Environmental and Social Dimensions of Energy Transformation Using Geothermal Energy
Abstract
1. Introduction
1.1. Objective Assessment of Geothermal Energy Utilisation
1.2. Life Cycle Assessment
2. The Impact of Geothermal Energy on Social Issues
2.1. Methodology
2.1.1. Emission-Factor-Based Estimation of Pollutant Emissions
2.1.2. Energy-Normalised Calculation Including Calorific Value and Efficiency
2.1.3. CO2 Emissions and ZrSOx Equivalent Indicator
2.1.4. Validation and Comparison of Emission Estimation Methods
2.2. The Results
3. SWOT and PESTEL Analyses for the Social Impact of Geothermal Energy
3.1. SWOT Analysis
3.2. PESTEL Analysis
4. Conclusions and Recommendations
- The diversity of the local community and project developers: Communities are heterogeneous. Different social groups (e.g., seniors, youth, entrepreneurs, landowners) have different needs and expectations. Geothermal projects should take these differences into account, e.g., by mapping stakeholders and conducting dialogue with each group separately.
- Communication and participation instead of one-way information: Effective communication is not limited to providing information materials. Honest dialogue is needed—consultations, citizen panels, access to independent analyses. Social trust is built through openness and willingness to answer questions and concerns.
- Justice and inclusiveness: The benefits of geothermal energy should be available to everyone, including less-affluent households or peripheral areas. Tariff models and community solutions (e.g., energy cooperatives) should be addressed, guaranteeing equal access to clean energy.
- Cultural and natural contexts: In regions with strong landscape values or cultural heritage (such as Podhale), investments should be preceded by assessing social perception and the possible impacts on local identity and tourism.
- Environmental education and counteracting disinformation: Low social awareness promotes resistance to new technologies. Therefore, educational activities based on facts and research results (e.g., LCA, emission monitoring), conducted in an attractive and accessible manner, are necessary.
- Procedural justice and social monitoring: Residents should have a real influence not only on investment planning but also on its functioning—e.g., through access to environmental data, participation in supervisory boards, or mechanisms for reporting irregularities.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaczmarczyk, M.; Sowiżdżał, A.; Tomaszewska, B. Life Cycle and Water Footprint Assessment in the Geothermal Energy Sector. Energies 2024, 17, 6050. [Google Scholar] [CrossRef]
- Qingchao, L.; Jingjuan, W.; Qiang, L.; Fuling, W.; Yuanfang, C. Sediment instability caused by gas production from hydrate-bearing sediment in Northern South China Sea by horizontal wellbore: Sensitivity analysis. Nat. Resour. Res. 2025, 34, 1667–1699. [Google Scholar] [CrossRef]
- Qiang, L.; Qingchao, L.; Wang, F.; Xu, N.; Wang, Y.; Bai, B. Settling behavior and mechanism analysis of kaolinite as a fracture proppant of hydrocarbon reservoirs in CO2 fracturing fluid. Colloids Surf. A Physicochem. Eng. Asp. 2025, 724, 137463. [Google Scholar]
- Soltani, M.; Kashkooli, F.M.; Souri, M.; Rafiei, B.; Jabarifar, M.; Gharali, K.; Nathwani, J.S. Environmental, economic, and social impacts of geothermal energy systems. Renew. Sustain. Energy Rev. 2021, 140, 110750. [Google Scholar] [CrossRef]
- Meller, C.; Schill, E.; Bremer, J.; Kolditz, O.; Bleicher, A.; Benighaus, C.; Chavot, P.; Gross, M.; Pelizzone, A.; Renn, O.; et al. Acceptability of geothermal installations: A geoethical concept for GeoLaB. Geotermics 2018, 73, 133–145. [Google Scholar] [CrossRef]
- Yasukawa, K.; Kubota, H.; Soma, N.; Noda, T. Integration of natural and social environment in the implementation of geothermal projects. Geotermics 2018, 73, 111–123. [Google Scholar] [CrossRef]
