Biowaste to Energy and Value-Added Products—Challenges and Opportunities
1. Introduction
2. Scope and Objectives
- Szyba, M.; Mikulik, J. Analysis of Feasibility of Producing and Using Biogas in Large Cities, Based on the Example of Krakow and Its Surrounding Municipalities. Energies 2023, 16, 7588. https://doi.org/10.3390/EN16227588.
- Tarapata, J.; Zieliński, M.; Zulewska, J. Valorization of Dairy By-Products: Efficiency of Energy Production from Biogas Obtained in Anaerobic Digestion of Ultrafiltration Permeates. Energies 2022, 15, 6829. https://doi.org/10.3390/EN15186829.
- Zieliński, M.; Karczmarczyk, A.; Kisielewska, M.; Dębowski, M. Possibilities of Biogas Upgrading on a Bio-Waste Sorbent Derived from Anaerobic Sewage Sludge. Energies 2022, 15, 6461. https://doi.org/10.3390/EN15176461.
- Biedka, P. Biodegradation Kinetics of Organic Matter in Water from Sludge Dewatering after Autothermal Thermophilic Aerobic Digestion. Energies 2023, 16, 203. https://doi.org/10.3390/EN16010203.
- Qureshi, N.; Lin, X.; Tao, S.; Liu, S.; Huang, H.; Nichols, N.N. Can Xylose Be Fermented to Biofuel Butanol in Continuous Long-Term Reactors: If Not, What Options Are There? Energies 2023, 16, 4945. https://doi.org/10.3390/EN16134945.
- Agoe, A. K.; Poulopoulos, S.G.; Sarbassov, Y.; Shah, D. Investigation of Sewage Sludge–Derived Biochar for Enhanced Pollutant Adsorption: Effect of Particle Size and Alkali Treatment. Energies 2024, 17, 4554. https://doi.org/10.3390/EN17184554.
- Keith, K.; Castillo-Villar, K.K. Stochastic Programming Model Integrating Pyrolysis Byproducts in the Design of Bioenergy Supply Chains. Energies 2023, 16, 4070. https://doi.org/10.3390/EN16104070.
- Warmiński, K.; Jankowska, K.A.; Bęś, A.; Stolarski, M.J. Off-Gassing and Oxygen Depletion in Headspaces of Solid Biofuels Produced from Forest Residue Biomass. Energies 2024, 17, 216. https://doi.org/10.3390/EN17010216.
- Stolarski, M.J.; Krzyżaniak, M.; Olba-Zięty, E.; Stolarski, J. Changes in Commercial Dendromass Properties Depending on Type and Acquisition Time. Energies 2023, 16, 7973. https://doi.org/10.3390/EN16247973.
- Jóźwiak, T.; Filipkowska, U.; Walczak, P. The Use of Aminated Wheat Straw for Reactive Black 5 Dye Removal from Aqueous Solutions as a Potential Method of Biomass Valorization. Energies 2022, 15, 6257. https://doi.org/10.3390/EN15176257.
- Dechapanya, W.; Wongsuwan, K.; Lewis, J.H.; Khamwichit, A. Optimization and Modification of Bacterial Cellulose Membrane from Coconut Juice Residues and Its Application in Carbon Dioxide Removal for Biogas Separation. Energies 2024, 17, 4750. https://doi.org/10.3390/EN17184750.
- López, L.; Domínguez, G.; Antuñano, Z.; Ignacio, D.; García, G.; Zielí nski, M.; Kazimierowicz, J.; Eduardo Esquerre Verastegui, J.; López López, A.; Adrián González Domínguez, R.; et al. Production of Coconut Oil Bioturbosine without Water by Using Ultrasound as a Source of Energy and Ion Exchange for Its Purification. Energies 2024, 17, 614. https://doi.org/10.3390/EN17030614.
