Evaluation of the Combustion Process of Pellets from Herbaceous Biomass with the Addition of Kaolin and Urea Solution in Low-Power Boilers
Abstract
1. Introduction
2. Materials and Methods
2.1. Fuel
Research Methods to Analyze the Fuels Used
- -
- Moisture with an accuracy of 0.01%, using the dryer-weighing method according to the PN-EN ISO 18134-3:2015 standard [40].
- -
- Volatile matter (VM), by weight according to (PN-G-04516:1998) [41].
- -
- Carbon (C), hydrogen (H), nitrogen (N)—automatic analysis according to (CEN/TS 15104:2006) for three repetitions from a sample taken from crushed pellets [42].
- -
- Sulfur (S)—in accordance with the requirements of PN-G-04584:2001, for three repetitions from a sample taken from crushed pellets [43].
- -
- Heat of combustion (HHV) using a Parr 6400 isoperibolic calorimeter (Parr Instruments, Moline, IL, USA), according to PN-EN ISO 18125:2017 [44].
- -
- Ash (AC) using a laboratory furnace according to PN-EN ISO 18122:2016 [45].
- -
- Chemical composition of ash, which was determined through plasma spectrometry using the Thermo iCAP 6500 Duo ICP device (Thermo Fisher Scientific Inc., Waltham, MA, USA), including chloride content, determined using the titration method according to PN-EN 196-2:2006 [46].
- -
- Characteristic ash melting temperatures determined according to the requirements of the PN-EN ISO 21404:2020-08 method [47].
2.2. Research Stand
2.3. Course of Combustion Tests
- qA—chimney loss calculated according to Formula (2).
- Tgas—flue gas temperature (°C);
- Tamb—air temperature at the boiler inlet (ambient temperature) (°C);
- CO2—carbon dioxide concentration in flue gas (%);
- A1, B—Siegert coefficients characteristic of biomass, A1 = 0.65, B = 0.
- CO—concentration of carbon monoxide in exhaust gases (%);
- CO2—concentration of carbon dioxide in exhaust gases (%).
2.4. Statistical Analysis
3. Results
3.1. Results from the Combustion Tests
3.2. Results’ Statistical Analysis
4. Discussion
- The combustion process of pellets made of chamomile and English ryegrass biomass together with the additives of kaolin and urea solution, during type B tests, which were described based on the CO2 content in the exhaust gases and the temperature of the exhaust gases, did not differ significantly from similarly conducted tests using pellets made of wheat, rye, oat straw, meadow hay, and birch sawdust biomass.
- During type B tests, CO emission during the combustion of pellets with the addition of kaolin was comparable to the emission of this compound during the combustion of pellets made of biomass from wheat, rye, oat straw, meadow hay, and birch sawdust, and it was slightly lower, while for pellets without the addition of kaolin these values were even more than twice as high.
- During type A and B tests, NO emissions during the combustion of pellets with added urea solution or kaolin were lower than during the combustion of pellets made from wheat straw, rye straw, oat straw, and meadow hay biomass. However, pellets with added urea solution emitted slightly more NO than birch sawdust pellets during type B tests.
- As a rule, during type A and B tests, SO2 emission during the combustion of pellets made of rye grass biomass with the addition of urea solution or kaolin was comparable to emissions during the combustion of pellets made of wheat straw, rye straw, meadow hay, and wood sawdust; only during the combustion of pellets in mixtures with chamomile biomass were these values higher and comparable to the emission of this compound for oat straw.
- Referring to the results of the CEI and TI parameters, the values obtained were generally comparable to the corresponding values during the combustion of pellets from biomass of wheat, rye, oat straw, meadow hay, and birch sawdust. However, during the combustion of pellets with the addition of kaolin in type B tests, the TI values were the lowest.
5. Conclusions
- Pellets with kaolin (porcelain clay) do not meet the requirements for mechanical durability (PN-EN ISO 17225-6 [53]) but have better combustion parameters.
- The chemical composition of chamomile ash (higher SiO2 content) indicates greater resistance to slagging than in the case of ryegrass (higher K2O and P2O5, which is beneficial for fertilization but unfavorable during combustion).
- Type B tests showed better energy efficiency (CEI up to 87%) and lower exhaust toxicity (TI ~2%).
- The addition of kaolin reduced CO emissions by more than four times during the B-type tests, thanks to a more stable combustion process.
