Thermodynamic Evaluation of Low-GWP A1 Refrigerants for Ultra-Low Temperature Refrigeration Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Configurations
2.2. Refrigerants
2.3. Model and Assumptions
- All system components are assumed to be in a steady-state and steady-flow process [30].
- Target cooling capacity at the LTS evaporator is fixed at 1 kW.
- Superheating degree at the evaporator is 7 K.
- Subcooling degree at the condenser is 2 K.
- Isenthalpic process at the expansion valve [32].
- Compressor isentropic and volumetric efficiencies are a function of the compression ratio [32].
- Eletromechanical efficiency is 0.57 for the LTS compressor and 0.63 for the HTS compressor [13].
- Pressure and heat losses in heat exchangers and connection pipes are neglected [33].
2.4. Carbon Footprint Assessment
3. Results and Discussion
3.1. Model Validation
3.2. Basic Two-Stage Cascade Configuration
3.2.1. Influence of the Cascade Heat Exchanger Temperature
3.2.2. COP Optimisation
3.3. IHX Configurations
3.3.1. Influence of the Cascade Heat Exchanger and the LTS Compressor Suction Temperature
3.3.2. COP Optimisation
3.4. Heat Transfer Analysis
3.5. TEWI
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
ASHRAE | American Society of Heating, Refrigerating and Air-Conditioning Engineers |
CHX | Cascade heat exchanger |
COP | Coefficient of performance |
CR | Compression ratio |
Energy consumption (kWh) | |
h | Enthalpy (kJ·kg−1) |
FOM | Figure of merit |
GWP | Global warming potential |
Heat of vaporisation (kJ·kg−1) | |
Heat transfer (kW) | |
HTS | High temperature stage |
IPCC | Intergovernmental Panel on Climate Change |
IHX | Internal heat exchanger |
Leakage factor (-) | |
LTS | Low temperature stage |
Mass flow rate (kg·s−1) | |
M | Molar mass (g·mol−1) |
NBP | Normal boiling point |
ODP | Ozone depletion potential |
Power consumption (kW) | |
P | Pressure (bar) |
Pr | Prandtl (-) |
Refrigerant charge (kg) | |
Service life (years) | |
SPHT | Single-phase heat transfer |
Suction volumetric flow rate (m3·s−1) | |
T | Temperature (°C) |
Thermal conductivity (W·m−1·K−1) | |
TEWI | Total equivalent warming impact |
ULT | Ultra-low temperature refrigeration |
Xv | Vapour quality (-) |
Greek Symbols | |
Carbon intensity factor (kgCO2·kWh−1) | |
Density (kg·m3) | |
Efficiency (-) | |
Heat exchanger efficiency (-) | |
Recycling factor (-) | |
Dynamic viscosity (Pa·s) | |
Subscripts | |
bubble | bubble point |
c | compressor |
k | condensation |
dew | dew point |
disch | discharge |
em | electromechanical |
o | evaporation |
exv | expansion valve |
in | inlet |
is | isentropic |
l | liquid |
max | maximum |
out | outlet |
annual | per year |
pb | pool boiling |
r | reduced |
ref | refrigerant |
suc | suction |
v | vapour |
vol | volumetric |
References
- IIF-IIR. Activity Report 2020; International Institute of Refrigeration: Paris, France, 2021. [Google Scholar]
- ASHRAE. 2022 ASHRAE Handbook—Refrigreation; ASHRAE: Atlanta, GA, USA, 2022. [Google Scholar]
- Mota-Babiloni, A.; Joybari, M.M.; Navarro-Esbrí, J.; Mateu-Royo, C.; Barragán-Cervera, Á.; Amat-Albuixech, M.; Molés, F. Ultralow-temperature refrigeration systems: Configurations and refrigerants to reduce the environmental impact. Int. J. Refrig. 2020, 111, 147–158. [Google Scholar] [CrossRef]
- Qin, Y.; Li, N.; Zhang, H.; Liu, B. Thermodynamic performance of a modified −150 °C refrigeration system coupled with Linde-Hampson and three-stage auto-cascade using low-GWP refrigerants. Energy Convers. Manag. 2021, 236, 114093. [Google Scholar] [CrossRef]
- Hamzaoui, M.; Tiachacht, S.; Hadiouche, A. Optimization of a three-stage cascade refrigeration system operating with natural refrigerants to produce low temperatures by applying a bio-inspired method. Therm. Sci. Eng. Prog. 2024, 50, 102519. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, S.; Zhang, H.; Tan, Y.; Zhou, G.; Liu, B. Experimental investigation on the performance of a −120 °C ultralow temperature refrigeration system based on a three-stage auto-cascade cycle. Energy 2025, 320, 135146. [Google Scholar] [CrossRef]
- Zschimmer & Schwarz. Polyol Esters Technical Data Sheet. 2022. Available online: https://zslubes.com/documents-pdf/Z_S-Tech-Data-Sheets/ZSUS_TDS_Polyol_Ester_Lubricants_1-18-22 LEX.pdf (accessed on 2 May 2025).