- Rodziewicz, J.; Mielcarek, A.; Janczukowicz, W.; Tavares, J.M.R.; Jóźwiakowski, K. Characteristics of Sludge from the Treatment of Soilless Plant Cultivation Wastewater in a Rotating Electrobiological Disc Contactor (REBDC). Energies 2023, 16, 1022. https://doi.org/10.3390/EN16031022.
- Renzi, M.; Valéria, M.; Machado, S.; Ávila, I.; Andrade De Carvalho, J. Bibliometric Analysis of Renewable Natural Gas (Biomethane) and Overview of Application in Brazil. Energies 2024, 17, 2920. https://doi.org/10.3390/EN17122920.
- Gusiatin, M.Z.; Kulikowska, D.; Bernat, K. Municipal Sewage Sludge as a Resource in the Circular Economy. Energies 2024, 17, 2474. https://doi.org/10.3390/EN17112474.
3. Anaerobic Digestion and Fermentation Processes
4. Thermochemical Conversion of Bio-Waste
5. High-Value Bioproducts and Functional Bio-Based Materials
6. Ecological and Economic Assessments
7. Conclusions and Outlook
Conflicts of Interest
References
- Gavrilaș, S.; Raț, M.; Munteanu, F.-D. Biowaste Valorisation and Its Possible Perspectives Within Sustainable Food Chain Development. Processes 2025, 13, 2085. [Google Scholar] [CrossRef]
- Li, F.; Li, G.; Lougou, B.G.; Zhou, Q.; Jiang, B.; Shuai, Y. Upcycling biowaste into advanced carbon materials via low-temperature plasma hybrid system: Applications, mechanisms, strategies and future prospects. Waste Manag. 2024, 189, 364–388. [Google Scholar] [CrossRef]
- Mioduska, J.; Grabowiec, A.; Hupka, J. Digestate Quality Originating from Kitchen Waste. Appl. Sci. 2023, 13, 10353. [Google Scholar] [CrossRef]
- Lackner, M.; Besharati, M. Agricultural Waste: Challenges and Solutions, a Review. Waste 2025, 3, 18. [Google Scholar] [CrossRef]
- Gómez, M.; Martinez, M.M. Fruit and vegetable by-products as novel ingredients to improve the nutritional quality of baked goods. Crit. Rev. Food Sci. Nutr. 2018, 58, 2119–2135. [Google Scholar] [CrossRef] [PubMed]
- Kazimierowicz, J.; Dębowski, M. Aerobic Granular Sludge as a Substrate in Anaerobic Digestion: Current Status and Perspectives. Sustainability 2022, 14, 10904. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Dębowski, M.; Zieliński, M.; Kasiński, S.; Cruz Sanchez, J. Biotechnological Valorization of Waste Glycerol into Gaseous Biofuels—A Review. Energies 2024, 17, 338. [Google Scholar] [CrossRef]
- Taghizadeh-Alisaraei, A.; Motevali, A.; Ghobadian, B. Ethanol production from date wastes: Adapted technologies, challenges, and global potential. Renew. Energy 2019, 143, 1094–1110. [Google Scholar] [CrossRef]
- Álvarez, P.M.; Collado Contreras, J.; Nogales-Delgado, S. Biodiesel and Biolubricant Production from Waste Cooking Oil: Transesterification Reactor Modeling. Appl. Sci. 2025, 15, 575. [Google Scholar] [CrossRef]
- Ghosh, S.; Dairkee, U.K.; Chowdhury, R.; Bhattacharya, P. Hydrogen from Food Processing Wastes via Photofermentation Using Purple Non-Sulfur Bacteria (PNSB)—A Review. Energy Convers. Manag. 2017, 141, 299–314. [Google Scholar] [CrossRef]
- Zupančič, G.D.; Lončar, A.; Budžaki, S.; Panjičko, M. Biopolymers Produced by Treating Waste Brewer’s Yeast with Active Sludge Bacteria: The Qualitative Analysis and Evaluation of the Potential for 3D Printing. Sustainability 2022, 14, 9365. [Google Scholar] [CrossRef]