- However, automation of the combustion process may lead to an increase in NO emissions, which requires further optimization, especially with nitrogen-rich biomass.
- The combustion of chamomile and ryegrass pellets with additives (kaolin, urea) did not differ significantly from the results obtained for straw (wheat, rye, oat), hay, and birch sawdust in terms of CO2 and exhaust gas temperature.
- CO and NO emissions were lower with additives, while SO2 emissions were comparable—the exception was mixtures with chamomile (higher SO2).
- Herbaceous biomass pellets, especially after modification with mineral additives and the use of an appropriate combustion system, can be an effective and relatively clean source of energy, especially in the context of small heating installations (e.g., rural ones), and such a compromise can be economically and technologically beneficial. However, further optimization of the process is necessary, especially in terms of NO emissions and pellet durability.
- In critically approaching the issue, it is also important to verify the presence of ammonia in the exhaust gases and the impact of urea on the durability of the heating system’s components.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jasinskas, A.; Šiaudinis, G.; Karčauskienè, D.; Marks-Bielska, R.; Marks, M.; Mieldažys, R.; Romaneckas, K.; Šarauskis, E. Evaluation of the Productivity and Potential Utilization of Artemisia dubia Plant Biomass for Energy Conversion. Plants 2024, 13, 1158. [Google Scholar] [CrossRef]
- Maj, G.; Najda, A.; Klimek, K.; Balant, S. Estimation of Energy and Emissions Properties of Waste from Various Species of Mint in the Herbal Products Industry. Energies 2019, 13, 55. [Google Scholar] [CrossRef]
- Najser, T.; Gaze, B.; Knutel, B.; Verner, A.; Najser, J.; Mikeska, M.; Chojnacki, J.; Nĕmček, O. Analysis of the Effect of Catalytic Additives in the Agricultural Waste Combustion Process. Materials 2022, 15, 3526. [Google Scholar] [CrossRef]
- Slavov, A.; Yantcheva, N.; Vasileva, I. Chamomile Wastes (Matricaria chamomilla): New Source of Poysaccharides. Waste Biomass Valorization 2019, 10, 2583–2594. [Google Scholar] [CrossRef]
- Mihyaoui, A.E.; Esteves da Silva, J.C.G.; Charfi, S.; Castillo, M.E.C.; Lamart, A.; Arnao, M.B. Chamomile (Matricaria chamomilla L.): A Review of Ethnomedicinal Use, Phytochemistry and Pharmacological Uses. Life 2022, 12, 479. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.L.; Li, Y.; Wang, Q.; Niu, F.J.; Li, K.-W.; Wang, Y.Y.; Wang, J.; Zhou, C.-Z.; Gao, L.-N. Chamomile: A Review of Its Traditional Uses, Chemical Constituents, Pharmacological Activities and Quality Control Studies. Molecules 2023, 28, 133. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Memon, M.Z.; Xie, Y.; Gao, Y.; Guo, Y.; Dong, J.; Gao, Y.; Li, A.; Ji, G. Recent advances of research in coal and biomass co-firing for electricity and heat generation. Circ. Econ. 2023, 2, 100063. [Google Scholar] [CrossRef]
- Tagami-Kanada, N.; Yoshikuni, K.; Mizuno, S.; Sawai, T.; Fuchihata, M.; Ida, T. Combustion characteristics of densified solid biofuel with different aspect ratios. Renew. Energy 2022, 197, 1174–1182. [Google Scholar] [CrossRef]
- Aklouche, F.Z.; Hadhoum, L.; Loubar, K.; Tazerout, M. A Comprehensive Study on Effect of Biofuel Blending Obtained from Hydrothermal Liquefaction of Olive Mill Waste Water in Internal Combustion Engine. Energies 2023, 16, 2534. [Google Scholar] [CrossRef]
- Deng, L.; Torres-Rojas, D.; Burford, M.; Whitlow, T.; Lehmann, J.; Fisher, E. Fuel sensitivity of biomass cookstove performance. Appl. Energy 2018, 215, 13–20. [Google Scholar] [CrossRef]
