Justification of Pore Configuration of Metal-Foam-Filled Thermal Energy Storage Tank: Optimization of Energy Performance
Abstract
1. Introduction
2. Problem Description
2.1. Physical Model
2.2. Mathematical Model
- (1)
- The copper foam is isotropic and uniform;
- (2)
- The flow in the pores is laminar flow;
- (3)
- During the phase transformation process, the volume change of molten PCM is ignored;
- (4)
- The thermal performance parameters of PCM are constant during the phase transition process.
Parameter | Refs. | Correlation |
---|---|---|
Specific area () | [34] | |
Effective thermal conductivity () | [35] | |
Inertial coefficient (F) | [36] | |
Local heat transfer coefficient () | [37,38] | |
Permeability (K) | [38] | |
Thermal dispersion conductivity () | [39] | , |
2.3. Initial and Boundary Conditions
3. Numerical Method and Model Validation
3.1. Numerical Processes
3.2. Grid Independence and Time-Step Study
3.3. Model Validation
4. Results and Discussion
4.1. Study of Temperature and Liquid Fraction
4.2. Comparative Analysis of Melting and Temperature Uniformity
5. Conclusions
- (1)
- The use of low-porosity metal foam in the near-inner tube is more conducive to heat diffusion. The synergistic effect of fins and the metal foam is worth considering;
- (2)
- Compared with Cases 1 and 6, the total energy storage of Case TD decreased by 2.14% and 1.37%, respectively, while the PCHS time decreased by 51.75% and 17.39%, respectively;
- (3)
- Further comparison is made through the mean PCHS rate. The mean PCHS rate of Case TD was enhanced by 102.55% and 19.12%, respectively;
- (4)
- Through the comparison of uniformity of melting and temperature, the combination of pore structure of Case TD had a good improvement effect on the liquid phase evolution, temperature distribution, and TES efficiency of the PCHS process;
- (5)
- On the premise of only reducing a small amount of heat storage capacity, the TES rate of this unit was significantly increased, and the time required for heat storage was reduced accordingly.
- (6)
- The practical application of mobile thermal energy storage technology should undergo experiments and tests under actual working conditions, and it is worthy of further research.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HTF | Heat transfer fluid |
PCHS | Phase change heat storage |
TES | Thermal energy storage |
MF | Metal foam |
PPI | Pores per inch |
PCM | Phase change material |
TD | Technical design |
Thermal dispersion conductivity | |
MF specific heat | |
Qs | Sensible heat absorption |
Ql | Latent heat absorption |
Qtotal | Total heat absorption |
Instantaneous melting uniformity | |
Average melting uniformity | |
Liquid fraction of the entire region | |
Liquid fraction within sub-regions | |
Temperature of the entire region | |
Temperature within sub-regions | |
Instantaneous temperature uniformity | |
Average temperature uniformity | |
Local heat transfer coefficient | |
Density | |
Different divided areas | |
References
- Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22. [Google Scholar] [CrossRef]
- Shahbaz, M.; Siddiqui, A.; Siddiqui, M.; Jiao, Z.; Kautish, P. Exploring the growth of sustainable energy Technologies: A review. Sustain. Energy Technol. Assess. 2023, 57, 103157. [Google Scholar] [CrossRef]
- Siwal, S.S.; Zhang, Q.; Devi, N.; Saini, A.K.; Saini, V.; Pareek, B.; Gaidukovs, S.; Thakur, V.K. Recovery processes of sustainable energy using different biomass and wastes. Renew. Sustain. Energy Rev. 2021, 150, 111483. [Google Scholar] [CrossRef]
- He, Y.; Guo, S.; Zhou, J.; Wu, F.; Huang, J.; Pei, H. The quantitative techno-economic comparisons and multi-objective capacity optimization of wind-photovoltaic hybrid power system considering different energy storage technologies. Energy Convers. Manag. 2021, 229, 113779. [Google Scholar] [CrossRef]
- Diezmartínez, C.V. Clean energy transition in Mexico: Policy recommendations for the deployment of energy storage technologies. Renew. Sustain. Energy Rev. 2021, 135, 110407. [Google Scholar] [CrossRef]
- Sarbu, I. Thermal energy storage. In Advances in Building Services Engineering: Studies, Researches and Applications; Springer: Cham, Switzerland, 2021; pp. 559–627. [Google Scholar]
