Carbon Footprint of Electricity Produced in the Russian Federation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Structure and Features of the Russian Energy System
3.2. Structure and Features of the IES of the Urals
3.3. Structure and Features of the Perm Region Energy System
3.4. Generating Capacities of the Companies
3.5. «Green» Certificates
3.6. Existing Approaches to Assessing Greenhouse Gas Emissions of Electricity Production
3.7. Carbon Footprint of Electricity Genereted in Russia
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Order of the Government of the Russian Federation of October 29, 2021 No. 3052-r “On Approval of the Strategy for the Socio-economic Development of the Russian Federation with Low Greenhouse Gas Emissions until 2050”. Available online: http://publication.pravo.gov.ru/Document/View/0001202111010022 (accessed on 2 October 2024).
- Decree of the President of the Russian Federation of 04.11.2020 No. 666 “On the Reduction of Greenhouse Gas Emissions”. Available online: http://www.kremlin.ru/acts/bank/45990 (accessed on 4 October 2024).
- Tsvetkov, P.; Andreichyk, A.; Kosarev, O. The impact of economic development of primary and secondary industries on national CO2 emissions: The case of Russian regions. J. Environ. Manag. 2024, 351, 119881. [Google Scholar]
- The Carbon Brief Profile: Russia. Available online: https://www.carbonbrief.org/the-carbon-brief-profile-russia (accessed on 14 October 2024).
- Russian Federation. National Communication (NC). NC 8. Biennial Reports (BR). BR 5. Available online: https://unfccc.int/documents/624780 (accessed on 2 September 2024).
- Schreider, A.; Eckert, P.; Bonneschky, A. Development of the Russian Electricity Carbon Emission Factors for the Period 2010–2020. In Proceedings of the Russia Power 2011, Moscow, Russia, 28–30 March 2011; 13p. Available online: https://www.researchgate.net/publication/319626357_Development_of_the_Russian_Electricity_Carbon_Emission_Factors_for_the_Period_2010-2020 (accessed on 19 November 2024).
- Saneev, B.; Ivanova, I.; Izhbuldin, A.; Maysyuk, E. Assessment of the spatial distribution of greenhouse gas emissions from energy facilities in Russia. Energy Policy 2022, 11, 92–103. [Google Scholar]
- Senchuk, D.; Korotchenko, V. Calculation of indirect energy greenhouse gas emissions: International standards, practice of calculating emission factors, current state in Russia. News Electr. Power Eng. 2023, 3, 66–73. [Google Scholar]
- Brander, M.; Sood, A.; Wylie, C.; Haughton, A.; Lovell, J. Technical Paper «Electricity-specific emission factors for grid electricity». Ecometrica 2011. Available online: https://ecometrica.com/assets/Electricity-specific-emission-factors-for-grid-electricity.pdf (accessed on 19 November 2024).
- Ember. Global Electricity Review 2024; Ember: London, UK, 2024; 191p, Available online: https://ember-energy.org/app/uploads/2024/05/Report-Global-Electricity-Review-2024.pdf (accessed on 12 November 2024).
- Russian Federation. Climate Transparency Report: Comparing G20 Climate Action; Russian Federation: Moscow, Russia, 2022; 20p, Available online: https://www.climate-transparency.org/wp-content/uploads/2022/10/CT2022-Russia-web.pdf (accessed on 2 September 2024).
- Greenhouse Gas Emission Factors of the Russian Energy System. JSC “TSA”. Available online: https://www.atsenergo.ru/results/co2all (accessed on 2 October 2024).
- IEA. Emissions Factors 2023. Annual GHG Emission Factors for World Countries from Electricity and Heat Generation. Available online: https://www.iea.org/data-and-statistics/data-product/emissions-factors-2023 (accessed on 2 October 2024).
- International Electricity Factors. Carbon Footprint. Available online: https://www.carbonfootprint.com/international_electricity_factors.html (accessed on 2 October 2024).