- Mladenović, M.; Paprika, M.; Marinković, A. Denitrification techniques for biomass combustion. Renew. Sustain. Energy Rev. 2018, 82, 3350–3364. [Google Scholar] [CrossRef]
- Ozgen, S.; Cernuschi, S.; Caserini, S. An overview of nitrogen oxides emissions from biomass combustion for domestic heat production. Renew. Sustain. Energy Rev. 2021, 135, 110113. [Google Scholar] [CrossRef]
- Zeng, T.; Mlonka-Mędrala, A.; Lenz, V.; Nelles, M. Evaluation of bottom ash slagging risk during combustion of herbaceous and woody biomass fuels in a small-scale boiler by principal component analysis. Biomass Convers. Biorefinery 2019, 11, 1211–1229. [Google Scholar] [CrossRef]
- Dula, M.; Kraszkiewicz, A. Theory and Practice of Burning Solid Biofuels in Low-Power Heating Devices. Energies 2025, 18, 182. [Google Scholar] [CrossRef]
- Dula, M.; Kraszkiewicz, A. A Review: Problems related to ash deposition and deposit formation in low-power biomass-burning heating devices. Front. Energy Res. 2025. submitted. [Google Scholar]
- Dula, M.; Kraszkiewicz, A.; Parafiniuk, S. Combustion Efficiency of Various Forms of Solid Biofuels in Terms of Changes in the Method of Fuel Feeding into the Combustion Chamber. Energies 2024, 17, 2853. [Google Scholar] [CrossRef]
- Kowalczyk-Juśko, A. The Influence of the Ash from the Biomass on the Power Boiler Pollution. J. Ecolog. Eng. 2017, 18, 200–204. [Google Scholar] [CrossRef]
- Laxminarayan, Y. Formation, Sintering and Removal of Biomass Ash Deposits. Ph.D. Thesis, Technical University of Denmark, Kongens Lyngby, Denmark, 2018. [Google Scholar]
- Abioye, K.J.; Harun, N.Y.; Saeed, A.A.H. A Brief Review of Solving Biomass Ash Deposition with Aluminum-Silicate Based Additives and Future Perspective of Kaolin. Chem. Eng. Trans. 2023, 98, 27–32. [Google Scholar]
- Royo, R.; Canalis, P.; Zapata, S.; Gómez, M.; Bartolomé, C. Ash behaviour during combustion of agropellets produced by an agro industry—Part 2: Chemical Characterization of Sintering and Deposition. Energies 2022, 15, 1499. [Google Scholar] [CrossRef]
- Hernik, B.; Wnorowska, J. Numerical research on combustion processes and deposit formation on the deposition probe in the pulverized drop chamber. Renev. Energy 2022, 187, 1–13. [Google Scholar] [CrossRef]
- Stauber Alfredsson, M. Effects of Different Fuels on Combustion Boiler Processes: The Analysis of Alternative Fuel Mixtures. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2018. [Google Scholar]
- Castoldi, L.; Morandi, S.; Ticali, P.; Matarrese, R.; Lietti, L. An Assessment of Zeolite Framework Effect for Low-Temperature NOX Adsorbers. Catalysts 2023, 13, 962. [Google Scholar] [CrossRef]
- Liu, Y.; Tao, H.; Yang, X.; Wu, X.; Li, J.; Zhang, C.; Yang, R.T.; Li, Z. Adsorptive purification of NOx by HZSM-5 zeolites: Effects of Si/Al ratio, temperature, humidity, and gas composition. Micropor. Mesopor. Mat. 2023, 348, 112331. [Google Scholar] [CrossRef]
- Nasser, G.A.; Adamu, H.; Bakare, A.I.; Sanhoob, M.A.; Zhao, H.; Yamani, Z.H.; Muraza, O.; Shafeai, E.; Schwank, J.W. Conversion of NOx over Aluminosilicate Cu-CHA Zeolite Catalysts Synthesized Free of Organic Structure-Directing Agents. Appl. Sci. 2023, 13, 13001. [Google Scholar] [CrossRef]
- Chen, C.; Bi, Y.; Feng, J.; Huang, Y.; Huang, J.; Huang, H. Study on the slagging tendency estimation of biomass fuel combustion with different additives and pretreatment processes. Energy 2022, 239 Pt E, 122460. [Google Scholar] [CrossRef]