- Spijkerboer, R.C.; Turham, E.; Roos, A.; Billi, M.; Vargas-Payera, S.; Opozo, J.; Armiero, M. Out of steam? A social science and humanities research agenda for geothermal energy. Energy Res. Soc. Sci. 2022, 92, 102801. [Google Scholar] [CrossRef]
- Mosallanezhad, S.; Rahimpour, M.R. Social Benefits and Challenged of Geothermal Energy, Encyclopedia of Renewable Energy. Sustain. Environ. 2024, 2, 267–276. [Google Scholar]
- Pellizzone, A.; Allansdottir, A.; De Franco, R.; Muttoni, G.; Manzella, A. Geothermal energy and the public: A case study on deliberative citizens’ engagement in central Italy. Energy Policy 2017, 101, 561–570. [Google Scholar] [CrossRef]
- Manzella, A.; Bonciani, R.; Allansdottir, A.; Botteghi, S.; Donato, A.; Giamberini, S.; Lenzi, A.; Paci, M.; Pellizzone, A.; Scrocca, D. Environmental and social aspects of geothermal energy in Italy. Geotermics 2018, 72, 232–248. [Google Scholar] [CrossRef]
- Ediger, V.S.; Kirkil, G.; Celebi, E.; Ucal, M.; Kentmen-Cin, C. Turkish public preferences for energy. Energy Policy 2018, 120, 492–502. [Google Scholar] [CrossRef]
- Ratio, M.A.; Gabo-Ratio, J.A.; Fujimitsu, Y. Exploring public engagement and social acceptability of geothermal energy in the Philippines: A case study on the Makiling-Banahaw Geothermal Complex. Geothermics 2020, 85, 101774. [Google Scholar] [CrossRef]
- Vargas-Payera, S.; Martinez-Reyes, A.; Ejderyan, O. Factors and dynamics of the social perception of geothermal energy: Case study of the Tolhuaca exploration project in Chile. Geothermics 2020, 88, 101907. [Google Scholar] [CrossRef]
- Abdi, A.M.; Murrayama, T.; Nishikizawa, S.; Suwanteep, K.; Mariita, N.O. Determinants of community acceptance of geothermal energy projects: A case study on a geothermal energy project in Kenya. Renew. Energy Focus 2024, 50, 100594. [Google Scholar] [CrossRef]
- De Rose, A.; Harcouët-Menou, V.; Laenen, B.; Caia, V.; Facco, L.; Guglielmetti, L.; Olivieri, N.; Rocco, E.; Strazza, C.; Vela, S.; et al. (Eds.) Study on “Geothermal Plants” and Applications’ Emissions: Overview and Analysis’; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-04112-2. [Google Scholar]
- International Energy Agency (IEA). World Energy Outlook 2023; IEA Publications: Paris, France, 2023. [Google Scholar]
- Parisi, M.L.; Ferrara, N.; Torsello, L.; Basosi, R. Life cycle assessment of atmospheric emission profiles of the Italian geothermal power plants. J. Clean. Prod. 2019, 234, 881–894. [Google Scholar] [CrossRef]
- Sakellariou, N. Life Cycle Assessment of Energy Systems. Closing the Ethical Loophole of Social Sustainability; Wiley Global Headquarters, Scrivener Publishing: Hoboken, NJ, USA, 2018; ISBN 978-1-119-41816-0. [Google Scholar]
- Bayer, P.; Rybach, L.; Blum, P.; Brauchler, R. Review on life cycle environmental effects of geothermal power generation. Renew. Sustain. Energy Rev. 2013, 26, 446–463. [Google Scholar] [CrossRef]
- Rahman, A.; Farrok, O.; Haque, M.M. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renew. Sustain. Energy Rev. 2022, 161, 112279. [Google Scholar] [CrossRef]
- Pehnt, M. Dynamic life cycle assessment (LCA) of renewable energy technologies. Renew. Energy 2006, 31, 55–71. [Google Scholar] [CrossRef]
- ISO 14040; Environmental Management-Life Cycle Assessment-Principles and Framework. ISO: Geneva, Switzerland, 2006.
- ISO 14044; Environmental Management. Life Cycle Assessment. Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- Parisi, M.L.; Douziech, M.; Tosti, L.; Pérez-López, P.; Mendecka, B.; Ulgiati, S.; Fiaschi, D.; Manfrida, G.; Blanc, I. Definition of LCA guidelines in the geothermal sector to enhance result comparability. Energies 2020, 13, 3534. [Google Scholar] [CrossRef]
- Douziech, M.; Tosti, L.; Ferrara, N.; Parisi, M.L.; Perez-Lopez, P.; Ravier, G. Applaying harmonized geothermal life cycle assessment guidelines to the Rittershoffen geothermal heat plant. Energies 2021, 14, 3820. [Google Scholar] [CrossRef]
- ISO 14046; Environmental Management. Water Footprint. Principles, Requirements and Guidelines. ISO: Geneva, Switzerland, 2014.