- European Bank for Reconstruction and Development. Development of the Electricity Carbon Emission Factors for Russia; Report; European Bank for Reconstruction and Development: London, UK, 2010; 102p, Available online: https://www.ebrd.com/downloads/sector/eecc/Baseline_Study_Russia_Final_Russian.pdf (accessed on 10 October 2024).
- Russian Federation. Energy Profile; Report; IRENA: Abu Dhabi, United Arab Emirates, 2024; 4p, Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Statistics/Statistical_Profiles/Eurasia/Russian-Federation_Eurasia_RE_SP.pdf (accessed on 2 October 2024).
- Abulibdeh, A.; Jawarneh, R.N.; Al-Awadhi, T.; Abdullah, M.M.; Abulibdeh, R.; Kenawy, A.M. Assessment of carbon footprint in Qatar’s electricity sector: A comparative analysis across various building typologies. Renew. Sustain. Energy Rev. 2024, 189, 114022. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Z.; Zhao, Y.; Zhou, S.; Zhang, Y. Prediction of energy-related carbon emission intensity in China, America, India, Russia, and Japan using a novel self-adaptive grey generalized Verhulst model. J. Clean. Prod. 2023, 423, 138656. [Google Scholar] [CrossRef]
- Kiehbadroudinezhad, M.; Hosseinzadeh-Bandbafha, H.; Rosen, M.A.; Gupta, V.K.; Peng, W.; Tabatabaei, M.; Aghbashlo, M. The role of energy security and resilience in the sustainability of green microgrids: Paving the way to sustainable and clean production. Sustain. Energy Technol. Assess. 2023, 60, 103485. [Google Scholar] [CrossRef]
- Ji, L.; Liang, S.; Qu, S.; Zhang, Y.; Xu, M.; Jia, X.; Jia, Y.; Niu, D.; Yuan, J.; Hou, Y.; et al. Greenhouse gas emission factors of purchased electricity from interconnected grids. Appl. Energy 2016, 184, 751–758. [Google Scholar] [CrossRef]
- Kilinc-Ata, N.; Proskuryakova, L.N. Empirical analysis of the Russian power industry’s transition to sustainability. Util. Policy 2023, 82, 101586. [Google Scholar] [CrossRef]
- Melekh, D. Development of a model for calculation greenhouse gas emissions in the category “Manufacturing industries and construction” in the “Energy” sector. Bull. Polotsk State Univ. Ser. F 2020, 16, 25–36. [Google Scholar]
- IEA. Norway. Available online: https://www.iea.org/countries/norway/electricity (accessed on 23 October 2024).
- Low-Carbon Power. Electricity in Norway in 2023/2024. Available online: https://lowcarbonpower.org/region/Norway (accessed on 23 October 2024).
- Nowtricity. Current Emissions in Norway. Available online: https://www.nowtricity.com/country/norway/#:~:text=In%202023%20the%20average%20emissions,countries%20in%20renewable%20energy%20production (accessed on 23 October 2024).
- Ember. China. Available online: https://ember-energy.org/countries-and-regions/china/ (accessed on 23 October 2024).
- Jia, M.; Zhang, Z.; Zhang, L.; Zhao, L.; Lu, X.; Li, L.; Ruan, J.; Wu, Y.; He, Z.; Liu, M.; et al. Optimization of electricity generation and assessment of provincial grid emission factors from 2020 to 2060 in China. Appl. Energy 2024, 373, 123838. [Google Scholar] [CrossRef]
- Carbon Intensity of the Power Sector in China from 2000 to 2023. Available online: https://www.statista.com/statistics/1300419/power-generation-emission-intensity-china/ (accessed on 23 October 2024).
