Insight into the Potential Use of Biochar as a Substitute for Fossil Fuels in Energy-Intensive Industries on the Example of the Iron and Steel Industry
Abstract
1. Introduction
2. Characteristics of Biochar Production Process
2.1. Diversity of Biomass Raw Materials
- forest biomass,
- agricultural biomass (from plant cultivation),
- aquatic biomass,
- biomass from animal breeding,
- municipal and industrial biomass.
2.2. Methods of Converting Biomass to Biochar
2.3. Influence of Operating Parameters on a Biochar Production Process
- A high heating rate leads to the decomposition of volatile compounds and a lower yield of the solid fraction [34].
2.4. Types of Reactors Used in Biochar Production
- Rotary reactor,
- Retort-type reactor,
- Combined reactor with a feeder.
2.4.1. Rotary Reactor
2.4.2. Retort Type Reactor
2.4.3. Combined Reactor with a Feeder
2.5. Properties and Applications of Biochar
3. Potential of Use of Biochar in the Iron and Steel Industry
3.1. Introduction
- High fixed carbon content,
- Low volatile matter and ash content,
- High calorific value,
- High energy density,
- High mechanical strength,
- Low porosity [14].
3.2. The Current State of Research and Industrial Usage of Biochar
3.3. Limiting Factors
4. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tracking Clean Energy Progress; IEA: Paris, France, 2023; Available online: https://www.iea.org/reports/tracking-clean-energy-progress-2023 (accessed on 26 March 2025).
- Mobarakeh, M.R.; Kienberger, T. Climate neutrality strategies for energy-intensive industries: An Austrian case study. Clean. Eng. Technol. 2022, 10, 100545. [Google Scholar] [CrossRef]
- Bataille, C.; Åhman, M.; Neuhoff, K.; Nilsson, L.J.; Fischedick, M.; Lechtenböhmer, S.; Solano-Rodriquez, B.; Denis-Ryan, A.; Stiebert, S.; Waisman, H.; et al. A review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris Agreement. J. Clean. Prod. 2018, 187, 960–973. [Google Scholar] [CrossRef]
- Bataille, C.; Waisman, H.; Colombier, M.; Segafredo, L.; Williams, J. The deep decarbonization pathways project (DDPP): Insights and emerging issues. Clim. Pol. 2016, 16, S1–S6. [Google Scholar] [CrossRef]
- Fischedick, M.; Marzinkowski, J.; Winzer, P.; Weigel, M. Techno-economic evaluation of innovative steel production technologies. J. Clean. Prod. 2014, 84, 563–580. [Google Scholar] [CrossRef]
- Reachning Zero with Renewables; IRENA: Masdar City, United Arab Emirates, 2020; Available online: https://www.irena.org/Publications/2020/Sep/Reaching-Zero-with-Renewables (accessed on 27 March 2025).
- NDC Aspects. Sectoral Analysis of Energy-Intensive Industries; (Deliverable 4.3a); Otto, S., Oberthür, S., Tönjes, A., Peterson, L., Trollip, H., Vishwanathan, S., Eds.; NDC Aspects: Brussels, Belgium, 2023. [Google Scholar]
- Chan, Y.; Kantamaneni, R. Study on Energy Efficiency and Energy Saving Potential in Industry from Possible Policy Mechanisms; ICF Consulting Limited: London, UK, 2015; Contract No. ENER/C3/2012-439/S12.666002. [Google Scholar]
- RE4Industry Industrial FORA. Avision for the Decarbonization. 2020. Available online: https://re4industry.eu/public-deliverables/ (accessed on 25 March 2025).