- Pratiwi, A.; Ravier, G.; Genter, A. Life-cycle climate-change impact assessment of enhanced geothermal system plants in Upper Rhine Valley. Geothermics 2018, 75, 26–39. [Google Scholar] [CrossRef]
- Gkousis, S.; Welkenhuysen, K.; Compernolle, T. Deep geothermal energy extraction, a review on environmental hotspots with focus on geo-technical site conditions. Renew. Sustain. Energy Rev. 2022, 162, 112430. [Google Scholar] [CrossRef]
- Hanbury, O.; Vasquez, V.R. Life cycle analysis of geothermal energy for power and transportation: A stochastic approach. Renew. Energy 2017, 115, 371–381. [Google Scholar] [CrossRef]
- Martinez-Corona, J.I.; Gibon, T.; Hertwich, E.G.; Parra-Saldivar, R. Hybrid life cycle assessment of a geothermal plant: From physical to monetary inventory accounting. J. Clean. Prod. 2017, 142, 2509–2523. [Google Scholar] [CrossRef]
- Buonocore, E.; Vanoli, L.; Carotenuto, A.; Ulgiati, S. Integrating life cycle assessment and energy synthesis for the evaluation of a dry steam geothermal power plant in Italy. Energy 2015, 86, 476–487. [Google Scholar] [CrossRef]
- Heberle, F.; Schifflechner, C.; Bruggemann, D. Life cycle assessment of Organic Rankine Cycles for geothermal power generation considering low-GWP working fluids. Geothermics 2016, 64, 392–400. [Google Scholar] [CrossRef]
- Tomasini-Montenegro, C.; Santoyo-Castelazo, E.; Gujba, H.; Romero, R.J.; Santoyo, E. Life cycle assessment of geothermal power generation technologies: An update review. Appl. Therm. Eng. 2017, 114, 1119–1136. [Google Scholar] [CrossRef]
- Wang, Y.; Du, Y.; Wang, J.; Zhao, J.; Deng, S.; Yin, H. Comparative life cycle assessment of geothermal power generation systems in China, Resources. Conserv. Recycl. 2020, 155, 104670. [Google Scholar] [CrossRef]
- Gurbuz, E.Y.; Guler, O.V.; Kecebas, A. Environmental impact assessment of a real geothermal driven power plant with two-stage ORC using enhanced exergo-environmental analysis. Renew. Energy 2022, 185, 1110–1123. [Google Scholar] [CrossRef]
- Gonzalez-Garcia, H.; Francke, H.; Gollner-Volker, L.; Welsch, B.; Kranz, S.; Huenges, E.; Schebeck, L.; Sass, I. CO2 emission assessment of the geothermal power station Los Humeros, Mexico. Geothermics 2022, 104, 102471. [Google Scholar] [CrossRef]
- Kjeld, A.; Bjarnadotti, H.J.; Olafsdottir, R. Life cycle assessment of the Theistareykir geothermal power plant in Iceland. Geothermics 2022, 105, 102530. [Google Scholar] [CrossRef]
- Paulillo, A.; Kim, A.; Mutel, C.; Striolo, A.; Bauer, C.; Lattieri, A. Simplified models for predicting the environmental impacts of geothermal power generation. Clean. Environ. Syst. 2022, 6, 100086. [Google Scholar] [CrossRef]
- Paulilo, A.; Striolo, A.; Lettieri, P. Life cycle assessment of geothermal power technologies. In Environmental Assessment of Renewable Energy Conversion Technologies; Fokaides, P.A., Kylil, A., Georgali, P.-Z., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; ISBN 978-0-12-817111-0. [Google Scholar]
- Li, J.; Tarpani, R.R.Z.; Stamford, L.; Gallego-Schmid, A. Life cycle sustainability assessment and circularity of geothermal power plants. Sustain. Prod. Consum. 2023, 35, 141–156. [Google Scholar] [CrossRef]