- Arevalo, P.; Cano, A.; Jurado, F. Mitigation of carbon footprint with 100% renewable energy system by 2050: The case of Galapagos islands. Energy 2022, 245, 123247. [Google Scholar] [CrossRef]
- 11 Countries Leading the Charge on Renewable Energy. Available online: https://www.climatecouncil.org.au/11-countries-leading-the-charge-on-renewable-energy/ (accessed on 23 October 2024).
- EPA. U.S. Grid Regions. Available online: https://www.epa.gov/green-power-markets/us-grid-regions (accessed on 9 December 2024).
- Robinson, S.; Sullivan, G. Proposed guidelines for U.S. Scope 2 GHG reduction claims with renewable energy certificates. Electr. J. 2022, 35, 107160. [Google Scholar] [CrossRef]
- Chen, L.; Wemhoff, A.P. Predicting embodied carbon emissions from purchased electricity for United States counties. Appl. Energy 2021, 292, 116898. [Google Scholar] [CrossRef]
- Lueken, R.; Klima, K.; Griffin, W.M.; Apt, J. The climate and health effects of a USA switch from coal to gas electricity generation. Energy 2016, 109, 1160–1166. [Google Scholar] [CrossRef]
- Millstein, D.; O’Shaughnessy, E.; Wiser, R. Climate and air quality benefits of wind and solar generation in the United States from 2019 to 2022. Cell Rep. Sustain. 2024, 1, 100105. [Google Scholar] [CrossRef]
- The Emissions & Generation Resource Integrated Database. Available online: https://www.epa.gov/system/files/documents/2024-01/egrid2022_technical_guide.pdf (accessed on 23 October 2024).
- Climate Scorecard. China’s Power Grid Systems. Available online: https://www.climatescorecard.org/2023/01/chinas-power-grid-systems/ (accessed on 9 December 2024).
- Qu, S.; Liang, S.; Xu, M. CO2 Emissions Embodied in Interprovincial Electricity Transmissions in China. Environ. Sci. Technol. 2017, 51, 10893–10902. [Google Scholar] [CrossRef] [PubMed]
- Sosna, M.; Maslennikova, M.; Kryuchkov, M.; Pustovalov, M. «Green» and/or «Blue» Hydrogen. Neft. Petrochem. 2020, 34, 21–23. [Google Scholar]
- Hwang, H.; Kweon, T.; Kang, H.; Hwang, Y. Resource and Greenhouse Gas Reduction Effects through Recycling of Platinum Containing Waste. Sustainability 2024, 16, 80. [Google Scholar] [CrossRef]
- Rajulwar, V.V.; Shyrokykh, T.; Stirling, R.; Jarnerud, T.; Korobeinikov, Y.; Bose, S.; Bhattacharya, B.; Bhattacharjee, D.; Sridhar, S. Steel, Aluminum, and FRP-Composites: The Race to Zero Carbon Emissions. Energies 2023, 16, 6904. [Google Scholar] [CrossRef]
- Ekman Nilsson, A.; Macias Aragonés, M.; Arroyo Torralvo, F.; Dunon, V.; Angel, H.; Komnitsas, K.; Willquist, K. A Review of the Carbon Footprint of Cu and Zn Production from Primary and Secondary Sources. Minerals 2017, 7, 168. [Google Scholar] [CrossRef]
- Cao, Q.; Song, J.; Liu, C.; Yang, W. Evolving water, energy and carbon footprints in China’s food supply chain. J. Clean. Prod. 2023, 423, 138716. [Google Scholar] [CrossRef]
- Aluminium Sector Greenhouse Gas Emissions. Available online: https://international-aluminium.org/statistics/greenhouse-gas-emissions-aluminium-sector/ (accessed on 19 September 2024).
- RUSAL. Sustainability. Available online: https://rusal.ru/en/sustainability/ (accessed on 27 September 2024).
- Sotos, M. GHG Protocol Scope 2 Guidance. An Amendment to the GHG Protocol Corporate Standard; World Resources Institute: Washington, DC, USA, 2024; 120p, Available online: https://ghgprotocol.org/sites/default/files/2023-03/Scope%202%20Guidance.pdf (accessed on 14 October 2024).
