Assessing the Impact of Solar Spectral Variability on the Performance of Photovoltaic Technologies Across European Climates
Abstract
1. Introduction
2. Materials and Methods
2.1. Modeling Site-Specific Spectral Irradiance Using FARMS-NIT and Satellite Data
2.2. Methodology and Data
3. Results and Discussion
3.1. Spectral Variability on a Yearly Scale: APE and SF Analysis
3.2. Monthly Spectral Factor Variations
3.3. Influence of Atmospheric Variables on Spectral Factor
4. Conclusions
- Real-world solar spectra rarely match laboratory standards and exhibit systematic blue shifts. Only 2–5% of hourly spectra resemble the AM1.5 reference used for testing, with all European regions receiving higher-energy (shorter-wavelength) sunlight than the AM1.5 benchmark and the largest shifts occurring in maritime and continental areas.
- Thin-film and crystalline silicon technologies respond differently to real-world spectral conditions in Europe. Thin-film modules—including amorphous silicon (a-Si), cadmium telluride (CdTe), and perovskite—demonstrate significant energy gains under blue-shifted spectra, with a-Si achieving up to 5.9% improvement in oceanic climates, CdTe up to 3.2%, and perovskite up to 4.2%. In contrast, crystalline silicon modules (PERC, PERT, HIT, and poly-Si) remain highly stable, showing less than ±1.6% variation across different climates. Meanwhile, CZTSSe technology exhibits latitude-dependent performance, losing efficiency at lower latitudes but gaining at higher latitudes due to spectral shifts primarily influenced by air mass.
- Spectral effects on PV performance are driven by different atmospheric factors depending on sky conditions—clearness index and precipitable water under all-sky conditions, and aerosol optical depth and water vapor under clear skies. Air mass becomes especially important in winter and at high latitudes. Notably, even within the same climate zone, spectral effects can vary by up to 6%, highlighting the necessity for detailed, site-specific assessments rather than relying on broad climate averages.
- Optimizing PV system design requires site-specific, climate-aware strategies. Achieving maximum energy yield from photovoltaic (PV) systems depends on both climate-aware deployment and detailed, site-specific spectral analysis. Relying solely on broad climate classifications is insufficient; optimal PV system design requires precise, location-level spectral evaluation to match the most suitable technology to the unique conditions of each site.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thoning, K.W.; Crotwell, A.M.; Mund, J.W. Atmospheric Carbon Dioxide Dry Air Mole Fractions from Continuous Measurements at Mauna Loa, Hawaii, Barrow, Alaska, American Samoa and South Pole, 1973-Present; National Oceanic and Atmospheric Administration (NOAA), Global Monitoring Laboratory (GML): Boulder, CO, USA, 2025. [Google Scholar]
- IRENA. Future of Solar Photovoltaic: Deployment Investment, Technology, Grid Integration and Socio-Economic Aspects (A Global Energy Transformation: Paper); International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2019. [Google Scholar]
- Fraunhofer ISE. Photovoltaics Report; Fraunhofer ISE: Freiburg, Germany, 2024. [Google Scholar]
- Vezzoni, R. Green Growth for Whom, How and Why? The REPowerEU Plan and the Inconsistencies of European Union Energy Policy. Energy Res. Soc. Sci. 2023, 101, 103134. [Google Scholar] [CrossRef]
- International Energy Agency. World Energy Outlook 2024; IEA: Paris, France, 2024. [Google Scholar]
- Theristis, M.; Stein, J.; Anderson, K.; Hansen, C.; Deville, L. PV Performance Modeling and Stakeholder Engagement-Final Technical Report; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA; Livermore, CA, USA, 2024. [Google Scholar]
- IEC 61853-3; Photovoltaic (PV) Module Performance Testing and Energy Rating—Part 3: Energy Rating of PV Modules. International Electrotechnical Commission: Geneva, Switzerland, 2018.
- Vogt, M.R.; Riechelmann, S.; Gracia-Amillo, A.M.; Driesse, A.; Kokka, A.; Maham, K.; Karha, P.; Kenny, R.; Schinke, C.; Bothe, K.; et al. PV Module Energy Rating Standard IEC 61853-3 Intercomparison and Best Practice Guidelines for Implementation and Validation. IEEE J. Photovolt. 2022, 12, 844–852. [Google Scholar] [CrossRef]
- IEC 60904-3; Photovoltaic Devices-Part 3: Measurement Principles for Terrestrial Photovoltaic (PV) Solar Devices with Reference Spectral Irradiance Data. International Electrotechnical Commission: Geneva, Switzerland, 2019.
