Controlled Growth of α-Al2O3 Nanofilm on FeCrAl Alloy as an Effective Cr Barrier for Solid Oxide Fuel Cell (SOFC) Cathode Air Pre-Heaters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pre-Oxidation Percedures
2.3. Exposure Tests
2.4. Microstructural Analysis
3. Results
3.1. Microstructural Analysis of an Alloy 318 CAPH
3.2. Pre-Oxidation
3.2.1. Mass Measurement
3.2.2. Surface Charicaterisation
3.2.3. Cross-Sectional Analysis
3.3. Exposure Test
3.3.1. Mass Measurements
3.3.2. Cr2O3 Evaporation
3.3.3. Surface Analysis
4. Discussion
4.1. Pre-Heat Oxidation
4.2. Exposure Tests
5. Conclusions
- A pre-oxidation treatment dramatically decreased the subsequent oxidation rate and Cr2O3 evaporation of alloy 318 when exposed to humidified air at 850 °C.
- The kinetics of oxidation and Cr(VI) release for the pre-oxidised alloy 318 were governed by the phase composition of the alumina scale formed during the pre-oxidation step, which was dependent on temperature and time.
- Pre-oxidation at 800 °C and 900 °C yielded less protective scales, likely containing metastable alumina phases, which permitted relatively faster Al and Cr outward diffusion compared to higher-temperature treatments.
- Optimal corrosion resistance and Cr retention were achieved with pre-oxidation at 1100 °C for 1 h, resulting in a 98% reduction in the oxidation rate and a 90% reduction in Cr2O3 evaporation compared to the unoxidised alloy under the tested exposure conditions.
- The superior performance of the 1100 °C/1 h treatment was attributed to the formation of a compact and homogenous α-Al2O3 scale that effectively prevented outward diffusion of Al and Cr.
- The formation of this stable α-Al2O3 scale via pre-oxidation is expected to mitigate key degradation issues observed in alloy 318 CAPHs during operation, specifically by slowing down Al oxidation in hot zones and preventing Cr2O3 formation in cold zones.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abouemara, K.; Shahbaz, M.; Mckay, G.; Al-Ansari, T. The Review of Power Generation from Integrated Biomass Gasification and Solid Oxide Fuel Cells: Current Status and Future Directions. Fuel 2024, 360, 130511. [Google Scholar] [CrossRef]
- Alns, A.; Sleiti, A.K. Combined Heat and Power System Based on Solid Oxide Fuel Cells for Low Energy Commercial Buildings in Qatar. Sustain. Energy Technol. Assess. 2021, 48, 101615. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.; Chen, Z.; Qian, X.; Sun, C.; Gan, D.; Xiong, K.; Rao, M.; Chen, C.; Li, X. A Comprehensive Review of Thermal Management in Solid Oxide Fuel Cells: Focus on Burners, Heat Exchangers, and Strategies. Energies 2024, 17, 1005. [Google Scholar] [CrossRef]
- Brett, D.J.L.; Atkinson, A.; Brandon, N.P.; Skinner, S.J. Intermediate Temperature Solid Oxide Fuel Cells. Chem. Soc. Rev. 2008, 37, 1568–1578. [Google Scholar] [CrossRef]
- Wachsman, E.D.; Lee, K.T. Lowering the Temperature of Solid Oxide Fuel Cells. Science 2011, 334, 935–939. [Google Scholar] [CrossRef]
- Choolaei, M.; Vostakola, M.F.; Horri, B.A. Recent Advances and Challenges in Thin-Film Fabrication Techniques for Low-Temperature Solid Oxide Fuel Cells. Crystals 2023, 13, 1008. [Google Scholar] [CrossRef]
- Hawkes, A.; Staffell, I.; Brett, D.; Brandon, N. Fuel Cells for Micro-Combined Heat and Power Generation. Energy Environ. Sci. 2009, 2, 729–744. [Google Scholar] [CrossRef]