- Mainar-Toledo, M.D.; Halacoglu, U.; Sahiller, H.A.; Hazar, T.; Zuffi, C.; Diaz-Ramirez, M.; Monfrida, G. Environmental benefits for a geothermal power plant with CO2 reinjection: Case study of the Kizildere 3 U1 geothermal power plant. Energy Storage Sav. 2023, 2, 631–638. [Google Scholar] [CrossRef]
- Chiavetta, C.; Tinti, F.; Bonoli, A. Comparative life cycle assessment of renewable energy systems for heating and cooling. Procedia Eng. 2011, 21, 591–597. [Google Scholar] [CrossRef]
- Nitkiewicz, A.; Sekret, R. Comparison of LCA results of low temperature heat plant using electric heat pump, absorption heat pump and gas fired boiler. Energy Convers. Manag. 2014, 87, 647–652. [Google Scholar] [CrossRef]
- Bartolozzi, I.; Rizzi, F.; Frey, M. Are district heating systems and renewable energy sources always an environmental win-win solution? A life cycle assessment case study in Tuscany, Italy. Renew. Sustain. Energy Rev. 2017, 80, 408–420. [Google Scholar] [CrossRef]
- Karlsdottir, M.R.; Heinonen, J.; Palsson, H.; Palsson, O.P. Life cycle assessment of a geothermal combined heat and power plant based on high temperature utilization. Geothermics 2020, 84, 101727. [Google Scholar] [CrossRef]
- Gkousis, S.; Thomassen, G.; Wlkenhuysen, K.; Compernolle, T. Dynamic life cycle assessment of geothermal heat production from medium enthalpy hydrothermal resources. Appl. Energy 2022, 328, 1200176. [Google Scholar] [CrossRef]
- Gkousis, S.; Harcouet-Menou, V.; Damen, L.; Welkenhuysen, K.; Laenen, B.; Campernolle, T. Life cycle assessment of geothermal plants targeting the lower carboniferous limestone reservoir in northern Belgium. J. Clean. Prod. 2022, 376, 134142. [Google Scholar] [CrossRef]
- Sigurjonsson, H.E.; Cook, D.; Davidsdottir, B.; Bogason, S.G. A life-cycle analysis of deep enhanced geothermal systems—The case studies of Reykjanes, Iceland and Vendenheim, France. Renew. Energy 2021, 177, 1076–1086. [Google Scholar] [CrossRef]
- Cook, D.; Sigurjonsson, H.E.; Davidsdottir, B.; Bogason, S.G. An environmental life cycle cost assessment of the costs of deep enhanced geothermal systems—The case studies of Reykjanes, Iceland and Vendenheim, France. Geothermics 2022, 103, 102425. [Google Scholar] [CrossRef]
- Strojny, M.; Gładysz, P.; Andresen, T.; Pająk, L.; Starczewska, M.; Sowiżdżał, A. Environmental Impact of Enhanced Geothermal Systems with Supercritical Carbon Dioxide: A Comparative Life Cycle Analysis of Polish and Norwegian Cases. Energies 2024, 17, 2077. [Google Scholar] [CrossRef]
- Ansarinasab, H.; Hajabdollahi, H.; Fatimah, M. Life cycle assessment (LCA) of a novel geothermal-based multigeneration system using LNG cold energy-integration of Kalina cycle, stirling engine, desalination unit and magnetic refrigeration system. Energy 2021, 231, 120888. [Google Scholar] [CrossRef]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.J.; Brauer, M.; Burnett, R. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R. The Lancet Commission on pollution and health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020, 8. [Google Scholar] [CrossRef]
- Gruszecka-Kosowska, A. Assessment of the Kraków inhabitants’ health risk caused by the exposure to inhalation of outdoor air contaminants. Stoch. Environ. Res. Risk Assess. 2018, 32, 485–499. [Google Scholar] [CrossRef]