- The System Operator and Technologically Isolated Power Systems Have Taken an Important Step Towards Centralizing Operational Dispatch Control. Available online: https://www.so-ups.ru/news/press-release/press-release-view/news/22171/ (accessed on 22 October 2024).
- Resolution of the Government of the Russian Federation of 13.08.2018 N 937 “On Approval of the Rules for the Technological Functioning of Electric Power Systems and on Amendments to Certain Acts of the Government of the Russian Federation. Available online: http://publication.pravo.gov.ru/Document/View/0001201808160007 (accessed on 22 October 2024).
- Russian Power System Operator. Report on the Functioning of the Unified Energy System of Russia in 2023; Russian Power System Operator: St. Petersburg, Russia, 2024; 4p, Available online: https://www.so-ups.ru/fileadmin/files/company/reports/disclosure/2024/ups_rep2023.pdf (accessed on 9 December 2024).
- Federal State Statistics Service. Electrical Balance. Available online: https://rosstat.gov.ru/search?q=%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B1%D0%B0%D0%BB%D0%B0%D0%BD%D1%81 (accessed on 24 October 2024).
- Russian Power System Operator. Available online: http://www.so-ups.ru (accessed on 22 October 2024).
- Russian Power System Operator. Report on the Implementation of the General Scheme for the Placement of Electric Power Facilities Until 2035; Russian Power System Operator; Russian Power System Operator: St. Petersburg, Russia, 2024; 23p, Available online: https://www.so-ups.ru/fileadmin/files/company/future_plan/genshema/genshena_reports/genshema_2023_report_.pdf (accessed on 20 October 2024).
- Hydropower in Russia. Available online: https://www.hydropower.ru/hydropower/analitics.php (accessed on 22 October 2024).
- Analytical Center Under the Government of the Russian Federation. Generation Facilities in Isolated and Hard-to-Reach Areas in Russia; Analytical Center Under the Government of the Russian Federation: Moscow, Russia, 2020; 78p. Available online: https://ac.gov.ru/uploads/2-Publications/analitika/%D0%B3%D0%B5%D0%BD%D0%B5%D1%80%D0%B0%D1%86%D0%B8%D0%B8_%D0%B2_%D0%98%D0%A2%D0%A2.pdf (accessed on 22 October 2024).
- Khondoshko, Y.; Vorobyov, A. Technologically isolated energy systems of Russia. Bull. Amur State Univ. 2023, 101, 88–91. [Google Scholar] [CrossRef]
- Novak, A. Nuclear energy development is a prerequisite for the global climate agenda. Energy Policy 2021, 9, 148. [Google Scholar] [CrossRef]
- Russian Power System Operator. Scheme and program for the development of the Electric Power Systems of Russia for 2024–2029; Substantiating materials. Consolidated report on the Unified Energy System of Russia; Russian Power System Operator: St. Petersburg, Russia, 2024; 224p, Available online: https://www.so-ups.ru/fileadmin/files/company/future_plan/public_discussion/2024/final/sipr_ups_2024-29_fin.pdf (accessed on 22 October 2024).
- Russian Power System Operator. Operating Area. Available online: https://www.so-ups.ru/odu-ural/odu-ural-zone/ (accessed on 22 October 2024).
- Russian Power System Operator. Beloyarsk NPP. Available online: https://www.so-ups.ru/odu-ural/odu-ural-zone/krupneishie-obekty-ehlektrogeneracii-oehs-urala/belojarskaja-aehs/ (accessed on 20 October 2024).
- Russian Power System Operator. Electricity Consumption in the IES of the Urals for the First 9 Months of 2022 Increased by 1.8% Compared to the Same Period in 2021. Available online: https://www.so-ups.ru/odu-ural/news/odu-ural-news-view/news/19792/ (accessed on 25 October 2024).