- Li, Y.; Yu, J.; Qin, H.; Sheng, Z.; Wang, Q. An experimental investigation on a modified cascade refrigeration system with an ejector. Int. J. Refrig. 2018, 96, 63–69. [Google Scholar] [CrossRef]
- Wang, H.; Song, Y.; Cao, F. Experimental investigation on the pull-down performance of a −80 °C ultra-low temperature freezer. Int. J. Refrig. 2020, 119, 1–10. [Google Scholar] [CrossRef]
- Song, Y.; Wang, H.; Cao, F. Principal effective factors on the dynamic pull-down performance of a zeotropic mixture based ultra-low temperature freezer. Appl. Therm. Eng. 2021, 183, 116070. [Google Scholar] [CrossRef]
- Giménez-Prades, P.; Navarro-Esbrí, J.; Udroiu, C.-M.; Mota-Babiloni, A. Experimental retrofit of an R404A/R23 ultra-low temperature freezer using R448A and electronic expansion valves. Int. J. Refrig. 2025, 171, 217–227. [Google Scholar] [CrossRef]
- Gong, M.; Sun, Z.; Wu, J.; Zhang, Y.; Meng, C.; Zhou, Y. Performance of R170 mixtures as refrigerants for refrigeration at −80 °C temperature range. Int. J. Refrig. 2009, 32, 892–900. [Google Scholar] [CrossRef]
- Udroiu, C.-M.; Giménez-Prades, P.; Navarro-Esbrí, J.; Barragán-Cervera, Á.; Mota-Babiloni, A. Experimental evaluation of a two-stage cascade ultra-low temperature refrigeration system with internal heat exchanger using hydrocarbon pair R290/R170 and comparison with HFC baseline. Appl. Therm. Eng. 2025, 274, 126679. [Google Scholar] [CrossRef]
- Sun, Z.; Liang, Y.; Liu, S.; Ji, W.; Zang, R.; Liang, R.; Guo, Z. Comparative analysis of thermodynamic performance of a cascade refrigeration system for refrigerant couples R41/R404A and R23/R404A. Appl. Energy 2016, 184, 19–25. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, Q.; Xie, Z.; Liu, S.; Su, D.; Cui, Q. Energy and exergy analysis of low GWP refrigerants in cascade refrigeration system. Energy 2019, 170, 1170–1180. [Google Scholar] [CrossRef]
- Aktemur, C.; Ozturk, I.T.; Cimsit, C. Comparative energy and exergy analysis of a subcritical cascade refrigeration system using low global warming potential refrigerants. Appl. Therm. Eng. 2021, 184, 116254. [Google Scholar] [CrossRef]
- Ji, S.; Liu, Z.; Pan, H.; Li, X. Energy, exergy, environmental and exergoeconomic (4E) analysis of an ultra-low temperature cascade refrigeration system with environmental-friendly refrigerants. Appl. Therm. Eng. 2024, 248, 123210. [Google Scholar] [CrossRef]
- Liu, Z.; Bai, M.; Tan, H.; Ling, Y.; Cao, Z. Experimental test on the performance of a −80 °C cascade refrigeration unit using refrigerants R290-R170 for COVID-19 vaccines storage. J. Build. Eng. 2023, 63, 105537. [Google Scholar] [CrossRef]
- Liu, Z.; Ji, S.; Tan, H.; Yang, D.; Cao, Z. An ultralow-temperature cascade refrigeration unit with natural refrigerant pair R290-R170: Performance evaluation under different ambient and freezing temperatures. Therm. Sci. Eng. Prog. 2023, 46, 102202. [Google Scholar] [CrossRef]
- Rodriguez-Criado, J.C.; Expósito-Carrillo, J.A.; Pérez, B.P.; Dominguez-Muñoz, F. Experimental performance analysis of a packaged R290 refrigeration unit retrofitted with R170 for ultra-low temperature freezing. Int. J. Refrig. 2022, 134, 105–114. [Google Scholar] [CrossRef]
- ANSI/ASHRAE Standard 34–2019; Designation and Safety Classification of Refrigerants. ASHRAE: Atlanta, GA, USA, 2019.