- Kamaraj, D.; Senthilkumar, S.R.R.; Ramalingam, M.; Vanaraj, R.; Kim, S.-C.; Prabakaran, M.; Kim, I.-S. A review on the effective utilization of organic phase change materials for energy efficiency in buildings. Sustainability 2024, 16, 9317. [Google Scholar] [CrossRef]
- Jiao, K.; Lu, L.; Zhao, L.; Wang, G. Towards Passive Building Thermal Regulation: A State-of-the-Art Review on Recent Progress of PCM-Integrated Building Envelopes. Sustainability 2024, 16, 6482. [Google Scholar] [CrossRef]
- Said, Z.; Pandey, A.K.; Tiwari, A.K.; Kalidasan, B.; Jamil, F.; Thakur, A.K.; Tyagi, V.V.; Sarı, A.; Ali, H.M. Nano-enhanced phase change materials: Fundamentals and applications. Prog. Energy Combust. Sci. 2024, 104, 101162. [Google Scholar] [CrossRef]
- Allouhi, A. Latent thermal energy storage for solar industrial drying applications. Sustainability 2023, 15, 13254. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, J.; Ma, W.; Sheng, J.; Zhang, P. Review of the heat transfer enhancement for phase change heat storage devices. J. Energy Storage 2024, 86, 111336. [Google Scholar] [CrossRef]
- Huang, X.; Hu, R.; Gao, X.; Yang, X.; Li, M.-J. Study on melting process of latent heat energy storage system by nano-enhanced phase change material under rotation condition. Appl. Therm. Eng. 2024, 247, 123040. [Google Scholar] [CrossRef]
- Huang, X.; Li, F.; Li, Y.; Yang, X.; Li, M.-J. Solar photothermal utilization of coupled latent heat storage: A numerical and optimization study. Sol. Energy Mater. Sol. Cells 2024, 271, 112864. [Google Scholar] [CrossRef]
- Cui, W.; Si, T.; Li, X.; Li, X.; Lu, L.; Ma, T.; Wang, Q. Heat transfer enhancement of phase change materials embedded with metal foam for thermal energy storage: A review. Renew. Sustain. Energy Rev. 2022, 169, 112912. [Google Scholar] [CrossRef]
- Zhuang, Y.; Liu, Z.; Xu, W. Effects of gradient porous metal foam on the melting performance and energy storage of composite phase change materials subjected to an internal heater: A numerical study and PIV experimental validation. Int. J. Heat Mass Transf. 2022, 183, 122081. [Google Scholar] [CrossRef]
- Righetti, G.; Zilio, C.; Longo, G.A.; Hooman, K.; Mancin, S. Experimental study on the effect of metal foams pore size in a phase change material based thermal energy storage tube. Appl. Therm. Eng. 2022, 217, 119163. [Google Scholar] [CrossRef]
- Mirshekar, A.; Goodarzi, M.R.; Mohebbi-Kalhori, D.; Shafiei Mayam, M.H. Experimental study of heat transfer enhancement using metal foam partially filled with phase change material in a heat sink. J. Energy Storage 2023, 60, 106496. [Google Scholar] [CrossRef]
- NematpourKeshteli, A.; Iasiello, M.; Langella, G.; Bianco, N. Enhancing PCMs thermal conductivity: A comparison among porous metal foams, nanoparticles and finned surfaces in triplex tube heat exchangers. Appl. Therm. Eng. 2022, 212, 118623. [Google Scholar] [CrossRef]
- Shirbani, M.; Siavashi, M.; Hosseini, M.; Bidabadi, M. Improved thermal energy storage with metal foam enhanced phase change materials considering various pore arrangements: A pore-scale parallel lattice Boltzmann solution. J. Energy Storage 2022, 52, 104744. [Google Scholar] [CrossRef]
- Li, Z.-R.; Baghaei Oskouei, S.; Fu, G.-T.; Bayer, Ö.; Fan, L.-W. Enhanced power density during energy charging of a shell-and-tube thermal storage unit: Comparison between the inclusion of metal fins and foams. J. Energy Storage 2022, 55, 105576. [Google Scholar] [CrossRef]
- Huang, X.; Du, Z.; Liu, Z.; Yang, X.; Sundén, B. Research progress of fin design in latent heat energy storage enhancement technology. Appl. Therm. Eng. 2025, 278, 127157. [Google Scholar] [CrossRef]
- Suresh, C.; Awasthi, A.; Kumar, B.; Im, S.-k.; Jeon, Y. Advances in battery thermal management for electric vehicles: A comprehensive review of hybrid PCM-metal foam and immersion cooling technologies. Renew. Sustain. Energy Rev. 2025, 208, 115021. [Google Scholar] [CrossRef]
- Song, Z.; Wang, J.; Tang, S.; Li, W.; Ma, M.; Andronov, D.; Fan, X.; Cheng, J. Dual-objective topology optimization design for latent heat storage systems using composite phase change materials. Energy 2025, 319, 135069. [Google Scholar] [CrossRef]