- Gollmer, C.; Weigel, V.; Kaltschmitt, M. Emission Mitigation by Aluminum-Silicate-Based Fuel Additivation of Wood Chips with Kaolin and Kaolinite. Energies 2023, 16, 3095. [Google Scholar] [CrossRef]
- Sobieraj, J.; Kalisz, S. Wpływ dodatków paliwowych na emisję tlenków azotu przy spalaniu biomasy agrarnej. Źródła Ciepła Energii Elektr. 2021, 3, 22–25. [Google Scholar]
- Norizam, N.N.A.N.; Szuhánszki, J.; Ahmed, I.; Yang, X.; Ingham, D.; Milkowski, K.; Gheit, A.; Heeley, A.; Ma, L.; Pourkashanian, M. Impact of the blending of kaolin on particulate matter (PM) emissions in a biomass field-scale 250 kW grate boiler. Fuel 2024, 374, 132454. [Google Scholar] [CrossRef]
- Wang, J.; Wei, B.; Li, X.; Yang, W.; Zhang, C.; Mian, I.; Tan, H.; Ma, F. Study on reduction characteristics of Fe species in coal ash under SNCR condition. Fuel 2020, 277, 118231. [Google Scholar] [CrossRef]
- Hamid, S.; Golagana, S.; Han, S.; Lee, G.; Babaa, M.-R.; Lee, W. Stability of Sn-Pd-Kaolinite catalyst during heat treatment and nitrate reduction in continuous flow reaction. Chemosphere 2020, 241, 125115. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Tian, L.; Yu, S.; Song, X.; Wu, Z.; Wei, J.; Xu, J. AAEM Species Migration/Transformation during Co-Combustion of Carbonaceous Feedstocks and Synergy Behavior on Co-Combustion Reactivity: A Critical Review. Energies 2023, 16, 7473. [Google Scholar] [CrossRef]
- Maguyon-Detras, M.; Migo, M.; Van Hung, N.; Gummert, M. Thermochemical conversion of rice straw. International Publishing Chapter 4. In Sustainable Rice Straw Management; Gummert, M., Ed.; Springer Nature: Cham, Switzerland, 2020; Volume 4, pp. 43–64. ISBN 978-3-030-32372-1. [Google Scholar]
- Tic, W. System poprawy efektywności energetycznej i ekologicznej spalania paliw stałych. Chemik 2014, 68, 850–855. [Google Scholar]
- Kassman, H.; Pettersson, J.; Steenari, B.-M.; Åmand, L.-E. Two strategies to reduce gaseous KCl and chlorine in deposits during biomass combustion—Injection of ammonium sulphate and co-combustion with peat. Fuel Process. Technol. 2013, 105, 170–180. [Google Scholar] [CrossRef]
- Sato, N.; Okuhara, H.; Wada, C.; Matsunaga, Y.; Ohno, E. Effects and Countermeasures on Deposit Ash of Biomass Single Fired Power Plant. IHI Eng. Rev. 2022, 55, 1–13. [Google Scholar]
- Livingston, W.R. The Status of Large Scale Biomass Firing. The Milling and Combustion of Biomass Materials in Large Pulverised Coal Boilers; IEA Bioenergy: Paris, France, 2016; pp. 1–88. [Google Scholar]
- Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2023/956; Annexes 1 to 9; Komisja Europejska: Bruksela, Belgium, 2023.
- Dula, M.; Kraszkiewicz, A.; Parafiniuk, S. Evaluation of the possibility of pelleting selected herbaceous biomass with the addition of kaolin and urea solution. Przem. Chem. 2024, 103, 1147–1154. [Google Scholar]
- PN-EN ISO 18134-3:2015; Solid Biofuels—Determination of Moisture Content—Oven Dry Method—Part 3: Moisture in General Analysis Sample. Polish Committee for Standardization: Warsaw, Poland, 2015.
- PN-G-04516:1998; Solid Fuels-Determination of Volatile Matter Content by Weight Method. Polish Committee for Standardization: Warsaw, Poland, 1998.
- CEN/TS 15104:2006; Solid Biofuels. Determination of Total Content of Carbon, Hydrogen and Nitrogen. Instrumental Methods. British Standards Institute: London, UK, 2011.
- PN-EN PN-G-04584:2001; Solid Fuels—Determination of Total and Ash Sulfur Content by Automatic Analyzers. Polish Committee for Standardization: Warsaw, Poland, 2001.
- PN-EN ISO 18125:2017; Solid Biofuels. Determination of Calorific Value. Polish Committee for Standardization: Warsaw, Poland, 2017.