- Mota-Babiloni, A.; Giménez-Prades, P.; Makhnatch, P.; Rogstam, J.; Fernández-Moreno, A.; Navarro-Esbrí, J. Semi-empirical analysis of HFC supermarket refrigeration retrofit with advanced configurations from energy, environmental, and economic perspectives. Int. J. Refrig. 2022, 137, 257–271. [Google Scholar] [CrossRef]
- Mota-Babiloni, A.; Navarro-Esbrí, J.; Peris, B.; Molés, F.; Verdú, G. Experimental evaluation of R448A as R404A lower-GWP alternative in refrigeration systems. Energy Convers. Manag. 2015, 105, 756–762. [Google Scholar] [CrossRef]
- WeissTechnik. WT69 (Refrigerant R-469A) Technical Data. 2020. Available online: https://backend.weiss-technik.com/webapp/weisstechnik/detailpages/environmental-simulation/refrigerant-wt69/R469A_WT69_Technical_Data.pdf (accessed on 1 May 2025).
- Angelantoni Test Technologies S.r.l. R472B Info + FAQ, (s. f.). Available online: https://www.acstestchambers.com/en/services/ecological-refrigerant-gas-r472b/?_gl=1*c0c8fi*_up*MQ..*_ga*MTAxNjg3MDA1Mi4xNzQzNTAzNzE1*_ga_08GJ4TH2K1*MTc0MzUwMzcxNS4xLjAuMTc0MzUwMzcxNS4wLjAuMzU4Njc1NTY.*_ga_2N45617YLH*MTc0MzUwMzcxNS4xLjAuMTc0MzUwMzcxNS4wLjA (accessed on 1 May 2025).
- Angelantoni Test Technologies S.r.l. R472A—COOLING Down Global Warming, (s. f.). Available online: https://www.acstestchambers.com/en/news-and-events/r472a-new-refrigerant-gas-lowest-gwp-ever/ (accessed on 1 May 2025).
- Koura Global. Klea® 473A Technical Data Sheet, (s. f.). Available online: https://www.kouraglobal.com/applications/refrigerant-gases/473a/ (accessed on 1 May 2025).
- Mota-Babiloni, A.; Fernández-Moreno, A.; Giménez-Prades, P.; Udroiu, C.-M.; Navarro-Esbrí, J. Ternary refrigerant blends for ultra-low temperature refrigeration. Int. J. Refrig. 2023, 148, 108–116. [Google Scholar] [CrossRef]
- Lemmon, E.W.; Bell, I.H.; Huber, M.L.; McLinden, M.O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0; Standard Reference Data Program; National Institute of Standards and Technology: Gaithersburg, MA, USA, 2022. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, Q.; Dai, B.; Wang, M.; Xie, Z. Options of low Global Warming Potential refrigerant group for a three-stage cascade refrigeration system. Int. J. Refrig. 2019, 100, 471–483. [Google Scholar] [CrossRef]
- Honeywell. Technology Issues Regarding Blends of Refrigerants. 2013. Available online: http://www.honeywell-refrigerants.com/europe/?document=honeywell-blends-technology-issues-2012-presentation&download=1 (accessed on 11 April 2025).
