M.A. Analysis and Development of Closed Cycle OTEC System; IntechOpen: London, UK, 2020. [Google Scholar]
- Domanski, P. Evolution of Refrigerant Application. In Proceedings of the International Congress on Refrigeration, Milano, IT, Italy, 4 May 1999; Available online: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=860786 (accessed on 18 April 2024).
- European Parliament; Council of the European Union. Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on Fluorinated Greenhouse Gases and Repealing Regulation (EC) No 842/2006: Text with EEA Relevance. Official Journal of the European Union, L 150/195. 2014. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32014R0517 (accessed on 15 February 2024).
- Pérez Sánchez, A.; Pérez Sánchez, E.; Heredia Sánchez, A.; Pazos Amayuela, L. Diseño de un intercambiador de calor de serpentín para el enfriamiento de acetona. Nexo Rev. Científica 2019, 32, 61–74. [Google Scholar] [CrossRef]
- Heinrich, M.; Schwarze, R. Simulation and validation of the compressor stage of a turbocharger using openfoam. In Proceedings of the 8th Institution of Mechanical Engineers–8th International Conference on Compressors and Their Systems, London, UK, 9–10 September 2013; pp. 659–667. [Google Scholar]
- Calm, J.M.; Hourahan, G.C. Physical, safety, and environmental data for current and alternative refrigerants. In Proceedings of the 23rd International Congress of Refrigeration (ICR2011), Prague, Czech Republic, 21–26 August 2011; pp. 21–26. [Google Scholar]
- Hsieh, J.C.; Chen, Y.H.; Hsieh, Y.C. Experimental study of an organic Rankine cycle with a variable-rotational-speed scroll expander at various heat source temperatures. Energy 2023, 270, 126956. [Google Scholar] [CrossRef]
- Hijriawan, M.; Pambudi, N.A.; Wijayanto, D.S.; Biddinika, M.K.; Saw, L.H. Experimental analysis of R134a working fluid on Organic Rankine Cycle (ORC) systems with scroll-expander. Eng. Sci. Technol. Int. J. 2022, 29, 101036. [Google Scholar] [CrossRef]
- Cengel, Y.A.; Boles, M.A.; Kanoglu, M. Thermodynamics: An Engineering Approach; McGraw-Hill: New York, NY, USA, 2011; Volume 5. [Google Scholar]
Model | Voltage | Power Start | Maximum Efficiency | |||||
---|---|---|---|---|---|---|---|---|
Operation Range | Standard Voltage | Speed (r/min) | Current (A) | Speed (r/min) | Current (A) | Torque (Nm) | Output (W) | |
RF-500TB-14415 | 1.5–9.0 V | 5.0 V | 3100 | 0.026 | 2540 | 0.12 | 1.23 | 0.33 |
Fluid | Molecular Weight (M) g/mol | Temp. inlet, to Turbine (T) °C | Inlet Pressure (p) kPa | Inlet Velocity (V)m/s | Mass Flow () (kg/s) | Reynolds (Re) |
---|---|---|---|---|---|---|
Water | 18.015 | 98 | 93 | 47 | 0.00132 | 16,978.56 |
Ammonia | 17.03 | 25 | 550 | 22 | 0.00132 | 96,807.09 |
R134a | 102 | 20 | 450 | 19 | 0.00132 | 281,629.57 |
Fluid | Molecular Weight (M) g/mol | Specific Heat (Cp) kJ/kg*K | Dynamic Viscosity (μ) μPa-s | Thermal Conduct. (K) W/mK | Density (ρ) kg/m3 | Prandt Number | Kinematic Viscosity (v) m2/s |