- Kaczmarczyk, M.; Sowiżdżał, A. Environmental friendly energy resources improving air quality in an urban area. Energy Rep. 2024, 11, 3383–3394. [Google Scholar] [CrossRef]
- Ju, L.; Tan, Z.; Li, H.; Tan, Q.; Yu, X.; Song, X. Multi-objective operation optimisation and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China. Energy 2016, 111, 322–340. [Google Scholar] [CrossRef]
- Höltl, A.; Macharis, C.; De Brucker, K. Pathways to Decarbonise the European Car Fleet: A Scenario Analysis; Using the Backcasting Approach. Energies 2017, 11, 20. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, K.; Zou, R.; Robust, L.F.C. Strategy for Wind Integrated Time-Delay Power System Using EID Compensation. Energies 2019, 12, 3223. [Google Scholar] [CrossRef]
- Xing, T.; Lin, H.; Tan, Z.; Ju, L. Coordinated Energy Management for Micro Energy Systems Considering Carbon Emissions Using Multi-Objective Optimization. Energies 2019, 12, 4414. [Google Scholar] [CrossRef]
- Thunis, P.; Pisoni, E.; Bessagnet, B.; Wilson, J.; Vignati, E.; De Meij, A.; Mascherpa, A. Urban PM2.5 Atlas, EUR 30829 EN; Publications Office of the European Union: Luxembourg, 2021; ISBN 978-92-76-41917-4. [Google Scholar] [CrossRef]
- Kaczmarczyk, M. Building energy characteristic evaluation regarding energy efficiency and ecology. Energy Convers. Manag. 2024, 306, 118284. [Google Scholar] [CrossRef]
- Kępińska, B.; Hajto, M. Przegląd wykorzystania energii geotermalnej w Polsce w latach 2022–2023. In Proceedings of the Proceedings, VIII Ogólnopolski Kongres Geotermalny, Kraków, Poland, 29 November–1 December 2023. [Google Scholar]
- GUS. Zużycie Nośników Energii w Gospodarstwach Domowych w 2021 r.; Główny Urząd Statystyczny: Warszawa, Poland, 2024. [Google Scholar]
- KOBIZE. Wskaźniki Emisji Zanieczyszczeń ze Spalania Paliw Kotły o Nominalnej Mocy Cieplnej do 5 MW, Krajowy Ośrodek Bilansowania i Zarządzania Emisjami, Instytut Ochrony Środowiska; Państwowy Instytut Badawczy: Warszawa, Poland, 2015. [Google Scholar]
- KOBIZE. Wskaźniki Emisji Zanieczyszczeń ze Spalania Paliw dla Źródeł o Nominalnej Mocy Cieplnej do 5 MW, Zastosowane do Automatycznego Wyliczenia Emisji w Raporcie do Krajowej Bazy za rok 2020; Krajowy Ośrodek Bilansowania i Zarządzania Emisjami, Instytut Ochrony Środowiska—Państwowy Instytut Badawczy: Warszawa, Poland, 2021. [Google Scholar]
- KOBIZE. Wskaźniki Emisji Zanieczyszczeń ze Spalania Paliw dla Źródeł o Nominalnej Mocy Cieplnej do 5 MW, Zastosowane do Automatycznego Wyliczenia Emisji w Raporcie do Krajowej Bazy za rok 2022; Krajowy Ośrodek Bilansowania i Zarządzania Emisjami, Instytut Ochrony Środowiska—Państwowy Instytut Badawczy: Warszawa, Poland, 2023. [Google Scholar]
- KOBIZE. Wskaźniki Emisyjności CO2, SO2, NOx, CO i Pyłu Całkowitego dla Energii Elektrycznej na Podstawie Informacji Zawartych w Krajowej Bazie o Emisjach Gazów Cieplarnianych i Innych Substancji za 2023 Rok; Krajowy Ośrodek Bilansowania i Zarządzania Emisjami, Instytut Ochrony Środowiska—Państwowy Instytut Badawczy: Warszawa, Poland, 2024. [Google Scholar]
- PN-EN 303-5; Kotły Grzewcze—Część 5: Kotły Grzewcze na Paliwa Stałe z Ręcznym i Automatycznym Zasypem Paliwa o Mocy Nominalnej do 500 kW—Terminologia, Wymagania, Badania i OznakSowanie. The Polish Committee for Standardization (PKN): Krakow, Poland, 2012.