- Saidur, R.; Abdelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. A review on biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 2011, 15, 2262–2289. [Google Scholar] [CrossRef]
- Sarker, T.R.; Nanda, S.; Meda, V.; Dalai, A.K. Densification of waste biomass for manufacturing solid biofuel pellets: A review. Env. Chem Lett. 2023, 21, 231–264. [Google Scholar] [CrossRef]
- Noumi, E.S.; Rousset, P.; de Cassia Oliveira Carneiro, A.; Blin, J. Upgrading of carbon-based reductants from biomass Pyrolysis under pressure. J. Anal. Appl. Pyrolysis 2016, 118, 278–285. [Google Scholar] [CrossRef]
- Jeguirim, M.; Khiari, B.; Limousy, L. 1—Biomass feedstocks. In Char and Carbon Materials Derived from Biomass; Jeguirim, M., Limousy, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–38. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, L.; Li, H.; Westholm, L.J.; Carvalho, L.; Thorin, E.; Yu, Z.; Yu, X.; Skreiberg, Ø. A critical review on production, modification and utilization of biochar. J. Anal. Appl. Pyrolysis 2022, 161, 105405. [Google Scholar] [CrossRef]
- Safarian, S. Performance analysis of sustainable technologies for biochar production: A comprehensive review. Energy Rep. 2023, 9, 4574–4593. [Google Scholar] [CrossRef]
- Mishra, R.K.; Mohanty, K. A review of the next-generation biochar production from waste biomass for material applications. Sci. Total Environ. 2023, 904, 167171. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, Z.-F.; Pan, X.-W.; Tan, J.-Y.; Yang, S.-S.; Wu, J.-T.; Chen, C.; Yuan, Y.; Ren, N.-Q. Sewage sludge derived biochar for environmental improvement: Advances, challenges, and solutions. Water Res. X 2023, 18, 100167. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation; Routledge: Abingdon, UK; Taylor & Francis: New York, NY, USA, 2024; pp. 277–312. [Google Scholar]
- Chen, W.; Meng, J.; Han, X.; Lan, Y.; Zhang, W. Past, present, and future of biochar. Biochar 2019, 1, 75–87. [Google Scholar] [CrossRef]
- Wang, C.; Mellin, P.; Lövgren, J.; Nilsson, L.; Yang, W.; Salman, H.; Hultgren, A.; Larsson, M. Biomass as blast furnace injectant—Considering availability, pretreatment and deployment in the Swedish steel industry. Energy Convers. Manag. 2015, 102, 217–226. [Google Scholar] [CrossRef]
- Masto, R.E.; Pandit, A.; Kumar, S.; Datta, S.; Mukhopadhyay, S.; Selvi, V.A.; Dutta, P.; Sarkar, P. Comparative evaluation of aquatic biomass feedstocks for energy application and potential for extraction of plant nutrients from their ash. Biomass Bioenergy 2020, 142, 105783. [Google Scholar] [CrossRef]
- Wzorek, M.; Junga, R.; Yilmaz, E.; Niemiec, P. Combustion behavior and mechanical properties of pellets derived from blends of animal manure and lignocellulosic biomass. J. Environ. Manag. 2021, 290, 112487. [Google Scholar] [CrossRef]
- Ibitoye, S.E.; Loha, C.; Mahamood, R.M.; Jen, T.C.; Alam, M.; Sarkar, I.; Das, P.; Akinlabi, E.T. An overview of biochar production techniques and application in iron and steel industries. Bioresour. Bioprocess. 2024, 11, 65. [Google Scholar] [CrossRef]
- Safarian, S. To what extent could biochar replace coal and coke in steel industries? Fuel 2023, 339, 127401. [Google Scholar] [CrossRef]
- Zuwała, J. Toryfikacja Biomasy dla Celów Energetycznych; Główny Instytut Górnictwa: Katowice, Poland, 2019. [Google Scholar]
- Senadheera, S.S.; Gupta, S.; Kua, H.W.; Hou, D.; Kim, S.; Tsang, D.C.W.; Ok, Y.S. Application of biochar in concrete—A review. Cem. Concr. Compos. 2023, 143, 105204. [Google Scholar] [CrossRef]