- Chen, M.; Yang, Q.; Shi, B.; Chen, X.; Chi, W.; Liu, G.; Zhao, Y.; Li, L. Performance comparison of ultra-low temperature cascade refrigeration cycles using R717/R170, R717/R41 and R717/R1150 to replace R404A/R23. Therm. Sci. Eng. Prog. 2023, 44, 102048. [Google Scholar] [CrossRef]
- Dopazo, J.A.; Fernández-Seara, J.; Sieres, J.; Uhía, F.J. Theoretical analysis of a CO2–NH3 cascade refrigeration system for cooling applications at low temperatures. Appl. Therm. Eng. 2009, 29, 1577–1583. [Google Scholar] [CrossRef]
- Granryd, E.; Ekroth, I.; Lundqvist, P.; Melinder, Å.; Palm, B.; Rohlin, P. Refrigerating Engineering; Department of Energy Technology, Division of Applied Thermodynamics and Refrigeration, Royal Institute of Technology, KTH: Stockolm, Sweden, 2011. [Google Scholar]
- Dopazo, J.A.; Fernández-Seara, J. Experimental evaluation of a cascade refrigeration system prototype with CO2 and NH3 for freezing process applications. Int. J. Refrig. 2011, 34, 257–267. [Google Scholar] [CrossRef]
- Copeland. Discharge Temperature Limit. 2014. Available online: https://copeland.custhelp.com/app/answers/detail/a_id/777/related/1/session/L2F2LzEvdGltZS8xNzUzNDM2OTk3L2dlbi8xNzUzNDM2OTk3L3NpZC9mVVpvaWczb2UzWUJUTmY2TDZQMmRNTnRhJTdFd2NrN1FJVVZ2THolN0U2M1AwU2I5RzBrcHp1Q3ElN0VOMkhCY0ZTcENrd1JOYXpHSm8wcnJSRUIwVlJ1TjhzT1J (accessed on 12 March 2025).
- Copeland. Recommended Temperature Limit for the Discharge Line to Avoid Oil Breakdown. 2021. Available online: https://copeland.custhelp.com/app/answers/detail/a_id/4578/~/recommended-temperature-limit-for-the-discharge-line-to-avoid-oil-breakdown# (accessed on 12 March 2025).
- Secop. Secop MP2UVULTM Technical Data. 2024. Available online: https://www.secop.com/fileadmin/user_upload/SEPS/datasheets/en/mp2uvultm_101m0800_r170_07-2024_ds.pdf (accessed on 12 March 2025).
- Embraco. Embraco NT2178ULT Technical Data. 2015. Available online: https://kaelte4you.de/DataSheets/0920065-Datenblatt-NT2178ULT-R508B.PDF (accessed on 12 March 2025).
- Palm, B. Hydrocarbons as refrigerants in small heat pump and refrigeration systems—A review. Int. J. Refrig. 2008, 31, 552–563. [Google Scholar] [CrossRef]
- EEA. Greenhouse Gas Emission Intensity of Electricity Generation, Country Level. 2024. Available online: https://www.eea.europa.eu/en/analysis/indicators/greenhouse-gas-emission-intensity-of-1/greenhouse-gas-emission-intensity-of-electricity-generation-country-level (accessed on 27 April 2025).