- PN-EN ISO 18122:2016; Solid Biofuels—Determination of Ash Content. Polish Committee for Standardization: Warsaw, Poland, 2016.
- PN-EN 196-2:2006; Metody Badania Cementu. Część 2: Analiza Chemiczna Cementu. Polish Committee for Standardization: Warsaw, Poland, 2006.
- PN-EN ISO 21404:2020-08; Solid Biofuels—Determination of Ash Melting Behaviour. Polish Committee for Standardization: Warsaw, Poland, 2020.
- PN-EN303-5:2012; Heating Boilers for Solid Fuels with Manual and Automatic Fuel Hopper of Nominal Power Up to 300 kW. Terminology, Requirements, Testing and Marking. Polish Committee for Standardization: Warsaw, Poland, 2012.
- Lide, D.R. CRC Handbook of Chemistry and Physics, 85th ed.; CRC Press: Boca Raton, FL, USA, 2004; ISBN 0-8493-0485-7. [Google Scholar]
- Balint, R.; Engblom, M.; Niemi, J.; Hupa, M.; Hupa, L. Superheater ash deposit ageing—Impact of melt fraction on morphology and chemistry. Fuel 2024, 359, 130386. [Google Scholar] [CrossRef]
- Botić, T.; Gvero, P.; Drljača, D.; Borković, A.; Dragić, D.; Rakulj, S. Testing of Small Household Biomass Boilers from the Aspect of Waste Gas Emissions. STED J. 2022, 4, 12–20. [Google Scholar] [CrossRef]
- Eisenbies, M.H.; Volk, T.A.; Patel, A. Changes in feedstock quality in willow chip piles created in winter from a commercial scale harvest. Biomass Bioenergy 2016, 86, 180–190. [Google Scholar] [CrossRef]
- EN ISO 17225:2021; Solid Biofuels—Fuel Specifications and Classes. Polish Committee for Standardization: Warsaw, Poland, 2021.
- Dyjakon, A. Analysis of slagging and Fouling Propensities of Biofuels in Terms of Their Combustion and Co-Combustion in the Boilers. Agric. Eng. 2012, 4, 5–18. [Google Scholar]
- Juszczak, M. Concentrations of carbon monoxide and nitrogen oxides from a 15 kW heating boiler supplied periodically with a mixture of sunflower husk and wood pellets. Environ. Protein Eng. 2014, 40, 65–74. [Google Scholar] [CrossRef]
- Generowicz, N.; Makara, A.; Kowalski, Z.; Kulczycka, J. Removing Scale Deposits from Heating Systems. Pol. J. Environ. Stud. 2023, 32, 5433–5445. [Google Scholar] [CrossRef]
- Ziaja, J.; Lichota, J. Urea injection: New method for reducing NOX emissions from CFB boilers. Rynek Energii 2023, 5, 64–69. [Google Scholar]
- Gaze, B.; Romański, L.; Kułażyński, M. The concept of using urea to reduce NOX emissions from low power biomass boilers. Przemysł Chem. 2020, 99, 569–573. [Google Scholar]
- Wejkowski, R.; Kalisz, S.; Garbacz, P.; Maj, I. Combined NOx and NH3 Slip Reduction in a Stoker Boiler Equipped with the Hybrid SNCR + SCR System FJBS+. Energies 2021, 14, 8599. [Google Scholar] [CrossRef]