- Adrados, A.; de Marco, I.; López-Urionabarrenechea, A.; Solar, J.; Caballero, B.M.; Gastelu, N. Biomass Pyrolysis Solids as Reducing Agents: Comparison with Commercial Reducing Agents. Materials 2016, 9, 3. [Google Scholar] [CrossRef]
- Sommerfeld, M.; Friedrich, B. Replacing Fossil Carbon in the Production of Ferroalloys with a Focus on Bio-Based Carbon: A Review. Minerals 2021, 11, 1286. [Google Scholar] [CrossRef]
- Mazurek, K.; Drużyński, S.; Kiełkowska, U.; Wróbel-Kaszanek, A.; Igliński, B.; Cichosz, M. The Application of Pyrolysis Biochar Obtained from Waste Rapeseed Cake to Remove Copper from Industrial Wastewater: An Overview. Energies 2024, 17, 498. [Google Scholar] [CrossRef]
- James, R.; Egbewole, Z.; Adeagbo, A.; Blessing, O. Effect of Indiscriminate Charcoal Production on Nigeria Forest Estate. Int. J. Environ. Prot. Policy 2019, 7, 134–139. [Google Scholar] [CrossRef]
- Kwapinski, W. 2—Char production technology. In Char and Carbon Materials Derived from Biomass; Jeguirim, M., Limousy, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 39–68. [Google Scholar] [CrossRef]
- Hippe, F.; Babich, A.; Senk, D.; Solar, J.; de Marco, I. Efficiency of Biomass Pyrolysis Product Injection into the Blast Furnace. BHM Berg Hüttenmänn. Monatshefte 2019, 164, 261–266. [Google Scholar] [CrossRef]
- Williams, P.T.; Besler, S. The influence of temperature and heating rate on the slow pyrolysis of biomass. Renew. Energy 1996, 7, 233–250. [Google Scholar] [CrossRef]
- Uroić Štefanko, A.; Leszczynska, D. Impact of Biomass Source and Pyrolysis Parameters on Physicochemical Properties of Biochar Manufactured for Innovative Applications. Front. Energy Res. 2020, 8, 138. [Google Scholar] [CrossRef]
- Leng, L.; Huang, H. An overview of the effect of pyrolysis process parameters on biochar stability. Bioresour. Technol. 2018, 270, 627–642. [Google Scholar] [CrossRef]
- Salimbeni, A.; Di Bianca, M.; Lombardi, G.; Rizzo, A.M.; Chiaramonti, D. Opportunities of Integrating Slow Pyrolysis and Chemical Leaching for Extraction of Critical Raw Materials from Sewage Sludge. Water 2023, 15, 1060. [Google Scholar] [CrossRef]
- Liu, W.-J.; Jiang, H.; Yu, H.-Q. Development of biochar-based functional materials: Toward a sustainable platform carbon material. Chem. Rev. 2015, 115, 12251–12285. [Google Scholar] [CrossRef]
- Sarker, T.R.; Ethen, D.Z.; Nanda, S. Decarbonization of Metallurgy and Steelmaking Industries Using Biochar: A Review. Chem. Eng. Technol. 2024, 47, e202400217. [Google Scholar] [CrossRef]
- Sarker, T.R.; Nanda, S.; Dalai, A.K.; Meda, V. A Review of Torrefaction Technology for Upgrading Lignocellulosic Biomass to Solid Biofuels. Bioenergy Res. 2021, 14, 645–669. [Google Scholar] [CrossRef]
- He, M.; Xu, Z.; Hou, D.; Gao, B.; Cao, X.; Ok, Y.S.; Rinklebe, J.; Bolan, N.S.; Tsang, D.C. Waste-derived biochar for water pollution control and sustainable development. Nat. Rev. Earth Environ. 2022, 3, 444–460. [Google Scholar] [CrossRef]
- Tan, X.; Liu, Y.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 2015, 125, 70–85. [Google Scholar] [CrossRef]
- Takaya, C.A.; Parmar, K.R.; Fletcher, L.A.; Ross, A.B. Biomass-derived carbonaceous adsorbents for trapping ammonia. Agriculture 2019, 9, 16. [Google Scholar] [CrossRef]
- Choudhury, A.; Lansing, S. Biochar addition with Fe impregnation to reduce H2S production from anaerobic digestion. Bioresour. Technol. 2020, 306, 123121. [Google Scholar] [CrossRef] [PubMed]