- Kinsey, G.S.; Riedel-Lyngskær, N.C.; Miguel, A.-A.; Boyd, M.; Braga, M.; Shou, C.; Cordero, R.R.; Duck, B.C.; Fell, C.J.; Feron, S.; et al. Impact of measured spectrum variation on solar photovoltaic efficiencies worldwide. Renew. Energy 2022, 196, 995–1016. [Google Scholar] [CrossRef]
- Conde, L.A.; Angulo, J.R.; Sevillano-Bendezú, M.; Nofuentes, G.; Töfflinger, J.A.; de la Casa, J. Spectral Effects on the Energy Yield of Various Photovoltaic Technologies in Lima (Peru). Energy 2021, 223, 120034. [Google Scholar] [CrossRef]
- Lindsay, N.; Libois, Q.; Badosa, J.; Migan-Dubois, A.; Bourdin, V. Errors in PV Power Modelling Due to the Lack of Spectral and Angular Details of Solar Irradiance Inputs. Sol. Energy 2020, 197, 266–278. [Google Scholar] [CrossRef]
- Bouillon, L.; Gros, V.; Petit, J.-E.; Bonnaire, N.; Ramonet, M.; Lopez, M.; Philippon, C.; Yver Kwok, C. Long-Term Measurements of Greenhouse and Reactive Gases, and Aerosols, at Saclay/SIRTA Observatory in the Ile de France Region as Part of ICOS and ACTRIS. In Proceedings of the European Geosciences Union General Assembly, Vienna, Austria, 14–19 April 2024. [Google Scholar]
- Leitão, D.; Torres, J.P.N.; Fernandes, J.F.P. Spectral Irradiance Influence on Solar Cells Efficiency. Energies 2020, 13, 5017. [Google Scholar] [CrossRef]
- Aminul Islam, M.; Kassim, N.; Ahmed Alkahtani, A.; Amin, N. Assessing the Impact of Spectral Irradiance on the Performance of Different Photovoltaic Technologies. In Solar Radiation-Measurement, Modeling and Forecasting Techniques for Photovoltaic Solar Energy Applications; IntechOpen: London, UK, 2022. [Google Scholar]
- Bevanda, I.; Betti, T.; Maric, P.; Marasovic, I. Evaluating the Performance of Photovoltaic Simulation Tools: Case Study of Grid-Connected 31 KWp Photovoltaic System. In Proceedings of the 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech), Split/Bol, Croatia, 5–8 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Daxini, R.; Wu, Y. Review of Methods to Account for the Solar Spectral Influence on Photovoltaic Device Performance. Energy 2024, 286, 129461. [Google Scholar] [CrossRef]
- Caballero, J.A.; Fernández, E.F.; Theristis, M.; Almonacid, F.; Nofuentes, G. Spectral Corrections Based on Air Mass, Aerosol Optical Depth, and Precipitable Water for PV Performance Modeling. IEEE J. Photovolt. 2018, 8, 552–558. [Google Scholar] [CrossRef]
- Daxini, R.; Wilson, R.; Wu, Y. Modelling the Spectral Influence on Photovoltaic Device Performance Using the Average Photon Energy and the Depth of a Water Absorption Band for Improved Forecasting. Energy 2023, 284, 129046. [Google Scholar] [CrossRef]
- Daxini, R.; Sun, Y.; Wilson, R.; Wu, Y. Direct Spectral Distribution Characterisation Using the Average Photon Energy for Improved Photovoltaic Performance Modelling. Renew. Energy 2022, 201, 1176–1188. [Google Scholar] [CrossRef]
- Cui, D.; Liang, S.; Wang, D.; Liu, Z. A 1 Km Global Dataset of Historical (1979–2013) and Future (2020–2100) Köppen–Geiger Climate Classification and Bioclimatic Variables. Earth Syst. Sci. Data 2021, 13, 5087–5114. [Google Scholar] [CrossRef]
- Ascencio-Vásquez, J.; Brecl, K.; Topič, M. Methodology of Köppen-Geiger-Photovoltaic Climate Classification and Implications to Worldwide Mapping of PV System Performance. Sol. Energy 2019, 191, 672–685. [Google Scholar] [CrossRef]
- Betti, T.; Bevanda, I.; Marasović, I.; Zulim, I. A New Approach to Comparing Photovoltaic Simulation Software. Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 6290–6304. [Google Scholar] [CrossRef]