- Kaczmarczyk, M. Potential of existing and newly designed geothermal heating plants in limiting low emissions in Poland. E3S Web Conf. 2018, 44, 00062. [Google Scholar] [CrossRef]
- KOBIZE. Wartości Opałowe (WO) i Wskaźniki Emisji CO2 (WE) w roku 2021 do Raportowania w Ramach Systemu Handlu Uprawnieniami do Emisji za rok 2024, Krajowy Ośrodek Bilansowania i Zarządzania Emisjami; Instytut Ochrony Środowiska—Państwowy Instytut Badawczy: Warszawa, Poland, 2023. [Google Scholar]
- Hajto, M.; Kaczmarczyk, M. The potential to improve air quality by increasing the use of deep geothermal energy. Geol. Geophys. Environ. 2022, 48, 147–175. [Google Scholar] [CrossRef]
- Tester, J.W.; Anderson, B.J.; Batchelor, A.S.; Blackwell, D.D.; DiPippo, R.; Drake, E.M.; Garnish, J.; Livesay, B.; Moore, M.C.; Nichols, K.; et al. The Future of Geothermal Energy: Impact of Enhanced Geothermal System (EGS) on the United States in the 21st Century; Massachusetts Institute of Technology: Cambridge, MA, USA, 2006. [Google Scholar]
- Sowiżdżał, A.; Starczewksa, M.; Papiernik, B. Future Technology Mix—Enhanced Geothermal System (EGS) and Carbon Capture, Utilization, and Storage (CCUS)—An Overview of Selected Projects as an Example for Future Investments in Poland. Energies 2022, 15, 3505. [Google Scholar] [CrossRef]
- Kaczmarczyk, M. Methodology and impact categories of environmental life cycle assessment in the geothermal energy sector. E3S Web Conf. 2019, 100, 00032. [Google Scholar] [CrossRef]
TSP | PM10 | PM2.5 | B(a)P | SOx | NOx | CO | CO2 | Unit | |
---|---|---|---|---|---|---|---|---|---|
Solid biomass—forest, peat, charcoal | 41.77 | 39.57 | 38.17 | 0.00569 | 24 | 91 | 1 411 | 104 716 | [g/GJ] |
Solid biomass—agricultural waste, energy crops | 64.00 | 59.00 | 52.00 | 0.02000 | 14 | 102 | 519 | 115 000 | [g/GJ] |
Solid fuels—hard coal | 155.67 | 138.83 | 108.33 | 0.08764 | 473 | 185 | 2 113 | 96 434 | [g/GJ] |
Solid fuels—anthracite, coke/semi-coke from hard/brown coal | 39.60 | 35.60 | 28.60 | 0.04297 | 402 | 148 | 2 183 | 102 957 | [g/GJ] |
Gas fuels | 0.50 | 0.50 | 0.50 | 0.00000 | 0.40 | 40.00 | 30.00 | 57 650 | [g/GJ] |
Oil fuels | 200 | 2.00 | 2.00 | 0.00010 | 80.00 | 70.00 | 30.00 | 72 480 | [g/GJ] |
Electricity (heat pumps) | 0.014 | 0.014 | 0.014 | 0.00000 | 0.36 | 0.39 | 0.22 | 597.00 | kg/MWh |
Type of Fuel | Assumed Efficiency [−] | Assumed Calorific Value [MJ/unit] | |
---|---|---|---|
Biomass | solid biomass—forest | 0.84 | 15.60 |
energy crops | 0.84 | 15.60 | |
agricultural waste | 0.84 | 11.60 | |
pellet (default) | 0.84 | 19.00 | |
dry firewood (default) | 0.84 | 19.00 | |
straw briquettes (default) | 0.84 | 17.10 | |
charcoal | 0.84 | 29.50 | |
barley straw | 0.80 | 16.10 | |
rapeseed straw | 0.80 | 15.00 | |
corn straw | 0.80 | 16.80 | |
Hard coal | anthracite | 0.75 | 26.70 |
coking coal | 0.75 | 28.20 | |
energy hard coal | 0.75 | 25.80 | |
sub-bituminous coal | 0.75 | 21.00 | |
coal briquettes | 0.75 | 20.70 | |
Solid fuels | coke and semi-coke | 0.75 | 28.20 |
peat | 0.75 | 9.76 | |
Gas fuels | condensing boiler | 0.99 | 36.54 |
traditional boiler | 0.85 | 36.54 | |
old type boiler | 0.70 | 36.54 | |
Oil fuels | condensing boiler | 0.99 | 43.00 |
traditional boiler | 0.88 | 43.00 | |
Electricity (heat pumps) | brine/water with vertical heat exchanger | 3.5–4.0 | - |
brine/water with horizontal heat exchanger | 3.5–4.0 | - | |
air/water | 3.0–3.5 | - |
Power Plants and Combined Heat and Power Plants | Industrial CHP Plants | Heating Plants | ||
---|---|---|---|---|
Hard Coal | Lignite | Hard Coal | Hard Coal | Lignite |
93.55 [kg/GJ] | 110.72 [kg/GJ] | 94.16 [kg/GJ] | 94.83 [kg/GJ] | 110.21 [kg/GJ] |
Mszczonów | Poddębice | Podhale | Pyrzyce | Stargard | Uniejów | Toruń | |
---|---|---|---|---|---|---|---|
18.5 MW | 10.0 MW | 70.0 MW | 6.0 MW | 18.5 MW | 3.2 MW | 18 MW | |
284.2 TJ | 51.2 TJ | 652.8 TJ | 70.2 TJ | 284.2 TJ | 9.0 TJ | 40.0 TJ | |
Solid biomass—forest, peat, charcoal | 2656 | 9714 | 123,848 | 13,318 | 53,918 | 1707 | 7589 |
- | - | - | - | - | - | - | |