- Resolution of the Government of Perm Region Dated 04.12.2023 No. 953-p “On Approval of the Regional Program “Energy Saving and Increasing Energy Efficiency of Perm Region for 2023–2027”. Available online: https://permkrai.ru/upload/iblock/483/8o2kzhdt5hrhdevw07xfe1u2yxl8nk2q/953_p.pdf (accessed on 28 October 2024).
- Russian Power System Operator. Supporting Materials. Scheme and Program for the Development of Russian Electric Power Systems for 2023–2028. Perm Region. Available online: https://www.so-ups.ru/fileadmin/files/company/future_plan/public_discussion/support_materials/38_Permskii_krai.pdf (accessed on 25 October 2024).
- OJSC Uralkali Begins Construction of Power Plants. Available online: https://www.uralkali.com/ru/press_center/press_releases/item216/ (accessed on 22 October 2024).
- Sulimov, D.D.; Kapralov, D.A. The largest thermal power plant based on Russian GTES-25PA was commissioned in Perm. Turbine Disel 2015, 4–7. Available online: http://www.turbine-diesel.ru/sites/default/files/n6-2015/Aviadvigatel.pdf (accessed on 22 October 2024).
- Lukoil Launched a Power Plant in Perm Region for Beneficial Utilization of Associated Petroleum Gas. Available online: https://lukoil.ru/PressCenter/Pressreleases/Pressrelease/lukoil-zapustil-v-permskom-krae-elektrostantsiiu (accessed on 20 October 2024).
- A Power Plant for the Useful Utilization of Associated Petroleum Gas Has Been Launched in Perm Krai. Available online: https://www.permkrai.ru/news/v-permskom-krae-zapushchena-elektrostantsiya-dlya-poleznoy-utilizatsii-poputnogo-neftyanogo-gaza/ (accessed on 15 October 2024).
- Solikamsk Papermakers Completed Construction of New Thermal Power Plant for 4 Billion Rubles. Available online: https://www.kommersant.ru/doc/4041398 (accessed on 22 October 2024).
- “Aviadvigatel” Launches New Power Plant at “Sibur”. Available online: https://www.kr-media.ru/news/dvigatelestroenie/aviadvigatel-zapustil-novuyu-elektrostantsiyu-na-sibure/ (accessed on 22 October 2024).
- Carbon Zero. Green Electricity Certificates. Available online: https://carbonzero.ru/sertifikaty-zelenoj-elektroenergii/ (accessed on 11 November 2024).
- Russian Power System Operator. Carbon Tax. Available online: https://www.so-ups.ru/fileadmin/files/company/markets/dr/carbon_dr/carbon_dr_021221.pdf (accessed on 11 November 2024).
- Federal Law of 04.08.2023 N 489-FZ “On Amendments to the Federal Law “On Electric Power Industry” and Certain Legislative Acts of the Russian Federation”. Available online: http://www.kremlin.ru/acts/bank/49679 (accessed on 15 November 2024).
- The First Agreements on the Sale of Green Certificates for the Azov and Kola Wind Farms Under the National Certification System Have Been Signed. Available online: https://www.ruscable.ru/news/2024/03/18/Podpisany_pervye_dogovory_o_prodazhe_zelenyx_serti/ (accessed on 15 November 2024).
- 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/russian/vol2.html (accessed on 11 November 2024).
- IPCC Updates Methodology for Greenhouse Gas Inventories. Available online: https://www.ipcc-nggip.iges.or.jp/public/2019rf/vol2.html (accessed on 15 November 2024).
- NATIONAL INVENTORY REPORT of Anthropogenic Emissions by Sources and Removals by Sinks of Greenhouse Gases Not Controlled by the Montreal Protocol for 1990–2020; Part I. 468p. Available online: http://downloads.igce.ru/kadastr/RUS_NIR-2022_v1_rev.pdf (accessed on 1 November 2024).