- Zhang, K.; El-Kharouf, A.; Caykara, T.; Steinberger-Wilckens, R. Effect of Temperature and Water Content on the Oxidation Behaviour and Cr Evaporation of High-Cr Alloys for SOFC Cathode Air Preheaters. High Temp. Corros. Mater. 2023, 100, 21–45. [Google Scholar] [CrossRef]
- Zhou, L.; Mason, J.H.; Li, W.; Liu, X. Comprehensive Review of Chromium Deposition and Poisoning of Solid Oxide Fuel Cells (SOFCs) Cathode Materials. Renew. Sustain. Energy Rev. 2020, 134, 110320. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, J.; Cao, W. Recent Advances in Spinel-Based Protective Coatings Produced by Electrochemical Method on Metallic Interconnects for Solid Oxide Fuel Cells. Int. J. Hydrogen Energy 2024, 50, 977–991. [Google Scholar] [CrossRef]
- Reddy, M.J.; Kamecki, B.; Talic, B.; Zanchi, E.; Smeacetto, F.; Hardy, J.S.; Choi, J.P.; Mazur, L.; Vasßen, R.; Basu, S.N.; et al. Experimental Review of the Performances of Protective Coatings for Interconnects in Solid Oxide Fuel Cells. J. Power Sources 2023, 568, 232831. [Google Scholar] [CrossRef]
- Deepi, A.S.; Dharani Priya, S.; Samson, A.; Anburaj, N.; Selvakumar, I.; Samson Nesaraj, A.; Selvakumar, A.I. Component Fabrication Techniques for Solid Oxide Fuel Cell (SOFC)—A Comprehensive Review and Future Prospects. Int. J. Green Energy 2022, 19, 1600–1612. [Google Scholar] [CrossRef]
- Ge, L.; Verma, A.; Goettler, R.; Lovett, D.; Raman, R.K.S.; Singh, P. Oxide Scale Morphology and Chromium Evaporation Characteristics of Alloys for Balance of Plant Applications in Solid Oxide Fuel Cells. Metall. Mater. Trans. A 2013, 44, 193–206. [Google Scholar] [CrossRef]
- Zhou, L.; Zeng, Z.; Brady, M.P.; Leonard, D.N.; Meyer, H.M.; Yamamoto, Y.; Li, W.; Collins, G.; Liu, X. Chromium Evaporation and Oxidation Characteristics of Alumina-Forming Austenitic Stainless Steels for Balance of Plant Applications in Solid Oxide Fuel Cells. Int. J. Hydrogen Energy 2021, 46, 21619–21633. [Google Scholar] [CrossRef]
- Grishina, E.P.; Kudryakova, N.O.; Ramenskaya, L.M. Thin-Film Al2O3 Coating on Low Carbon Steel Obtained by the Sol–Gel Method with Different Peptizing Acids: Corrosion Investigation. Thin Solid Films 2022, 746, 139125. [Google Scholar] [CrossRef]
- Wen, F.; Zhang, D.; Wang, W.; Teng, X.; Chu, X. Preparation and Formation Mechanism of Fe-Al Coating on 316L Stainless Steel by Pack Cementation Aluminizing. Chin. J. Mater. Res. 2024, 38, 759–767. [Google Scholar]
- Krumdieck, S.; Davies, S.; Bishop, C.M.; Kemmitt, T.; Kennedy, J.V. Al2O3 Coatings on Stainless Steel Using Pulsed-Pressure MOCVD. Surf. Coat. Technol. 2013, 230, 208–212. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Z.; Leng, J.; Gao, C.; Huang, G.; Qi, F.; Lu, T.; Shi, Q. Supercritical Oxidation Resistance of Double-Layer Aluminized Coating on Nickel Alloy Prepared by Pack Cementation Aluminizing. Surf. Coat. Technol. 2025, 497, 131728. [Google Scholar] [CrossRef]
- Zhang, K.; Hong, J.-E.E.; Steinberger-Wilckens, R. Effect of Alloy Composition on the Oxidation Behaviour and Cr Vaporisation of High-Cr Steels for SOFC Cathode Air Preheater. ECS Trans. 2017, 78, 1641. [Google Scholar] [CrossRef]
- Zhou, L.; Li, W.; Brady, M.P.; Eldred, T.B.; Garcia, R.; Ma, L.; Wang, Y.; Hu, S.; Li, W.; Liu, X. Long-Term Oxidation and Chromium Evaporation Behavior of Al2O3-Forming Austenitic Stainless Steel for 900 °C Balance-of-Plant Components Applications in Solid Oxide Fuel Cells. Int. J. Hydrogen Energy 2024, 50, 1109–1125. [Google Scholar] [CrossRef]
- HEATSTACK. Available online: http://www.heatstack.eu/ (accessed on 24 May 2019).