- Börnhorst, M.; Deutschmann, O. Advances and challenges of ammonia delivery by urea-water sprays in SCR systems. Prog. Energy Combust. Sci. 2021, 87, 100949. [Google Scholar] [CrossRef]
Gas | Measurement Range | Accuracy | Resolution | Type of Measurement |
---|---|---|---|---|
CO2 | 0–25% | ±3% | 0.01% | NDIR |
CO | 0–20,000 ppm | ±3 ppm | 1 ppm | NDIR |
NO | 0–5000 ppm | ±3 ppm | 1 ppm | NDIR |
SO2 | 0–5000 ppm | ±3 ppm | 1 ppm | NDIR |
Tgas | −10 ÷ 1000 °C | ±2 °C | 0.1 °C | Type K thermocouple |
Type of Pellets | MC (%) | HHV (MJ·kg−1) | AC (%) | VM (%) |
---|---|---|---|---|
100R | 9.47 ± 0.05 a | 18.21 ± 0.08 | 10.38 ± 0.49 a | 66 ± 2 a |
100T | 8.43 ± 0.07 | 17.49 ± 0.10 a | 11.01 ± 0.49 a.b | 71 ± 3 a.b |
95R5M | 9.98 ± 0.06 b | 18.03 ± 0.02 | 10.78 ± 0.11 a.b.c | 68 ± 2 a.b.c |
95T5M | 9.26 ± 0.03 a.c | 17.46 ± 0.01 a.b | 11.24 ± 0.34 b.c | 73 ± 3 b.c.d |
95R5G | 9.95 ± 0.33 b | 17.68 ± 0.09 c | 13.10 ± 0.09 d | 63 ± 2 a.c.e |
95T5G | 9.43 ± 0.20 a.c | 16.90 ± 0.05d | 14.82 ± 0.05 e | 67 ± 3 a.b.c.d.f |
90R5G5M | 10.69 ± 0.10 d | 17.57 ± 0.02 a.b.c | 13.46 ± 0.03 d.f | 60 ± 2 a.e.g |
90T5G5M | 10.72 ± 0.03 d | 16.77 ± 0.03 d | 14.16 ± 0.15 e.f | 64 ± 3 a.c.e.f.g |
Type of Pellets | C (%) | H (%) | N (%) | S (%) |
---|---|---|---|---|
100R | 40.18 ± 0.40 | 5.06 ± 0.07 a | 2.82 ± 0.15 a | 0.01 ± 0.01 |
100T | 36.77 ± 0.56 a | 5.40 ± 0.16 b | 2.90 ± 0.08 a.b | 0.04 ± 0.02 |
95R5M | 38.50 ± 0.38b | 4.91 ± 0.06 a.c | 3.43 ± 0.14 c | 0.01 ± 0.01 |
95T5M | 35.25 ± 0.53 c | 5.24 ± 0.15 a.b.c.d | 3.50 ± 0.07 c.d | 0.04 ± 0.02 |
95R5G | 38.17 ± 0.38 b | 4.80 ± 0.06 a.c.e | 2.68 ± 0.14 a.b.e | 0.01 ± 0.01 |
95T5G | 34.93 ± 0.53 c | 5.13 ± 0.15 a-f | 2.75 ± 0.07 a.b.e | 0.04 ± 0.02 |
90R5G5M | 36.48 ± 0.36 a.c | 4.66 ± 0.06 c.e.g | 3.15 ± 0.13 c.d.f | 0.01 ± 0.01 |
90T5G5M | 33.42 ± 0.50 | 4.95 ± 0.14 a.c.d.e.f.g | 3.36 ± 0.07 c.d.f | 0.03 ± 0.01 |
Symbol | 100R | 100T | 95R5M | 95T5M | 95R5G | 95T5G | 90R5G5M | 90R5G5M |
---|---|---|---|---|---|---|---|---|
SiO2 | 60.63 ±1.9 a | 43.2 ±1.4 b | 57.59 ±1.8 a,c | 41.04 ±1.3 b,d | 58.69 ±1.8 a,c,e | 42.14 ±1.3 b,d | 55.66 ±1.7 c,e,f | 39.98 ±1.3 b,d,f |
P2O5 | 6.43 ±0.4 a | 8.42 ±0.5 b | 6.11 ±0.38 a | 7.99 ±0.47 b,d | 6.10 ±0.38 a,c,e | 7.99 ±0.47 b,d,e | 5.78 ±0.36 a,c,d | 7.57 ±0.45 a,b,d,e |
K2O | 17.15 ±0.4 a | 21.5 ±0.4 b | 16.29 ±0.38 a,c | 20.42 ±0.38 b,d | 16.29 ±0.38 a,c,e | 20.42 ±0.38 b,d,f | 15.43 ±0.36 c,e | 19.3 5 ± 0.36 d,f |
CaO | 2.54 ±0.2 a | 11.2 ±0.3 b | 2.41 ±0.19 a,c | 10.64 ±0.28 b,d | 2.41 ±0.19 a,c,d,e | 10.64 ±0.28 b,f | 2.28 ±0.18 a,c,e | 10.08 ±0.27 d,f |
MgO | 0.35 ±0.02 a | 4.81 ±0.1 | 0.33 ±0.02 a,b | 4.57 ±0.09 c | 0.33 ±0.02 a,b,d | 4.56 ±0.09 c | 0.31 ±0.02 a,b,d | 4.32 ±0.09 |