---|---|---|---|---|---|---|---|
Water | 18.015 | 2.0685 | 12.2 | 0.0245 | 0.5509 | 1.030 | 2.215 × 10−5 |
Ammonia | 17.03 | 2.7726 | 9.93 | 0.0269 | 5.4619 | 1.023 | 1.818 × 10−6 |
R134a | 102 | 0.9485 | 11.50 | 0.0137 | 21.3075 | 0.794 | 5.397 × 10−7 |
Fluids | ODP | GWP | Boiling Pressure at 15.56 °C (kPa) |
---|---|---|---|
Ammonia (R717) | 0 | 1 | 742.5 |
Isobutane (R600a) | 0 | 20 | 263.3 |
Propane (R290) | 0 | 20 | 742.9 |
R134a | 0 | 1370 | 497.5 |
R152a | 0 | 133 | 447.1 |
R407c | 0 | 1700 | 755.9 |
Fluids | Flammability | Toxicity | B | Cost $/kg | |
---|---|---|---|---|---|
Ammonia | 16.7 | 25 | 10,910.54 | 15,224,309.10 | 11.00 |
Isobutane | 1.6 | 1000 | 18,849.26 | 5,193,836.84 | 248.92 |
Propane (R290) | 2.1 | 1000 | 16,321.13 | 11,505,975.77 | 325.40 |
R134a | 0 | 1000 | 34,352.59 | 9,443,644.50 | 157.68 |
R152a | 4.8 | 1000 | 25,008.43 | 8,558,070.76 | 69.45 |
R407c | 0 | 1000 | 31,875.68 | 12,855,787.83 | 182.78 |
Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | |
---|---|---|---|---|
Heating power (GWP) | 10 | 15 | 25 | 16.6667 |
Flammability | 15 | 20 | 17 | 16.6667 |
Toxicity | 15 | 30 | 17 | 16.6667 |
25 | 10 | 8 | 16.6667 | |
B. | 25 | 10 | 8 | 16.6667 |
Approximate costs of the working fluid offered by wholesale suppliers [$US/kg] subject to market availability. | 10 | 15 | 25 | 16.6667 |
Fluid | Temp. at Turbine Inlet °C | Inlet Pressure KPa | Density kg/m3 |
---|---|---|---|
Steam | 98 | 93 | 0.5509 |
R134a | 20 | 450 | 21.051 |
Ammonia | 25 | 550 | 4.0204 |
Fluid | Velocity [m/s] | Pressure [Pa] | Temperature [K] | |||
---|---|---|---|---|---|---|
Inlet | Outlet | Inlet | Outlet | Inlet | Outlet | |
Steam | 45.4414 | 49.900 | 97,801.6 | 96,893.2 | 365.983 | 365.32 |
R134a | 17.5242 | 20.240 | 441,821 | 441,244 | 292.986 | 314.00 |
Ammonia | 18.6888 | 18.109 | 541,983 | 541,538 | 297.968 | 326.72 |
Fluids | Thrust [N] | Torque [N-m] | Power [W] |
---|---|---|---|
Steam | 0.2493 | 0.00100 | 0.1296 |
R134a | 0.2270 | 0.00091 | 0.1181 |
Ammonia | 0.2348 | 0.00094 | 0.1221 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Achkienasi, A.; Silva, R.; Mendoza, E.; Luna, L.D. Choosing the Most Suitable Working Fluid for a CTEC. Energies 2024, 17, 2181. https://doi.org/10.3390/en17092181
Achkienasi A, Silva R, Mendoza E, Luna LD. Choosing the Most Suitable Working Fluid for a CTEC. Energies. 2024; 17(9):2181. https://doi.org/10.3390/en17092181
Chicago/Turabian StyleAchkienasi, Aliet, Rodolfo Silva, Edgar Mendoza, and Luis D. Luna. 2024. "Choosing the Most Suitable Working Fluid for a CTEC" Energies 17, no. 9: 2181. https://doi.org/10.3390/en17092181
APA StyleAchkienasi, A., Silva, R., Mendoza, E., & Luna, L. D. (2024). Choosing the Most Suitable Working Fluid for a CTEC. Energies, 17(9), 2181. https://doi.org/10.3390/en17092181