- Stanislowski, M.; Wessel, E.; Markus, T.; Singheiser, L.; Quadakkers, W.J. Chromium Vaporization from Alumina-Forming and Aluminized Alloys. Solid State Ion. 2008, 179, 2406–2415. [Google Scholar] [CrossRef]
- Gomez-Vidal, J.C.; Fernandez, A.G.; Tirawat, R.; Turchi, C.; Huddleston, W. Corrosion Resistance of Alumina-Forming Alloys against Molten Chlorides for Energy Production. I: Pre-Oxidation Treatment and Isothermal Corrosion Tests. Sol. Energy Mater. Sol. Cells 2017, 166, 222–233. [Google Scholar] [CrossRef]
- Kim, C.; Tang, C.; Grosse, M.; Maeng, Y.; Jang, C.; Steinbrueck, M. Oxidation Mechanism and Kinetics of Nuclear-Grade FeCrAl Alloys in the Temperature Range of 500–1500 °C in Steam. J. Nucl. Mater. 2022, 564, 153696. [Google Scholar] [CrossRef]
- Qi, W.; Qiao, Y.; Ru, W.; Wang, X.; Zhang, X.; Zheng, T.; Du, S.; Wang, P.; Yang, K. High-Temperature Steam Oxidation and Surface Microstructure Evolution of Fe13Cr6Al(1–4)Mo0.15Y Alloys. Metals 2024, 14, 1229. [Google Scholar] [CrossRef]
- Kaunisto, K.; Lagerbom, J.; Honkanen, M.; Varis, T.; Lambai, A.; Mohanty, G.; Levänen, E.; Kivikytö-Reponen, P.; Frankberg, E. Evolution of Alumina Phase Structure in Thermal Plasma Processing. Ceram. Int. 2023, 49, 21346–21354. [Google Scholar] [CrossRef]
- El Kadiri, H.; Molins, R.; Bienvenu, Y.; Horstemeyer, M.F. Abnormal High Growth Rates of Metastable Aluminas on FeCrAl Alloys. Oxid. Met. 2005, 64, 63–97. [Google Scholar] [CrossRef]
- Badini, C.; Laurella, F. Oxidation of FeCrAl Alloy: Influence of Temperature and Atmosphere on Scale Growth Rate and Mechanism. Surf. Coat. Technol. 2001, 135, 291–298. [Google Scholar] [CrossRef]
- Berthomé, G.; N’Dah, E.; Wouters, Y.; Galerie, A. Temperature Dependence of Metastable Alumina Formation during Thermal Oxidation of FeCrAl Foils. Mater. Corros. 2005, 56, 389–392. [Google Scholar] [CrossRef]
- Liu, F.; Götlind, H.; Svensson, J.-E.E.; Johansson, L.-G.G.; Halvarsson, M. Early Stages of the Oxidation of a FeCrAlRE Alloy (Kanthal AF) at 900 °C: A Detailed Microstructural Investigation. Corros. Sci. 2008, 50, 2272–2281. [Google Scholar] [CrossRef]
- Josefsson, H.; Liu, F.; Svensson, J.E.; Halvarsson, M.; Johansson, L.G. Oxidation of FeCrAI Alloys at 500–900 °C in Dry O2. Mater. Corros. 2005, 56, 801–805. [Google Scholar] [CrossRef]
- Chen, H.; Kim, S.H.; Long, C.; Kim, C.; Jang, C. Oxidation Behavior of High-Strength FeCrAl Alloys in a High-Temperature Supercritical Carbon Dioxide Environment. Prog. Nat. Sci. Mater. Int. 2018, 28, 731–739. [Google Scholar] [CrossRef]
- Liu, F.; Josefsson, H.; Svensson, J.E.; Johansson, L.G.; Halvarsson, M. TEM Investigation of the Oxide Scales Formed on a FeCrAlRE Alloy (Kanthal AF) at 900°C in Dry O2 and O2 with 40% H2O. Mater. High Temp. 2005, 22, 521–526. [Google Scholar] [CrossRef]