2943 | 10,763 | 137,223 | 14,756 | 59,741 | 1892 | 8408 | |
[kg/year] | [kg/year] | [kg/year] | [kg/year] | [kg/year] | [kg/year] | [kg/year] | |
Solid biomass—agricultural waste, energy crops | 5750 | 21,029 | 268,121 | 28,833 | 116,728 | 3697 | 16,429 |
- | - | - | - | - | - | - | |
6075 | 22,216 | 283,257 | 30,461 | 123,318 | 3905 | 17,356 | |
[kg/year] | [kg/year] | [kg/year] | [kg/year] | [kg/year] | [kg/year] | [kg/year] | |
Solid fuels—hard coal | 19,129 | 69,959 | 891,975 | 95,920 | 388,326 | 12,297 | 54,655 |
- | - | - | - | - | - | - | |
23,181 | 84,774 | 1,080,874 | 116,234 | 470,564 | 14,902 | 66,230 | |
[kg/year] | [kg/year] | [kg/year] | [kg/year] | [kg/year] | [kg/year] | [kg/year] | |
Solid fuels—anthracite, coke/semi-coke from hard/brown coal | 18,280 | 66,853 | 852,372 | 91,661 | 371,085 | 11,751 | 52,229 |
- | - | - | - | - | - | - | |
18,779 | 68,676 | 875,623 | 94,162 | 381,207 | 12,072 | 53,653 | |
[kg/year] | [kg/year] | [kg/year] | [kg/year] | [kg/year] | [kg/year] | [kg/year] | |
Gas fuels | 153 | 558 | 7119 | 766 | 3099 | 98 | 436 |
- | - | - | - | - | - | - | |
163 | 594 | 7578 | 815 | 3299 | 104 | 464 | |
[kg/year] | [kg/year] | [kg/year] | [kg/year] | [kg/year] | [kg/year] | [kg/year] | |
Oil fuels | 469 | 1715 | 21,867 | 2351 | 9520 | 301 | 1340 |
- | - | - | - | - | - | ||
1350 | 4937 | 62,942 | 6769 | 27,402 | 868 | 3857 | |
[kg/year] | [kg/year] | [kg/year] | [kg/year] | [kg/year] | [kg/year] | [kg/year] | |
Electricity (heat pumps) | 7–9 | 27–32 | 346–405 | 37–44 | 151–176 | 5–6 | 21–25 |
[kg/year] | [kg/year] | [kg/year] | [kg/year] | [kg/year] | [kg/year] | [kg/year] |
Strenghts | Description | Significance | Justification |
---|---|---|---|
Low pollutant and CO2 emissions | Geothermal energy does not emit exhaust gases or dust during operation, significantly improving air quality. | High | Key to achieving climate and health goals (reducing smog, improving the health of residents). |
Consistency of energy supply | Availability independent of weather and season, ensures a stable source of heat or electricity. | High | Essential for energy security and long-term planning—especially in the face of climate change. |
Improving public health | Reducing emissions of PM10, PM2.5, and other pollutants reduces respiratory and cardiovascular diseases. | High | Direct impact on quality of life and health care costs—social and economic benefit. |
Minor interference with the landscape | Geothermal installations have a small spatial footprint and low noise levels. | Average | Important in the context of social acceptance, especially in tourist and landscape-valuable regions. |
Local development and jobs | The construction and operation of geothermal installations creates jobs and activates the local economy. | Average | An indirect effect, but socially and economically beneficial—especially in peripheral areas. |
Weaknesses | Description | Significance | Justification |
High investment costs | Drilling and infrastructure require large upfront investments. | High | The main barrier to development, without financial support, difficult to implement, especially for smaller municipalities. |
Limited geographical availability | Geothermal energy potential depends on site-specific geological conditions, such as reservoir depth, permeability, and fluid availability, which are not uniformly distributed. | High | This limits the scalability of the technology and requires location-specific feasibility studies. |
Geological uncertainty and reservoir-related risks | Subsurface challenges such as low injectivity, permeability variation, or early thermal breakthrough can reduce system performance and increase development risk. | High | These factors are difficult to predict pre-drilling and may lead to costly redesigns or failure to achieve expected energy yields |
Lack of social awareness | Low awareness of technology in society can result in resistance. | High | Acceptance barrier—lack of knowledge can lead to disinformation and project blocking. |