- Order No. 371 of the Ministry of Natural Resources and Environment of Russia dated 27.05.2022 “On Approval of Methods for Quantitative Determination of Greenhouse Gas Emissions and Greenhouse Gas Absorption”. Available online: https://docs.cntd.ru/document/350962750 (accessed on 12 November 2024).
- ISO 14064-1:2018; Greenhouse Gases. Part 1: Specification with Guidance at the Organization Level for Quantification and Reporting of Greenhouse Gas Emissions and Removals. International Organization for Standardization: Geneva, Switzerland, 2018.
- Order No. 330 of the Ministry of Natural Resources and Environment of Russia dated 29.06.2017 “On Approval of Methodological Guidelines for Quantification of Indirect Energy Emissions of Greenhouse Gases”. Available online: https://docs.cntd.ru/document/456079014 (accessed on 9 November 2024).
- GOST R ISO 14064-1-2021; Greenhouse Gases. Part 1. Specification with Guidance at the Organization Level for Quantification and Reporting of Greenhouse Gas Emissions and Removals. Russian Institute of Standardization: Moscow, Russia, 2021.
- Grid Emission Factors. Available online: https://hpb-s.com/news/energeticheskie-koefficzienty/ (accessed on 10 November 2024).
- Methodological Approach for the Common Default Grid Emission Factor Dataset. Available online: https://unfccc.int/sites/default/files/resource/IFITWG_Methodological_approach_to_common_dataset.pdf (accessed on 2 October 2024).
- PNST 646-2022; “Green” Standards. “Green” Products and “Green” Technologies. Methodology for Assessing the Reduction of Carbon Footprint (Approved and Put into Effect by Order of Rosstandart Dated 26.04.2022 N 35-pnst. Preliminary National Standard of the Russian Federation: Moscow, Russia, 2022. Available online: https://gostassistent.ru/doc/0508f291-bfa8-46d3-86c3-cf7403ef7091 (accessed on 2 October 2024).
- Association “NP Market Council” and JSC “TSA”. The Concept of Calculation and Publication of Greenhouse Gas Emission Factors for the Energy System of the Russian Federation; Association “NP Market Council” and JSC “TSA”: Moscow, Russia, 2022; 41p, Available online: https://www.np-sr.ru/sites/default/files/koncepciya_kev.pdf (accessed on 2 October 2024).
- Ecoinvent Database, version 3.8; Ecoinvent: Zurich, Switzerland, 2021.
- Council of the Federation Federal Assembly of the Russian Federation. Implementation of Recommendations of Parliamentary Hearings (Ministry of Energy of Russia, Letter Dated 23.01.2020 No. MU-644/09). 23 January 2020. Available online: http://council.gov.ru/media/files/r5ZuW1lJGbzvzueXVYaBUAMbu8FCVQlK.pdf (accessed on 2 October 2024).
- Energy Institute. Statistical Review of World Energy. Available online: https://www.energyinst.org/statistical-review (accessed on 2 October 2024).
- Harmonized IFI Default Grid Factors 2021 v3.1. Available online: https://unfccc.int/sites/default/files/resource/IFI%20Default%20Grid%20Factors%202021%20v3.1_unfccc.xlsx (accessed on 25 October 2024).
- Brown to Green. The G20 Transition to a Low-Carbon Economy. Climate Transparency; Brown to Green: Berlin, Germany, 2017; 36p, Available online: https://www.climate-transparency.org/wp-content/uploads/2017/07/Brown-to-Green-Report-2017_web.pdf (accessed on 12 November 2024).
- Emission Factor. Electricity Supplied from Grid. Available online: https://www.climatiq.io/data/emission-factor/e47f88bd-e04f-4304-bd96-58746cc9e7b9 (accessed on 5 November 2024).