Na2O | 1.23 ±0.1 a | 0.51 ±0.05 b | 1.17 ±0.09 a,c | 0.48 ±0.05 b,d | 1.16 ±0.09 a,c,e | 0.48 ±0.05 b,d,f | 1.10 ±0.09 a,c,e | 0.45 ±0.05 b,d,f |
SO3 | 2.62 ±0.3 | 2.8 ±0.3 | 2.49 ±0.28 | 2.66 ±0.28 | 2.48 ±0.28 | 2.66 ±0.28 | 2.35 ±0.27 | 2.52 ±0.27 |
Fe2O3 | 0.96 ±0.1 | 0.76 ±0.1 | 0.91 ±0.09 | 0.72 ±0.09 | 0.91 ±0.09 | 0.72 ±0.09 | 0.86 ±0.09 | 0.68 ±0.09 |
Al2O3 | 3.44 ±0.2 a | 1.21 ±0.1 b | 3.27 ±0.19 a | 1.15 ±0.09 b | 4.31 ±0.19 c | 2.19 ±0.09 d | 4.14 ±0.18 c | 2.13 ±0.09 d |
Mn3O4 | 0.53 ±0.05 a | 0.26 ±0.03 b | 0.50 ±0.05 a,c | 0.25 ±0.03 b,d | 0.50 ±0.05 a,c,e | 0.24 ±0.03 b,d,f | 0.47 ±0.05 a,c,e | 0.23 ±0.03 b,d,f |
BaO | 0.07 ±0.01 | 0.05 ±0.01 | 0.07 ±0.01 | 0.047 ±0.09 | 0.06 ±0.01 | 0.04 ±0.01 | 0.06 ±0.01 | 0.04 ±0.01 |
TiO2 | 0.23 ±0.02 a | 0.12 ±0.01 b | 0.22 ±0.02 a,c | 0.11 ±0.09 b,d | 0.21 ±0.02 a,c,e | 0.11 ±0.01 b,d,f | 0.20 ±0.02 a,c,e | 0.11 ±0.01 b,d,f |
SrO | 0.04 ±0.01 | 0.06 ±0.01 | 0.04 ±0.01 | 0.06 ±0.09 | 0.03 ±0.01 | 0.05 ±0.01 | 0.03 ±0.01 | 0.05 ±0.01 |
Cl | 0.17 ±0.03 a | 1.29 ±0.05 b | 0.16 ±0.03 a,c | 1.23 ±0.05 b,d | 0.16 ±0.02 a,c,e | 1.22 ±0.05 b,d,f | 0.15 ±0.03 a,c,e | 1.16 ±0.05 d,f |
CO2 | 3.03 ±0.1 | 3.04 ±0.1 | 2.88 ±0.09 | 2.89 ±0.09 | 2.87 ±0.09 | 2.88 ±0.09 | 2.72 ±0.09 | 2.73 ±0.09 |
Type of Pellets | Sintering Temperature SST (°C) | Deformation Temperature DT (°C) | Melting Temperature HT (°C) | Flow Temperature FT (°C) |
---|---|---|---|---|
100R | 1180 ± 20 a | 1260 ± 50 a | 1280 ± 20 a | 1290 ± 10 a |
100T | 1010 ± 20 b | 1090 ± 50 b | 1130 ± 20 b | 1180 ± 10 b |
95R5M | 1160 ± 20 a,c | 1250 ± 50 a | 1270 ± 30 a | 1280 ± 10 a,c |
95T5M | 1000 ± 20 b | 1080 ± 50 b | 1120 ± 20 b | 1170 ± 10 b |
95R5G | 1200 ± 30 a,c,d | 1440 ± 50 c | 1460 ± 20 c | >1500 ± 10 |
95T5G | 1380 ± 20 e | 1430 ± 50 d | 1440 ± 20 c,d | 1460 ± 10 d |
90R5G5M | 1200 ± 30 a,c,d | 1430 ± 50 c,d,e | 1460 ± 30 c,d,e | >1500 ± 20 c,e |
90T5G5M | 1400 ± 20 e | 1430 ± 50 c,d,e | 1440 ± 20 c,d,e | 1470 ± 20 c,d,e |
Source of Variation | MC, % | HHV, MJ·kg−1 | AC, % | VM, % | C, % | H, % | N, % | S, % |
---|---|---|---|---|---|---|---|---|
Raw material (A) | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | 0.026 * |
Source of variation | SiO2, P2O5, K2O, CaO, MgO, Na2O Al2O3, Mn3O4, TiO2, Cl | SO3 | Fe2O3 | BaO | SrO | CO2 | ||
Raw material (A) | <0.001 * | 0.675 * | 0.013 * | 0.016 * | 0.017 * | 0.007 * | ||
Source of variation | Sintering temperature SST (°C) | Deformation temperature DT (°C) | Melting temperature HT (°C) | Flow temperature FT (°C) | ||||
Raw material (A) | <0.001 * | <0.001 * | <0.001 * | <0.001 * |
Source of Variation | CO2 | Tgas | CO | NO | SO2 | CEI | TI |
---|---|---|---|---|---|---|---|