Project complexity | Each installation requires individual analysis, which takes longer and increases costs. | Average | It hinders standardisation and sector development—an organisational and investment challenge. |
Opportunities | Description | Significance | Justification |
Technological progress | The development of EGS, UTES, digitalisation, and AI reduces costs and increases availability. | Average | Technology can eliminate some current barriers, but implementations are expensive and time-consuming. |
Political and financial support | Subsidies, EU funds, and public programs support geothermal energy as “green energy”. | High | Decisive for breaking the cost barrier and developing the sector—investments are difficult to finance without it. |
Increased ecological awareness | A society more open to renewable energy and pro-climate actions. | High | It facilitates building local acceptance and partnerships and increases pressure on decision-makers and investors. |
Integration with other renewable energy systems | Possibility of integration with PV, heat pumps, and heat storage tanks. | Average | It increases systems’ efficiency and stability and can increase the attractiveness of geothermal energy as a part of the mix. |
Threats | Description | Significance | Justification |
Seismic or contamination risk | Concerns about micro-quakes and water pollution could spark protests. | Average | Rare, but media-friendly—a potential source of controversy and social resistance. |
Difficulty in eliminating specific emissions | E.g. mercury, ammonia—difficult to completely remove in some deposits. | Average | It may restrict development or require expensive clean-up technologies—essential for social acceptance. |
Competition from other renewable energy sources | PV and wind and biomass are more socially familiar. | High | It may limit interest in geothermal energy and direct resources to other energy sources. |
Lack of communication and social participation | Lack of consultation and transparency leads to protests. | High | Key threat—social resistance may completely block or significantly delay the investment. |
Description | Significance | Justification | |
---|---|---|---|
Political |
| High | The policy framework shapes the regulatory and financial environment; geothermal investments are difficult to implement without appropriate support. |
Economical |
| High | Project profitability and financing capacity are key to investment implementation. Additional health benefits translate into local budgets and quality of life. |
Social |
| High | Social acceptance of geothermal projects is a condition for their implementation. A lack of dialogue or ignorance can lead to social resistance. |
Technological |
| Average | Innovation is essential, but it takes time and resources to implement. Currently, many barriers are financial and social, not technological. |
Environmental |
| High | The impact on air, water, and health is crucial for local communities. LCA and environmental monitoring strengthen trust and social acceptance. |
Legal |
| Average | Regulations shape the pace and ease of investment implementation. However, they are secondary to the politics and economics of projects, but their importance is growing. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczmarczyk, M.; Sowiżdżał, A. Environmental and Social Dimensions of Energy Transformation Using Geothermal Energy. Energies 2025, 18, 3565. https://doi.org/10.3390/en18133565
Kaczmarczyk M, Sowiżdżał A. Environmental and Social Dimensions of Energy Transformation Using Geothermal Energy. Energies. 2025; 18(13):3565. https://doi.org/10.3390/en18133565
Chicago/Turabian StyleKaczmarczyk, Michał, and Anna Sowiżdżał. 2025. "Environmental and Social Dimensions of Energy Transformation Using Geothermal Energy" Energies 18, no. 13: 3565. https://doi.org/10.3390/en18133565
APA StyleKaczmarczyk, M., & Sowiżdżał, A. (2025). Environmental and Social Dimensions of Energy Transformation Using Geothermal Energy. Energies, 18(13), 3565. https://doi.org/10.3390/en18133565