Parameter | R448A | R23 | R469A | R472B | R472A | R473A |
---|---|---|---|---|---|---|
Stage | HTS | LTS | LTS | LTS | LTS | LTS |
Composition (wt%) | R32/R125/R134a/R1234yf/R1234ze(E) (26/26/21/20/7) | R23 (100) | R744/R32/R125 (35/32.5/32.5) | R744/R134a/R32 (58/32/10) | R744/R134a/R32 (69/19/12) | R744/R1132a/R23/R125 (60/20/10/10) |
Molecular weight (g·mol−1) | 86.28 | 70.01 | 59.14 | 54.83 | 50.39 | 47.23 |
Critical temperature (°C) | 82.68 | 26.14 | 57.05 | 57.93 | 50.23 | 29.88 |
Critical pressure (MPa) | 4.59 | 4.83 | 6.60 | 7.71 | 7.75 | 6.96 |
Normal boiling point (NBP) 1 (°C) | −46.11 | −82.25 | −78.73 | −83.08 | −84.52 | <−78.40 |
Triple point (°C) | −150.27 | −155.20 | −86.00 3 | −85.20 | −82.45 | −78.40 |
Glide at 1 bar abs (°C) | 6.17 | 0 | 16.98 | 28.10 | 22.77 | 0.39 |
Liquid density 1 (kg·m−3) | 1350.73 | 1446.49 | 1364.01 | 1352.42 | 1321.37 | 1262.99 |
Vapour density 1 (kg·m−3) | 4.64 | 4.60 | 3.47 | 3.09 | 2.93 | 6.01 |
Liquid isobaric heat capacity 1 (kJ·kg−1·K−1) | 1.30 | 1.23 | 1.54 | 1.66 | 1.75 | 1.81 |
Vapour isobaric heat capacity 1 (kJ·kg−1·K−1) | 0.78 | 0.69 | 0.76 | 0.77 | 0.77 | 0.80 |
ODP | 0 | 0 | 0 | 0 | 0 | 0 |
GWP100-years 2 | 1273 | 14,600 | 1357 | 526 | 353 | 1830 |
ASHRAE st. 34 safety classification | A1 | A1 | A1 | A1 | A1 | A1 |
Refrigerant | To,LTS (°C) | Tk,LTS (°C) | Po,LTS (bar) | Pk,LTS (bar) | CRLTS (-) | To,in,LTS (°C) | Tdisch,LTS (°C) | COP (-) |
---|---|---|---|---|---|---|---|---|
R23 | −70 | −20 | 1.93 | 13.95 | 7.20 | −70 | 58.95 | 0.52 |
−60 | −15 | 3.12 | 16.27 | 5.21 | −60 | 41.38 | 0.70 | |
−50 | −10 | 4.79 | 18.85 | 3.94 | −50 | 32.94 | 0.90 | |
R469A | −70 | −24 | 0.82 | 7.67 | 9.41 | −79.06 | 110.6 | 0.44 |
−60 | −17 | 1.42 | 9.74 | 6.85 | −68.95 | 78.36 | 0.64 | |
−50 | −10 | 2.34 | 12.21 | 5.21 | −58.81 | 63.48 | 0.86 | |
R472B | −70 | −26 | 1.13 | 9.36 | 8.25 | −79.19 | 115.5 | 0.44 |
−60 | −16 | 1.91 | 12.90 | 6.76 | −69.35 | 100.1 | 0.64 | |
−50 | −10 | 3.04 | 15.44 | 5.08 | −59.67 | 81.04 | 0.85 | |
R472A | −70 | −24 | 1.55 | 11.95 | 7.71 | −75.70 | 116.9 | 0.47 |
−60 | −15 | 2.56 | 15.84 | 6.20 | −65.88 | 98.76 | 0.66 | |
−50 | −9 | 4.01 | 18.90 | 4.71 | −55.12 | 80.67 | 0.87 | |
R473A | −70 | −20 | 2.69 | 19.06 | 7.10 | −70.11 | 94.42 | 0.51 |
−60 | −14 | 4.32 | 22.82 | 5.29 | −60.12 | 70.42 | 0.69 | |
−50 | −10 | 6.61 | 25.61 | 3.87 | −50.14 | 52.37 | 0.90 |
Refrigerant | To,LTS (°C) | Tk,LTS (°C) | Po,LTS (bar) | Pk,LTS (bar) | CRLTS (-) | Tsuc,LTS (°C) | To,in,LTS (°C) | Tdisch,LTS (°C) | εSDHX (%) | COP (-) |