- Sengupta, M.; Xie, Y.; Lopez, A.; Habte, A.; Maclaurin, G.; Shelby, J. The National Solar Radiation Data Base (NSRDB). Renew. Sustain. Energy Rev. 2018, 89, 51–60. [Google Scholar] [CrossRef]
- Xie, Y.; Sengupta, M. A Fast All-Sky Radiation Model for Solar Applications with Narrowband Irradiances on Tilted Surfaces (FARMS-NIT): Part I. The clear-sky model. Sol. Energy 2018, 174, 691–702. [Google Scholar] [CrossRef]
- Xie, Y.; Sengupta, M.; Wang, C. A Fast All-Sky Radiation Model for Solar Applications with Narrowband Irradiances on Tilted Surfaces (FARMS-NIT): Part II. The cloudy-sky model. Sol. Energy 2019, 188, 799–812. [Google Scholar] [CrossRef]
- Sengupta, M.; Habte, A.; Xie, Y.; Buster, G.; Benton, B.; Yang, J. New Capabilities in the National Solar Radiation Data Base. In Proceedings of the EMS Annual Meeting 2023, Bratislava, Slovakia, 4–8 September 2023. [Google Scholar]
- Montagner, F. The Role of EUMETSAT (Europe). In Satellites for Atmospheric Sciences 1; Wiley: Singapore, 2023; pp. 117–139. [Google Scholar]
- Sengupta, M.; Habte, A.; Benton, B.; Xie, Y.; Buster, G.; Foster, M. Improving the Accuracy and Coverage of the NSRDB. In Proceedings of the EMS Annual Meeting 2024, Barcelona, Spain, 2–6 September 2024. [Google Scholar]
- Pelland, S.; Gueymard, C.A. Validation of Photovoltaic Spectral Effects Derived From Satellite-Based Solar Irradiance Products. IEEE J. Photovolt. 2022, 12, 1361–1368. [Google Scholar] [CrossRef]
- Xie, Y.; Habte, A.; Sengupta, M.; Vignola, F. An Evaluation of the Spectral Irradiance Data from the NSRDB; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2021. [Google Scholar]
- Kinsey, G.S. Solar Cell Efficiency Divergence Due to Operating Spectrum Variation. Sol. Energy 2021, 217, 49–57. [Google Scholar] [CrossRef]
- Curran, A.J.; Lin, B.; Deng, Y. Simple Spectral Model for Module Performance Based on FARMS-NIT Predictions. In Proceedings of the 2024 IEEE 52nd Photovoltaic Specialist Conference (PVSC), 9–14 June 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1237–1241. [Google Scholar]
- Anderson, K.S.; Stein, J.S.; Theristis, M. Variation in Photovoltaic Energy Rating and Underlying Drivers Across Modules and Climates. IEEE Access 2025, 13, 21064–21073. [Google Scholar] [CrossRef]
- Daxini, R.; Anderson, K.S.; Stein, J.S.; Theristis, M. Photovoltaic Module Spectral Mismatch Losses Due to Cell-Level EQE Variation. IEEE J. Photovolt. 2025, 15, 458–464. [Google Scholar] [CrossRef]
- Driesse, A.; Theristis, M.; Stein, J.S. Global Horizontal Spectral Irradiance and Module Spectral Response Measurements: An Open Dataset for PV Research; Sandia National Laboratories: Albuquerque, NM, USA; Livermore, CA, USA, 2023. [Google Scholar]
- Wright, L.D. Data and Images for “Water Based Spray Pyrolysis of Metal-Oxide Solutions for CZTSSe Solar Cells Using Low Toxicity Amine/Thiol Complexants”; Loughborough University Collection: Loughborough, UK, 2018. [Google Scholar]
- Mendoza, L.A.C.; Romero, J.M.; Vela, A.M.C.; Ibañez, R.A.P.; Torres, J.A.G.; Bendezú, M.A.S.; Silva, B.X.C.; Abanto, J.R.A.; Higueras, J.D.l.C.; Töfflinger, J.A.P. Puesta En Marcha de Un Laboratorio Para La Caracterización de Tecnologías Fotovoltaicas a Sol Real Bajo Las Condiciones Climáticas de Lima. Tecnia 2020, 30, 80–89. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Siefer, G.; Hao, X.; Jiang, J.Y. Solar Cell Efficiency Tables (Version 66). Prog. Photovolt. Res. Appl. 2025, 33, 795–810. [Google Scholar] [CrossRef]
- European Commission, J.R.C. Photovoltaic Geographical Information System (PVGIS). Available online: https://Joint-Research-Centre.Ec.Europa.Eu/Photovoltaic-Geographical-Information-System-Pvgis_en (accessed on 1 June 2025).