- Götlind, H.; Liu, A.F.; Svensson, J.-E.; Halvarsson, A.M.; Johansson, L.-G.; Liu, F.; Halvarsson, Á.M. The Effect of Water Vapor on the Initial Stages of Oxidation of the FeCrAl Alloy Kanthal AF at 900 °C. Oxid. Met. 2007, 67, 251–266. [Google Scholar] [CrossRef]
- Engkvist, J.; Canovic, S.; Hellström, K.; Järdnäs, A.; Svensson, J.E.; Johansson, L.G.; Olsson, M.; Halvarsson, M. Alumina Scale Formation on a Powder Metallurgical FeCrAl Alloy (Kanthal APMT) at 900–1,100 °C in Dry O2 and in O2 + H2O. Oxid. Met. 2010, 73, 233–253. [Google Scholar] [CrossRef]
- Hellström, K.; Israelsson, N.; Halvarsson, M.; Canovic, S.; Svensson, J.E.; Johansson, L.G. The Oxide Scales Formed on a Dispersion-Strengthened Powder Metallurgical FeCrAl Alloy at 900 °C in O2 and in O2 + H2O. Oxid. Met. 2015, 84, 1–19. [Google Scholar] [CrossRef]
- Nicholls, J.R.; Bennett, M.J.; Newton, R. A Life Prediction Model for the Chemical Failure of FeCrAlRE Alloys: Preliminary Assessment of Model Extension to Lower Temperatures. Mater. High Temp. 2003, 20, 429–438. [Google Scholar] [CrossRef]
- Froitzheim, J.; Ravash, H.; Larsson, E.; Johansson, L.G.; Svensson, J.E. Investigation of Chromium Volatilization from FeCr Interconnects by a Denuder Technique. J. Electrochem. Soc. 2010, 157, B1295–B1300. [Google Scholar] [CrossRef]
- Zhang, K.; El-Kharouf, A.; Hong, J.E.; Steinberger-Wilckens, R. The Effect of Aluminium Addition on the High-Temperature Oxidation Behaviour and Cr Evaporation of Aluminised and Alumina-Forming Alloys for SOFC Cathode Air Pre-Heaters. Corros. Sci. 2020, 169, 108612. [Google Scholar] [CrossRef]
- Kim, K. FIB Serial Milling and Lifting out of Fine Inclusions in an Intensively Melt Sheared Aluminum Alloy. Mater. Lett. 2014, 117, 74–77. [Google Scholar] [CrossRef]
- Yang, Z.; Weil, K.S.; Paxton, D.M.; Stevenson, J.W. Selection and Evaluation of Heat-Resistant Alloys for SOFC Interconnect Applications. J. Electrochem. Soc. 2003, 150, A1188–A1201. [Google Scholar] [CrossRef]
- Hellström, K.; Israelsson, N.; Mortazavi, N.; Canovic, S.; Halvarsson, M.; Svensson, J.E.; Johansson, L.G. Oxidation of a Dispersion-Strengthened Powder Metallurgical FeCrAl Alloy in the Presence of O2 at 1100 °C: The Influence of Water Vapour. Oxid. Met. 2015, 83, 533–558. [Google Scholar] [CrossRef]
- Pint, B.A.; Garratt-Reed, A.J.; Hobbs, L.W. The Reactive Element Effect in Commercial ODS FeCrAI Alloys. Mater. High Temp. 1995, 13, 3–16. [Google Scholar] [CrossRef]
- Quadakkers, W.J.; Holzbrecher, H.; Briefs, K.G.; Beske, H. Differences in Growth Mechanisms of Oxide Scales Formed on ODS and Conventional Wrought Alloys. Oxid. Met. 1989, 32, 67–88. [Google Scholar] [CrossRef]
- Pint, B.A.; Martin, J.R.; Hobbs, L.W. 18O/SIMS Characterization of the Growth Mechanism of Doped and Undoped α-Al2O3. Oxid. Met. 1993, 39, 167–195. [Google Scholar] [CrossRef]