---|---|---|---|---|---|---|---|---|---|---|
R23 | −70 | −21 | 1.93 | 13.52 | 6.98 | −40 | −70 | 85.47 | 15.74 | 0.48 |
−60 | −15 | 3.12 | 16.27 | 5.21 | −40 | −60 | 57.51 | 13.50 | 0.67 | |
−50 | −10 | 4.79 | 18.85 | 3.94 | −40 | −50 | 36.53 | 5.16 | 0.89 | |
R469A | −70 | −27 | 0.82 | 6.89 | 8.45 | −40 | −79.32 | 118.22 | 9.61 | 0.42 |
−60 | −17 | 1.42 | 9.74 | 6.85 | −40 | −68.95 | 89.16 | 5.95 | 0.63 | |
−50 | −10 | 2.34 | 12.21 | 5.21 | −38.17 | −58.81 | 63.48 | 0 | 0.86 | |
R472B | −70 | −27 | 1.13 | 9.05 | 7.98 | −40 | −79.24 | 118.10 | 3.30 | 0.43 |
−60 | −16 | 1.91 | 12.90 | 6.76 | −36.31 | −69.35 | 100.10 | 0 | 0.64 | |
−50 | −10 | 3.04 | 15.44 | 5.08 | −26.87 | −59.67 | 81.04 | 0 | 0.85 | |
R472A | −70 | −26 | 1.55 | 11.19 | 7.22 | −40 | −75.77 | 117.00 | 4.26 | 0.45 |
−60 | −15 | 2.56 | 15.84 | 6.20 | −37.98 | −65.88 | 98.76 | 0 | 0.66 | |
−50 | −9 | 4.01 | 18.90 | 4.71 | −28.70 | −56.12 | 80.67 | 0 | 0.87 | |
R473A | −70 | −22 | 2.69 | 17.91 | 6.67 | −40 | −70.11 | 118.40 | 12.50 | 0.48 |
−60 | −15 | 4.32 | 22.16 | 5.13 | −40 | −60.12 | 84.42 | 10.19 | 0.67 | |
−50 | −10 | 6.61 | 25.61 | 3.87 | −40 | −50.14 | 55.89 | 3.52 | 0.89 |
Refrigerant | To,LTS (°C) | Tk,LTS (°C) | Po,LTS (bar) | Pk,LTS (bar) | CRLTS (-) | Tsuc,LTS (°C) | To,in,LTS (°C) | Texv,in,LTS (°C) | Tdisch,LTS (°C) | εSLHX (%) | COP (-) |
---|---|---|---|---|---|---|---|---|---|---|---|
R23 | −70 | −20 | 1.93 | 13.95 | 7.20 | −40 | −70 | −33.13 | 89.09 | 9.50 | 0.51 |
−60 | −14 | 3.12 | 16.76 | 5.37 | −40 | −60 | −22.39 | 60.11 | 5.91 | 0.69 | |
−50 | −10 | 4.79 | 18.85 | 3.94 | −40 | −50 | −13.53 | 36.53 | 1.51 | 0.90 | |
R469A | −70 | −27 | 0.82 | 6.89 | 8.45 | −40 | −80.02 | −46.04 | 118.22 | 5.09 | 0.43 |
−60 | −17 | 1.42 | 9.74 | 6.84 | −40 | −69.30 | −31.04 | 89.16 | 2.47 | 0.64 | |
−50 | −10 | 2.34 | 12.21 | 5.21 | −38.17 | −58.81 | −19.87 | 63.48 | 0 | 0.86 | |
R472B | −70 | −27 | 1.13 | 9.05 | 7.98 | −40 | −79.37 | −38.91 | 118.10 | 1.53 | 0.44 |
−60 | −16 | 1.91 | 12.90 | 6.76 | −36.31 | −69.35 | −25.48 | 100.10 | 0 | 0.64 | |
−50 | −10 | 3.04 | 15.44 | 5.08 | −26.87 | −59.67 | −19.56 | 81.04 | 0 | 0.85 | |
R472A | −70 | −26 | 1.55 | 11.19 | 7.22 | −40 | −75.87 | −35.89 | 117.00 | 1.93 | 0.46 |
−60 | −15 | 2.56 | 15.84 | 6.20 | −37.98 | −65.88 | −21.83 | 98.76 | 0 | 0.66 | |
−50 | −9 | 4.01 | 18.90 | 4.71 | −28.70 | −56.12 | −15.87 | 80.67 | 0 | 0.87 | |
R473A | −70 | −22 | 2.69 | 17.91 | 6.67 | −40 | −70.12 | −33.50 | 118.40 | 7.01 | 0.50 |
−60 | −15 | 4.32 | 22.16 | 5.13 | −40 | −60.13 | −22.45 | 84.42 | 4.30 | 0.68 | |