- Gimadi, V.; Kudrin, A.; Kutuzova, A.; Zvyagintsev, A.; Amiraghyan, A.; Kolobov, O.; Kolojanov, S.; Pominova, I.; Martynyuk, A.; Podlesnaya, A. Carbon intensity of electricity in the world and in Russia. Energy Bull. 2019, 28. Available online: https://ac.gov.ru/archive/files/publication/a/22245.pdf (accessed on 6 October 2024).
- Hirschberg, S.; Wiemer, S.; Burgherr, P. Seismic Risk. In Energy from the Earth. Deep Geothermal as a Resource for the Future? VDF Hochschulverlag AG an der ETH Zürich: Zollikon, Switzerland, 2015; 54p. [Google Scholar]
- Dones, R.; Bauer, C.; Bolliger, R.; Burger, B.; Faist Emmenegger, M.; Frischknecht, R.; Heck, T.; Jungbluth, N.; Röder, A. Life Cycle Inventories of Energy Systems: Results for Current Systems in Switzerland and Other UCTE Countries; Ecoinvent report No. 5; Paul Scherrer Institut Villigen, Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2007. [Google Scholar]
- Dormann, C.F.; McPherson, J.M.; Araújo, M.B.; Bivand, R.; Bolliger, J.; Carl, G.; Davies, R.G.; Hirzel, A.; Jetz, W.; Kissling, W.D.; et al. Methods to Account for Spatial Autocorrelation in the Analysis of Species Distributional Data: A Review. Ecography 2007, 30, 609–628. [Google Scholar] [CrossRef]
- Jungbluth, N.; Büsser, S.; Frischknecht, R.; Flury, K.; Stucki, M. Feasibility of Environmental Product Information Based on Life Cycle Thinking and Recommendations for Switzerland. J. Clean. Prod. 2012, 28, 187–197. [Google Scholar] [CrossRef]
- Frischknecht, R.; Althaus, H.-J.; Bauer, C.; Doka, G.; Heck, T.; Jungbluth, N.; Kellenberger, D.; Nemecek, T. The Environmental Relevance of Capital Goods in Life Cycle Assessments of Products and Services. Int. J. Life Cycle Assess. 2007, 12, 1–12. [Google Scholar]
- Mozzhegorova, Y.; Ilinykh, G.; Korotaev, V. Life Cycle Assessment of a Gas Turbine Installation. Energies 2024, 17, 345. [Google Scholar] [CrossRef]
- Lapteva, A.V.; Lisenko, V.G.; Chesnokov, Y.N. Carbon footprint of aluminum production when obtaining alumina using the Bayer process. In Proceedings of the XIV International Scientific and Practical Conference. Sistema Upravleniya Ekologicheskoi Bezopasnostyu, UrFU, Ekaterinburg, Russia, 20–21 May 2020; Volume 93, pp. 264–268. [Google Scholar]
- RUSAL. ALLOW. Available online: https://rusal.ru/clients/allow/ (accessed on 11 December 2024).
- Peppas, A.; Politi, C.; Kottaridis, S.; Taxiarchou, M. LCA Analysis Decarbonisation Potential of Aluminium Primary Production by Applying Hydrogen and CCUS Technologies. Hydrogen 2023, 4, 338–356. [Google Scholar] [CrossRef]
- Carbon Dioxide Emissions from Electricity. Available online: https://world-nuclear.org/information-library/energy-and-the-environment/carbon-dioxide-emissions-from-electricity (accessed on 11 December 2024).
- Hindalco’s Net Zero Goals Redefined: On Track to Meet Clean Energy Targets Before Estimated Time. Available online: https://www.alcircle.com/news/hindalco-s-net-zero-goals-redefined-on-track-to-meet-clean-energy-targets-before-estimated-time-107956 (accessed on 11 December 2024).
- Chalco. Social Responsibility and Environmental Social and Governance Report 2022; Chalco: Beijing, China, 2022; 92p, Available online: https://www.chalco.com.cn/en/tzzgxen/yjbgen/202012/P020201215366846409370.pdf (accessed on 11 December 2024).