Combustion system (A) | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * |
Raw material (B) | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * |
A × B | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * |
Variable | C | H | N | S | AC | VM |
---|---|---|---|---|---|---|
Type A tests | ||||||
CO2 | 0.647701 * | −0.030709 | −0.352532 * | −0.398294 * | −0.474339 * | 0.014296 |
Tgas | 0.693650 * | −0.075218 * | −0.340931 * | −0.470904 * | −0.500510 * | −0.056949 |
CO | 0.210733 * | 0.393075 * | 0.323490 * | −0.015180 | −0.526565 * | 0.180340 * |
SO2 | −0.013679 | 0.163047 * | 0.147837 * | −0.107534 * | −0.039472 | −0.106421 * |
NO | −0.249189 * | 0.127415 * | 0.484259 * | 0.131485 * | −0.151346 * | 0.036686 |
ETA | 0.207041 * | 0.389572 * | 0.330897 * | −0.015614 | −0.085083 * | 0.114802 * |
TI | 0.154378 * | 0.062261 | −0.175651 * | −0.020596 | −0.525490 * | 0.175978 * |
Type B tests | ||||||
CO2 | 0.358159 * | −0.148986 * | −0.391896 * | −0.468039 * | 0.099790 * | −0.305301 * |
Tgas | 0.554977 * | −0.113706 * | −0.250692 * | −0.705135 * | −0.091037 * | −0.466488 * |
CO | 0.454569 * | 0.513440 * | −0.066281 | 0.035572 | −0.674822 * | 0.432395 * |
SO2 | 0.603930 * | −0.127452 * | −0.364059 * | −0.749998 * | −0.099833 * | −0.515665 * |
NO | 0.191253 * | 0.179224 * | −0.226699 * | −0.160572 * | −0.069974 | 0.003889 |
ETA | 0.456325 * | 0.479496 * | −0.108679 * | 0.055930 | 0.157455 * | 0.343680 * |
TI | −0.403514 * | 0.045855 | 0.033093 | 0.508712 * | −0.678190 * | 0.471703 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dula, M.; Kraszkiewicz, A.; Krawczuk, A.; Parafiniuk, S. Evaluation of the Combustion Process of Pellets from Herbaceous Biomass with the Addition of Kaolin and Urea Solution in Low-Power Boilers. Energies 2025, 18, 4507. https://doi.org/10.3390/en18174507
Dula M, Kraszkiewicz A, Krawczuk A, Parafiniuk S. Evaluation of the Combustion Process of Pellets from Herbaceous Biomass with the Addition of Kaolin and Urea Solution in Low-Power Boilers. Energies. 2025; 18(17):4507. https://doi.org/10.3390/en18174507
Chicago/Turabian StyleDula, Małgorzata, Artur Kraszkiewicz, Anna Krawczuk, and Stanisław Parafiniuk. 2025. "Evaluation of the Combustion Process of Pellets from Herbaceous Biomass with the Addition of Kaolin and Urea Solution in Low-Power Boilers" Energies 18, no. 17: 4507. https://doi.org/10.3390/en18174507
APA StyleDula, M., Kraszkiewicz, A., Krawczuk, A., & Parafiniuk, S. (2025). Evaluation of the Combustion Process of Pellets from Herbaceous Biomass with the Addition of Kaolin and Urea Solution in Low-Power Boilers. Energies, 18(17), 4507. https://doi.org/10.3390/en18174507