−50 | −10 | 6.61 | 25.61 | 3.87 | −40 | −50.14 | −13.33 | 55.89 | 1.02 | 0.89 |
FOM | To (°C) | R23 | R469A | R472B | R472A | R473A |
---|---|---|---|---|---|---|
−70 | 2.11 | 1.24 | 1.11 | 1.06 | N.A. | |
−60 | 2.25 | 1.29 | 1.16 | 1.11 | N.A. | |
−50 | 2.43 | 1.35 | 1.21 | 1.18 | N.A. | |
−70 | 154.00 | 232.50 | 168.48 | 127.27 | N.A. | |
−60 | 106.53 | 147.29 | 110.11 | 84.91 | N.A. | |
−50 | 77.34 | 98.77 | 75.71 | 59.53 | N.A. |
FOM | To (°C) | R23 | R469A | R472B | R472A | R473A |
---|---|---|---|---|---|---|
−70 | 1.12 | 0.92 | 0.91 | 0.97 | N.A. | |
−60 | 1.19 | 0.97 | 0.95 | 1.01 | N.A. | |
−50 | 1.28 | 1.02 | 1.00 | 1.06 | N.A. | |
−70 | 0.67 | 0.50 | 0.50 | 0.50 | N.A. | |
−60 | 0.73 | 0.54 | 0.53 | 0.53 | N.A. | |
−50 | 0.81 | 0.57 | 0.57 | 0.57 | N.A. |
FOM | To (°C) | R23 | R469A | R472B | R472A | R473A |
---|---|---|---|---|---|---|
−70 | 0.067 | 0.052 | 0.059 | 0.067 | 0.080 | |
−60 | 0.078 | 0.060 | 0.068 | 0.077 | 0.092 | |
−50 | 0.090 | 0.069 | 0.077 | 0.087 | 0.106 |
(kgCO2 kWh−1) | To (°C) | R469A | R472B | R472A | R473A |
---|---|---|---|---|---|
0.210 | −70 | 14.23 | 18.75 | 23.27 | 24.79 |
−60 | 27.48 | 30.75 | 33.52 | 31.19 | |
−50 | 35.39 | 37.04 | 39.01 | 36.98 | |
0.050 | −70 | 48.64 | 53.59 | 56.43 | 53.45 |
−60 | 58.25 | 62.69 | 64.57 | 59.38 | |
−50 | 63.76 | 67.62 | 69.11 | 63.83 | |
0.329 | −70 | 5.51 | 9.92 | 14.87 | 17.52 |
−60 | 18.49 | 21.42 | 24.45 | 22.96 | |
−50 | 26.01 | 26.92 | 29.05 | 28.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giménez-Prades, P.; Udroiu, C.-M.; Navarro-Esbrí, J.; Mota-Babiloni, A. Thermodynamic Evaluation of Low-GWP A1 Refrigerants for Ultra-Low Temperature Refrigeration Applications. Energies 2025, 18, 4428. https://doi.org/10.3390/en18164428
Giménez-Prades P, Udroiu C-M, Navarro-Esbrí J, Mota-Babiloni A. Thermodynamic Evaluation of Low-GWP A1 Refrigerants for Ultra-Low Temperature Refrigeration Applications. Energies. 2025; 18(16):4428. https://doi.org/10.3390/en18164428
Chicago/Turabian StyleGiménez-Prades, Pau, Cosmin-Mihai Udroiu, Joaquín Navarro-Esbrí, and Adrián Mota-Babiloni. 2025. "Thermodynamic Evaluation of Low-GWP A1 Refrigerants for Ultra-Low Temperature Refrigeration Applications" Energies 18, no. 16: 4428. https://doi.org/10.3390/en18164428
APA StyleGiménez-Prades, P., Udroiu, C.-M., Navarro-Esbrí, J., & Mota-Babiloni, A. (2025). Thermodynamic Evaluation of Low-GWP A1 Refrigerants for Ultra-Low Temperature Refrigeration Applications. Energies, 18(16), 4428. https://doi.org/10.3390/en18164428