- Abdallah, R.; Juaidi, A.; Salameh, T.; Jeguirim, M.; Çamur, H.; Kassem, Y.; Abdala, S. Estimation of Solar Irradiation and Optimum Tilt Angles for South-Facing Surfaces in the United Arab Emirates: A Case Study Using PVGIS and PVWatts. Recent Adv. Renew. Energy Technol. 2022, 2, 3–39. [Google Scholar]
- Ozer, R.A.; Demirci, M. Determination of Optimum Tilt Angle for Solar Panels: Case Study for Eastern Anatolia Region of Turkey. Gumushane Univ. Fen Bilim. Derg. 2025, 15, 93–104. [Google Scholar] [CrossRef]
- Ukoima, K.N.; Efughu, D.; Azubuike, O.C.; Akpiri, B.F. Investigating the Optimal Photovoltaic (PV) Tilt Angle Using the Photovoltaic Geographic Information System (PVGIS). Niger. J. Technol. 2024, 43, 101–114. [Google Scholar] [CrossRef]
- Vogt, M.R.; Riechelmann, S.; Gracia-Amillo, A.M.; Driesse, A.; Kokka, A.; Maham, K.; Kärhä, P.; Kenny, R.; Schinke, C.; Bothe, K.; et al. Interlaboratory Comparison of the PV Module Energy Rating Standard IEC 61853-3. In Proceedings of the European Photovoltaic Solar Energy Conference and Exhibition, Virtual, Online, 7–11 September 2020; pp. 811–815. [Google Scholar] [CrossRef]
Group No. | Climate Types | No. of Locations |
---|---|---|
1 | BSh, BSk | 5 |
2 | Cfa, Csa, Csb | 21 |
3 | Cfb | 23 |
4 | Dfb | 30 |
Location | Climate | Latitude | AM | W | AOD | Kt | a-Si | CdTe | Pvsk | PERC | HIT | p-Si | PERT | CZTSSe |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nicosia | BSh | 35.18 | 2.62 | 2.12 | 0.21 | 0.82 | 5.3 | 2.3 | 3.4 | 0.4 | 0.0 | 0.6 | 0.4 | −0.3 |
Thira | BSh | 36.42 | 2.70 | 2.10 | 0.2 | 0.78 | 5.4 | 2.5 | 3.6 | 0.6 | 0.2 | 0.8 | 0.5 | −0.2 |
Valencia | BSk | 39.47 | 2.74 | 2.05 | 0.15 | 0.75 | 5.6 | 2.6 | 3.7 | 0.8 | 0.4 | 1.0 | 0.7 | −0.1 |
Madrid | Csa | 40.41 | 2.76 | 1.47 | 0.10 | 0.77 | 3.8 | 1.0 | 2.1 | −0.1 | −0.3 | 0.1 | 0.0 | −0.7 |
Rijeka | Cfa | 45.33 | 2.96 | 2.10 | 0.20 | 0.61 | 5.7 | 2.9 | 3.9 | 1.1 | 0.8 | 1.3 | 1.0 | 0.3 |
Palermo | Csa | 38.11 | 2.69 | 2.20 | 0.19 | 0.75 | 6.1 | 3.0 | 4.1 | 0.8 | 0.4 | 1.1 | 0.8 | 0.0 |
Dublin | Cfb | 53.37 | 3.32 | 1.95 | 0.09 | 0.44 | 7.4 | 4.5 | 5.7 | 2.6 | 2.1 | 2.9 | 2.5 | 1.5 |
Bergen | Cfb | 60.39 | 3.76 | 1.54 | 0.13 | 0.45 | 3.4 | 2.4 | 2.7 | 1.7 | 1.6 | 1.8 | 1.7 | 1.2 |
Eindhoven | Cfb | 51.44 | 3.20 | 1.74 | 0.16 | 0.52 | 5.8 | 3.3 | 4.2 | 1.7 | 1.3 | 1.9 | 1.6 | 0.8 |
Sofia | Dfb | 42.69 | 2.79 | 1.69 | 0.19 | 0.65 | 5.8 | 2.6 | 3.8 | 0.8 | 0.4 | 1.1 | 0.8 | −0.1 |
Talinn | Dfb | 59.44 | 3.69 | 1.45 | 0.14 | 0.48 | 5.0 | 2.8 | 3.6 | 1.4 | 1.2 | 1.6 | 1.4 | 0.7 |