- Calabrò, P.S.; Pangallo, D.; Ferreri, M.; Pedullà, A.; Zema, D.A. Organic Waste and Wastewater Sludge to Volatile Fatty Acids and Biomethane: A Semi-Continuous Biorefinery Approach. Recycling 2025, 10, 125. [Google Scholar] [CrossRef]
- Van Fan, Y.; Lee, C.T.; Klemeš, J.J.; Chua, L.S.; Sarmidi, M.R.; Leow, C.W. Evaluation of Effective Microorganisms on Home Scale Organic Waste Composting. J. Environ. Manag. 2018, 216, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Bekavac, N.; Krog, K.; Stanić, A.; Šamec, D.; Šalić, A.; Benković, M.; Jurina, T.; Gajdoš Kljusurić, J.; Valinger, D.; Jurinjak Tušek, A. Valorization of Food Waste: Extracting Bioactive Compounds for Sustainable Health and Environmental Solutions. Antioxidants 2025, 14, 714. [Google Scholar] [CrossRef]
- Esercizio, N.; Lanzilli, M.; Vastano, M.; Landi, S.; Xu, Z.; Gallo, C.; Nuzzo, G.; Manzo, E.; Fontana, A.; d’Ippolito, G. Fermentation of Biodegradable Organic Waste by the Family Thermotogaceae. Resources 2021, 10, 34. [Google Scholar] [CrossRef]
- Akhtar, A.; Krepl, V.; Ivanova, T. A combined overview of combustion, pyrolysis, and gasification of biomass. Energy Fuel 2018, 32, 7294–7318. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Mariod, A.A.; Aroua, M.K.; Rahman, S.M.A.; Soudagar, M.E.M.; Fattah, I.M.R. Current State and Perspectives on Transesterification of Triglycerides for Biodiesel Production. Catalysts 2021, 11, 1121. [Google Scholar] [CrossRef]
- Saleem, M. Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source. Heliyon 2022, 8, e08905. [Google Scholar] [CrossRef]
- Krzyzanowski Guerra, K.; Hanks, A.S.; Plakias, Z.T.; Huser, S.; Redfern, T.; Garner, J.A. Local Value Chain Models of Healthy Food Access: A Qualitative Study of Two Approaches. Nutrients 2021, 13, 4145. [Google Scholar] [CrossRef]
- Mancini, E.; Negro, V.; Mainero, D.; Raggi, A. The Use of a Simplified Carbon Footprint Tool for Organic Waste Managers: Pros and Cons. Sustainability 2022, 14, 1951. [Google Scholar] [CrossRef]
- Zieliński, M.; Dębowski, M.; Kazimierowicz, J.; Świca, I. Microalgal Carbon Dioxide (CO2) Capture and Utilization from the European Union Perspective. Energies 2023, 16, 1446. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dębowski, M.; Zieliński, M.; Kazimierowicz, J. Biowaste to Energy and Value-Added Products—Challenges and Opportunities. Energies 2025, 18, 4095. https://doi.org/10.3390/en18154095
Dębowski M, Zieliński M, Kazimierowicz J. Biowaste to Energy and Value-Added Products—Challenges and Opportunities. Energies. 2025; 18(15):4095. https://doi.org/10.3390/en18154095
Chicago/Turabian StyleDębowski, Marcin, Marcin Zieliński, and Joanna Kazimierowicz. 2025. "Biowaste to Energy and Value-Added Products—Challenges and Opportunities" Energies 18, no. 15: 4095. https://doi.org/10.3390/en18154095
APA StyleDębowski, M., Zieliński, M., & Kazimierowicz, J. (2025). Biowaste to Energy and Value-Added Products—Challenges and Opportunities. Energies, 18(15), 4095. https://doi.org/10.3390/en18154095