- Rip, A.; Rwiza, M.J.; Reddy, S.G.; Nyanza, E.C.; Bakari, R.; Miraji, H.; Ravikumar, C.R.; An, H.C.; Vuai, S.A.H.; Machunda, R.L.; et al. Jamun Seed (Syzygium cumini) Biochar as a Potential Adsorbent for Environmental Applications. ES Food Agrofor. 2025, 19, 1415. [Google Scholar] [CrossRef]
- Ren, Y.S.; Seilkhan, A.; Akbota, B.; Zhang, S.; Xu, J.; Khan, H.; Ilyas, M. Treatment of Dyes Contaminated Water using Biochar Derived from Eucalyptus Wood Waste. ES Mater. Manuf. 2024, 25, 1236. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef]
- Volpi, M.P.C.; Silva, J.C.G.; Hornung, A.; Ouadi, M. Review of the Current State of Pyrolysis and Biochar Utilization in Europe: A Scientific Perspective. Clean Technol. 2024, 6, 152–175. [Google Scholar] [CrossRef]
- Kozioł, A.; Paliwoda, D.; Mikiciuk, G.; Benhadji, N. Biochar as a Multi-Action Substance Used to Improve Soil Properties in Horticultural and Agricultural Crops—A Review. Agriculture 2024, 14, 2165. [Google Scholar] [CrossRef]
- Huggins, T.; Wang, H.; Kearns, J.; Jenkins, P.; Ren, Z.J. Biochar as a sustainable electrode material for electricity production in microbial fuel cells. Bioresour. Technol. 2014, 157, 114–119. [Google Scholar] [CrossRef]
- World Steel Figures 2023. Available online: https://worldsteel.org/data/world-steel-in-figures/world-steel-in-figures-2023/ (accessed on 26 March 2025).
- Meng, F.; Rong, G.; Zhao, R.; Chen, B.; Xu, X.; Qiu, H.; Cao, X.; Zhao, L. Incorporating biochar into fuels system of iron and steel industry: Carbon emission reduction potential and economic analysis. Appl. Energy 2024, 356, 122377. [Google Scholar] [CrossRef]
- Behera, P.R.; Bhoi, B.; Paramguru, R.K.; Mukherjee, P.S.; Mishra, B.K. Hydrogen plasma smelting reduction of Fe2O3. Metall. Mater. Trans. B 2019, 50, 262–270. [Google Scholar] [CrossRef]
- Wang, S.; Chai, Y.; Wang, Y.; Luo, G.; An, S. Review on the Application and Development of Biochar in Ironmaking Production. Metals 2023, 13, 1844. [Google Scholar] [CrossRef]
- Biniek-Poskart, A.; Sajdak, M.; Skrzyniarz, M.; Rzącki, J.; Skibiński, A.; Zajemska, M. The Application of Lignocellulosic Biomass Waste in the Iron and Steel Industry in the Context of Challenges Related to the Energy Crisis. Energies 2023, 16, 6662. [Google Scholar] [CrossRef]
- Gavel, D.J. A Review on Nut Coke Utilisation in the Ironmaking Blast Furnaces. Mater. Sci. Technol. 2017, 33, 381–387. [Google Scholar] [CrossRef]
- Hakala, J.; Kangas, P.; Penttilä, K.; Alarotu, M.; Björnström, M.; Koukkari, P. Replacing Coal Used in Steelmaking with Biocarbon from Forest Industry Side Streams; JULKAISIJA: Melbourne, Australia, 2019. [Google Scholar]
- Pinto, R.G.D.; Szklo, A.S.; Rathmann, R. CO2 Emissions Mitigation Strategy in the Brazilian Iron and Steel Sector–From Structural to Intensity Effects. Energy Policy 2018, 114, 380–393. [Google Scholar] [CrossRef]
- Rousset, P.; Figueiredo, C.; De Souza, M.; Quirino, W. Pressure Effect on the Quality of Eucalyptus Wood Charcoal for the Steel Industry: A Statistical Analysis Approach. Fuel Process. Technol. 2011, 92, 1890–1897. [Google Scholar] [CrossRef]
- Tata Steel. Becomes the First Indian Steel Maker to Introduce Biochar to Lower Carbon Emissions. Available online: https://www.tatasteel.com/media/newsroom/press-releases/india/2024/tata-steel-becomes-the-first-indian-steel-maker-to-introduce-biochar-to-lower-carbon-emissions/ (accessed on 24 July 2025).