Krakow | Dfb | 50.06 | 3.16 | 1.80 | 0.19 | 0.54 | 5.8 | 3.2 | 4.2 | 1.5 | 1.1 | 1.7 | 1.4 | 0.6 |
Location | Climate | Latitude | AM | W | AOD | Kt | a-Si | CdTe | Pvsk | PERC | HIT | p-Si | PERT | CZTSSe |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nicosia | BSh | 35.18 | 2.69 | 2.21 | 0.2 | 1 | 3.7 | 1.5 | 2.2 | 0.0 | 0.0 | 0.1 | 0.0 | −0.5 |
Thira | BSh | 36.42 | 2.76 | 2.25 | 0.23 | 1 | 3.7 | 1.5 | 2.2 | 0.1 | 0.3 | 0.1 | 0.1 | −0.6 |
Valencia | BSk | 39.47 | 2.97 | 2.03 | 0.14 | 1 | 3.1 | 1.1 | 1.8 | −0.1 | −0.3 | 0.0 | −0.1 | −0.5 |
Madrid | Csa | 40.41 | 2.76 | 1.39 | 0.09 | 1 | 2 | −0.1 | 0.7 | −0.7 | −0.9 | −0.6 | −0.6 | −1.1 |
Rijeka | Cfa | 45.33 | 2.96 | 2.24 | 0.18 | 1 | 2.8 | 1.3 | 1.7 | 0.1 | 0.0 | 0.2 | 0.0 | −0.2 |
Palermo | Csa | 38.11 | 2.79 | 2.31 | 0.18 | 1 | 4.0 | 1.8 | 2.5 | 0.0 | −0.1 | 0.3 | 0.0 | −0.4 |
Dublin | Cfb | 53.37 | 4.10 | 1.63 | 0.08 | 1 | 2.5 | 1.0 | 1.4 | 0.0 | −0.1 | 0.0 | 0.0 | −0.4 |
Bergen | Cfb | 60.39 | 3.78 | 1.45 | 0.13 | 1 | −2.0 | −0.5 | −1.2 | 0.3 | 0.6 | 0.2 | 0.3 | 0.5 |
Eindhoven | Cfb | 51.44 | 3.56 | 1.62 | 0.14 | 1 | −0.1 | 0.2 | −0.1 | 0.2 | 0.4 | 0.2 | 0.2 | 0.3 |
Sofia | Dfb | 42.69 | 2.91 | 1.80 | 0.16 | 1 | 2.4 | 0.7 | 1.3 | −0.2 | −0.4 | −0.1 | −0.1 | −0.6 |
Talinn | Dfb | 59.44 | 3.42 | 1.61 | 0.14 | 1 | 0.9 | 0.2 | 0.3 | −0.2 | −0.2 | −0.2 | −0.2 | −0.4 |
Krakow | Dfb | 50.06 | 3.27 | 1.94 | 0.17 | 1 | 1.2 | 0.8 | 0.7 | 0.2 | 0.3 | 0.3 | 0.2 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bevanda, I.; Marić, P.; Kristić, A.; Betti, T. Assessing the Impact of Solar Spectral Variability on the Performance of Photovoltaic Technologies Across European Climates. Energies 2025, 18, 3868. https://doi.org/10.3390/en18143868
Bevanda I, Marić P, Kristić A, Betti T. Assessing the Impact of Solar Spectral Variability on the Performance of Photovoltaic Technologies Across European Climates. Energies. 2025; 18(14):3868. https://doi.org/10.3390/en18143868
Chicago/Turabian StyleBevanda, Ivan, Petar Marić, Ante Kristić, and Tihomir Betti. 2025. "Assessing the Impact of Solar Spectral Variability on the Performance of Photovoltaic Technologies Across European Climates" Energies 18, no. 14: 3868. https://doi.org/10.3390/en18143868
APA StyleBevanda, I., Marić, P., Kristić, A., & Betti, T. (2025). Assessing the Impact of Solar Spectral Variability on the Performance of Photovoltaic Technologies Across European Climates. Energies, 18(14), 3868. https://doi.org/10.3390/en18143868