- Chen, W.; Shan, X.; Guo, Y.; Li, J.; Zou, Z.; Guo, F.; Zhao, X.; Xiao, P. The Effect of Reactive Element Species and Concentrations on the Isothermal Oxidation of β-NiAl Coating Fabricated by Spark Plasma Sintering. Surf. Coat. Technol. 2019, 357, 841–848. [Google Scholar] [CrossRef]
- Engkvist, J.; Bexell, U.; Grehk, M.; Olsson, M. High Temperature Oxidation of FeCrAl-Alloys - Influence of Al-Concentration on Oxide Layer Characteristics. Mater. Corros. 2009, 60, 876–881. [Google Scholar] [CrossRef]
- Liu, T.; Wang, C.; Shen, H.; Chou, W.; Iwata, N.Y.; Kimura, A. The Effects of Cr and Al Concentrations on the Oxidation Behavior of Oxide Dispersion Strengthened Ferritic Alloys. Corros. Sci. 2013, 76, 310–316. [Google Scholar] [CrossRef]
- Rybicki, G.C.; Smialek, J.L. Effect of the θ-α-Al2O3 Transformation on the Oxidation Behavior of β-NiAl+Zr. Oxid. Met. 1989, 31, 275–304. [Google Scholar] [CrossRef]
- Prescott, R.; Graham, M.J. The Formation of Aluminum Oxide Scales on High-Temperature Alloys. Oxid. Met. 1992, 38, 233–254. [Google Scholar] [CrossRef]
- Al-Badairy, H.; Naumenko, D.; Le Coze, J.; Tatlock, G.J.; Quadakkers, W.J. Materials at High Temperatures Significance of Minor Alloying Additions and Impurities on Alumina Scale Growth and Adherence in FeCrAl Alloys. Mater. High Temp. 2014, 20, 405–412. [Google Scholar] [CrossRef]
- Young, D.J. Alloy Oxidation III: Multiphase Scales. In High Temperature Oxidation and Corrosion of Metals; Elsevier: Amsterdam, The Netherlands, 2016; pp. 335–392. [Google Scholar]
(wt.%) Nominal | Fe | Cr | Mn | Al | Ni | Si | Nb | Others |
---|---|---|---|---|---|---|---|---|
Alloy 318 | 74.06 | 18.8 | 0.21 | 3.58 | 0.2 | 0.32 | 0.73 | Hf 0.06; Y 0.07; Zr 0.03; Cu 0.03; C 0.01; N 0.01; S 0.002; W 2.02 |
Temperature | Dwelling Time | ||
---|---|---|---|
800 °C | 1 h | 2 h | 4 h |
900 °C | 1 h | 2 h | 4 h |
1000 °C | 1 h | 2 h | 4 h |
1100 °C | 30 min | 1 h | 2 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; El-Kharouf, A.; Steinberger-Wilckens, R. Controlled Growth of α-Al2O3 Nanofilm on FeCrAl Alloy as an Effective Cr Barrier for Solid Oxide Fuel Cell (SOFC) Cathode Air Pre-Heaters. Energies 2025, 18, 3055. https://doi.org/10.3390/en18123055
Zhang K, El-Kharouf A, Steinberger-Wilckens R. Controlled Growth of α-Al2O3 Nanofilm on FeCrAl Alloy as an Effective Cr Barrier for Solid Oxide Fuel Cell (SOFC) Cathode Air Pre-Heaters. Energies. 2025; 18(12):3055. https://doi.org/10.3390/en18123055
Chicago/Turabian StyleZhang, Kun, Ahmad El-Kharouf, and Robert Steinberger-Wilckens. 2025. "Controlled Growth of α-Al2O3 Nanofilm on FeCrAl Alloy as an Effective Cr Barrier for Solid Oxide Fuel Cell (SOFC) Cathode Air Pre-Heaters" Energies 18, no. 12: 3055. https://doi.org/10.3390/en18123055
APA StyleZhang, K., El-Kharouf, A., & Steinberger-Wilckens, R. (2025). Controlled Growth of α-Al2O3 Nanofilm on FeCrAl Alloy as an Effective Cr Barrier for Solid Oxide Fuel Cell (SOFC) Cathode Air Pre-Heaters. Energies, 18(12), 3055. https://doi.org/10.3390/en18123055