- BigMint. How Are Steel Majors Trialling Biochar as a Key Decarbonisation Lever? BigMint Explores. Available online: https://www.bigmint.co/insights/detail/how-are-steel-majors-trialling-biochar-as-a-key-decarbonisation-lever-bigmint-explores-585553 (accessed on 24 July 2025).
- Which Country Produces the Most Wood Charcoal? Available online: https://www.helgilibrary.com/charts/which-country-produces-the-most-wood-charcoal (accessed on 20 March 2025).
- World Bio Markets. How Plants Could Make Steel More Sustainable? Available online: https://worldbiomarketinsights.com/how-plants-could-make-steel-more-sustainable/ (accessed on 24 July 2025).
- Argus. Steelmakers Define Biochar Specifications. Available online: https://www.argusmedia.com/en/news-and-insights/latest-market-news/2564955-steelmakers-define-biochar-specifications (accessed on 24 July 2025).
- Greenchar Climate Solutions. Turning Steel Slag Green: How Biochar Is Revolutionizing the Steel Industry. Available online: https://www.greenchar.co/post/turning-steel-slag-green-how-biochar-is-revolutionizing-the-steel-industry.com (accessed on 24 July 2025).
- Gan, M.; Li, H.R.; Fan, X.H. Combustion characteristics of core biochar and its emission reduction behavior in sintering. Sintered Pellets 2022, 47, 65. [Google Scholar]
- Niesler, M.; Stecko, J.; Stelmach, S.; Kwiecińska-Mydlak, A. Biochars in Iron Ores Sintering Process: Effect on Sinter Quality and Emission. Energies 2021, 14, 3749. [Google Scholar] [CrossRef]
- Al Hosni, S.; Domini, M.; Vahidzadeh, R.; Bertanza, G. Potential and Environmental Benefits of Biochar Utilization for Coal/Coke Substitution in the Steel Industry. Energies 2024, 17, 2759. [Google Scholar] [CrossRef]
- Ye, L.; Peng, Z.; Wang, L.; Anzulevich, A.; Bychkov, I.; Kalganov, D.; Tang, H.; Rao, M.; Li, G.; Jiang, T. Use of biochar for sustainable ferrous metallurgy. JOM 2019, 71, 3931–3940. [Google Scholar] [CrossRef]
- Wang, L.; Alsaker, N.; Skreiberg, O.; Hovd, B. Effect of carbonization conditions on CO2 gasification reactivity of biocarbon. Energy Procedia 2017, 142, 932–937. [Google Scholar] [CrossRef]
- Kypreos, S.; Glynn, J.; Panos, E.; Giannidakis, G.; Gallachóir, B.Ó. Energy, Climate Change and Local Atmospheric Pollution Scenarios Evaluated with the TIAM-MACRO Model. 2017; pp. 1–30. Available online: https://www.iea-etsap.org/projects/TIAM_Global_CC&LAPScenarios-8616.pdf (accessed on 23 July 2025).