- How to Understand the Carbon Footprint of Clean Hydrogen. Available online: https://www.weforum.org/stories/2023/03/understand-carbon-footprint-green-hydrogen/ (accessed on 11 December 2024).
- Kolahchian Tabrizi, M.; Famiglietti, J.; Bonalumi, D.; Campanari, S. The Carbon Footprint of Hydrogen Produced with State-of-the-Art Photovoltaic Electricity Using Life-Cycle Assessment Methodology. Energies 2023, 16, 5190. [Google Scholar] [CrossRef]
Energy System | Share of Actual Installed Capacity of a Generating Facility, % | |||
---|---|---|---|---|
Nuclear Power Plant | Hydroelectric Power Plants and Pumped Storage Power Plants | Thermal Power Plant | Renewable Energy Sources | |
UES of Russia | 11.9 | 20.2 | 66.0 | 1.9 |
IES of North-West | 24.4 | 11.8 * | 62.9 | 0.8 |
IES of the Center | 27.3 | 3.6 | 69.1 | – |
IES of the Middle Volga | 14.5 | 25.2 | 59.3 | 0.9 |
IES of South | 14.7 | 23.3 | 49.9 | 12.1 |
IES of the Urals | 2.8 | 3.6 * | 92.7 | 0.9 |
IES of Siberia | – | 48.5 * | 50.8 | 0.8 |
IES of the East | 41.2 | 58.8 * | – | – |
TITES | 2.0 | 48.7 * | 49.2 | 0.04 |
Object Name | Commissioning Year | Power | Equipment | Source |
---|---|---|---|---|
PJSC «Uralkali», BKPRU-4 | 2005 | 12.9 MW (1 GTU) | 4 GTU (Siemens SGT-400), waste-heat boilers (JSC Belenergomash) | [63] |
LLC «LUKOIL-Permnefteorgsintez», GTPP | 2012 | 200 MW, 40 t/h (steam) | 8 power units GTES-25PA (JSC «UEC-Aviadvigatel»), waste-heat boilers MZ (JSC «ZiO-Podolsk») | [64] |
PJSC LUKOIL, GTPP «Chashkino» | 2020 | 16 MW | GTU-16 (JSC «UEC-Aviadvigatel»), 4 synchronous turbogenerators of 4 MW each (OOO «Elektrotyazhmash-Privod») | [65,66] |
JSC «Solikamskbumprom» | 2019 | 55 MW | 3 gas-piston units (Wartsila, Finland) | [67] |
JSC «SIBUR-Khimprom» | 2014 | 6 MW (1 GTPP), 420 ths tons/year (steam) | 3 GTES «Ural-6000» (JSC “UEC-Aviadvigatel”), 3 waste-heat boilers (JSC «Belenergomash») | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shirinkina, E.; Mozzhegorova, Y.; Ilinykh, G.; Korotaev, V. Carbon Footprint of Electricity Produced in the Russian Federation. Energies 2025, 18, 14. https://doi.org/10.3390/en18010014
Shirinkina E, Mozzhegorova Y, Ilinykh G, Korotaev V. Carbon Footprint of Electricity Produced in the Russian Federation. Energies. 2025; 18(1):14. https://doi.org/10.3390/en18010014
Chicago/Turabian StyleShirinkina, Ekaterina, Yuliya Mozzhegorova, Galina Ilinykh, and Vladimir Korotaev. 2025. "Carbon Footprint of Electricity Produced in the Russian Federation" Energies 18, no. 1: 14. https://doi.org/10.3390/en18010014
APA StyleShirinkina, E., Mozzhegorova, Y., Ilinykh, G., & Korotaev, V. (2025). Carbon Footprint of Electricity Produced in the Russian Federation. Energies, 18(1), 14. https://doi.org/10.3390/en18010014