- Li, Y.; Gupta, R.; Zhang, Q.; You, S. Review of biochar production via crop residue pyrolysis: Development and perspectives. Bioresour. Technol. 2023, 369, 128423. [Google Scholar] [CrossRef]
- Haeldermans, T.; Campion, L.; Kuppens, T.; Vanreppelen, K.; Cuypers, A.; Schreurs, S. A comparative techno-economic assessment of biochar production from different residue streams using conventional and microwave pyrolysis. Bioresour. Technol. 2020, 318, 124083. [Google Scholar] [CrossRef] [PubMed]
Properties | Unit | Biomass | ||||
---|---|---|---|---|---|---|
Woody | Agricultural | Aquatic | Animal Breeding | Industrial and Urban | ||
Pine Sawdust [18] | Sugarcane Straw [19] | Spirogyra [20] | Cow Manure [21] | Sewage Sludge [22] | ||
Moisture | % mass | 5.0 | 3.1 | 7.4 | 84.2 | 5.3 |
Fixed carbon | % mass | 84.5 | 87.6 | 58.2 | 61.5 | 51.0 |
Volatile matters | % mass | 15.4 | 3.2 | 7.2 | 26.4 | 12.5 |
Ash | % mass | 0.1 | 9.2 | 34.5 | 12.1 | 36.5 |
C | % mass | 49.5 | 41.9 | 30.9 | 48.1 | 31.8 |
H | % mass | 7.1 | 5.9 | 4.0 | 6.1 | 4.4 |
N | % mass | 0.5 | 0.5 | 4.2 | 1.7 | 4.9 |
S | % mass | - | - | 0.4 | 0.2 | 1.7 |
O | % mass | 42.8 | 41.7 | 28.5 | 31.7 | 20.6 |
Cl | % mass | - | - | 0.3 | - | 0.2 |
Parameter | Unit | Torrefaction | Pyrolysis | Gasification |
---|---|---|---|---|
Process temperature | °C | 200–350 | 350–700 | 700–900 |
Excess air ratio | - | ~0 | ~0 | <1 |
Fixed carbon | % mass | 50–60 | 75–90 | 75–90 |
Solid product yield | % mass | 60–70 | 25–35 | 5–10 |
Parameter | Unit | Pyrolysis | ||
---|---|---|---|---|
Slow | Fast | Flash | ||
Temperature | °C | 350–700 | 600–1000 | 800–1000 |
Heating rate | K/s | 0.1–1 | 10–200 | ≥1000 |
Residence time | s | 600–6000 | 0.5–5 | <0.5 |
Particle size | mm | 5–50 | <1 | dust |
Solid product yield | % mass | 30–35 | 15–25 | 10–20 |
Type of Biomass | Temperature [°C] | Yield [%] | Fixed Carbon [% Mass] | Volatile Matters [% Mass] | Ash [% Mass] |
---|---|---|---|---|---|
Sawdust (woody) | 500 | 28.3 | 72.0 | 17.5 | 9.9 |
Peanut shell (agricultural) | 500 | 32.0 | 72.9 | 16.0 | 10.6 |
Waterweeds (aquatic) | 500 | 58.4 | 3.8 | 32.4 | 63.5 |
Pig manure (animal breeding) | 500 | 38.5 | 40.2 | 11.0 | 48.4 |
Wastepaper (industrial and urban) | 500 | 36.6 | 16.4 | 30.0 | 53.5 |
Parameter | Unit | Value |
---|---|---|
Moisture | % mass | <10 |
Fixed carbon | % mass | 75–90 |
Volatile matters | % mass | <10 |
Ash | % mass | <5 |
Phosphorus | % mass | <0.02 |
Sulfur | % mass | <0.6 |
Grain size | mm | 1–5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wajda, A.; Brągoszewska, E. Insight into the Potential Use of Biochar as a Substitute for Fossil Fuels in Energy-Intensive Industries on the Example of the Iron and Steel Industry. Energies 2025, 18, 4486. https://doi.org/10.3390/en18174486
Wajda A, Brągoszewska E. Insight into the Potential Use of Biochar as a Substitute for Fossil Fuels in Energy-Intensive Industries on the Example of the Iron and Steel Industry. Energies. 2025; 18(17):4486. https://doi.org/10.3390/en18174486
Chicago/Turabian StyleWajda, Agata, and Ewa Brągoszewska. 2025. "Insight into the Potential Use of Biochar as a Substitute for Fossil Fuels in Energy-Intensive Industries on the Example of the Iron and Steel Industry" Energies 18, no. 17: 4486. https://doi.org/10.3390/en18174486
APA StyleWajda, A., & Brągoszewska, E. (2025). Insight into the Potential Use of Biochar as a Substitute for Fossil Fuels in Energy-Intensive Industries on the Example of the Iron and Steel Industry. Energies, 18(17), 4486. https://doi.org/10.3390/en18174486