- Fadl, M.; Eames, P.C. Numerical investigation of the influence of mushy zone parameter Amush on heat transfer characteristics in vertically and horizontally oriented thermal energy storage systems. Appl. Therm. Eng. 2019, 151, 90–99. [Google Scholar] [CrossRef]
- Al-Abidi, A.A.; Mat, S.; Sopian, K.; Sulaiman, M.Y.; Mohammad, A.T. Experimental study of PCM melting in triplex tube thermal energy storage for liquid desiccant air conditioning system. Energy Build. 2013, 60, 270–279. [Google Scholar] [CrossRef]
- Nie, C.; Deng, S.; Liu, J.; Rao, Z. Nonuniform concentrated nanoparticles enhancing melting of phase change materials in vertical shell-tube storage unit with annular fins. J. Energy Storage 2023, 72, 108254. [Google Scholar] [CrossRef]
- Shakrina, G.; Rivera-Tinoco, R.; Bouallou, C. Numerical investigation and extensive parametric analysis of cryogenic latent heat shell and tube thermal energy storage system. Therm. Sci. Eng. Prog. 2022, 34, 101440. [Google Scholar] [CrossRef]
- Safari, V.; Kamkari, B.; Hooman, K.; Khodadadi, J.M. Sensitivity analysis of design parameters for melting process of lauric acid in the vertically and horizontally oriented rectangular thermal storage units. Energy 2022, 255, 124521. [Google Scholar] [CrossRef]
- Naghavi Sanjani, M.S.; Silakhori, M.; Ang, B.C.; Simon Cornelis Metselaar, H.; Mousavi Gazafroudi, S.M.; Noorollahi, Y. Experimental investigation on solar water heater integrated with thermal battery using phase change material and porous media. Sustainability 2023, 15, 6439. [Google Scholar] [CrossRef]
- Singh, V.K.; Patel, A. Effect of mushy zone constant on the melting of a solid-liquid PCM under hyper-gravity conditions. Int. Commun. Heat Mass Transf. 2022, 134, 105993. [Google Scholar] [CrossRef]
- Wang, C.; Sugiura, T.; Mobedi, M.; Chen, H. Comparison of heat transfer enhancement between open and closed cell porous metal structures for solid–liquid phase change. Int. J. Numer. Methods Heat Fluid Flow 2023, 33, 1797–1817. [Google Scholar] [CrossRef]
- Zhuang, Y.; Li, H.; Xu, W.; Huang, S.-M. Experimental study on the melting performance of magnetic NEPCMs embedded in metal foam subjected to a non-uniform magnetic field. Sol. Energy Mater. Sol. Cells 2023, 250, 112077. [Google Scholar] [CrossRef]
- Huang, Y.; Yao, F.; Liu, X. Numerical study on the thermal enhancement of horizontal latent heat storage units with hierarchical fins. Renew. Energy 2021, 180, 383–397. [Google Scholar] [CrossRef]
- Liu, X.; Qin, X.; Tian, Y.; Luo, Q.; Yao, H.; Wang, J.; Dang, C.; Xu, Q.; Lv, S.; Xuan, Y. Biomimetic optimized vertically aligned annular fins for fast latent heat thermal energy storage. Appl. Energy 2023, 347, 121435. [Google Scholar] [CrossRef]
- Calmidi, V.V.; Mahajan, R.L. Forced convection in high porosity metal foams. J. Heat Transf. 2000, 122, 557–565. [Google Scholar] [CrossRef]
- Yang, X.H.; Bai, J.X.; Yan, H.B.; Kuang, J.J.; Lu, T.J.; Kim, T. An Analytical Unit Cell Model for the Effective Thermal Conductivity of High Porosity Open-Cell Metal Foams. Transp. Porous Media 2014, 102, 403–426. [Google Scholar] [CrossRef]
- Žukauskas, A. Heat Transfer from Tubes in Crossflow. In Advances in Heat Transfer; Hartnett, J.P., Irvine, T.F., Eds.; Elsevier: Amsterdam, The Netherlands, 1972; Volume 8, pp. 93–160. [Google Scholar]
- Yao, Y.; Wu, H.; Liu, Z. Direct Simulation of Interstitial Heat Transfer Coefficient Between Paraffin and High Porosity Open-Cell Metal Foam. J. Heat Transf. 2017, 140, 032601. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Calmidi, V.V.; Mahajan, R.L. Thermophysical properties of high porosity metal foams. Int. J. Heat Mass Transf. 2002, 45, 1017–1031. [Google Scholar] [CrossRef]
- Al-Abidi, A.A.; Mat, S.; Sopian, K.; Sulaiman, M.Y.; Mohammad, A.T. Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins. Energy Build. 2014, 68, 33–41. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, C.Y. A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals. Energy 2011, 36, 5539–5546. [Google Scholar] [CrossRef]
Property | Cu | Lauric Acid | Paraffin RT82 | Unit |
---|---|---|---|---|
Isobaric specific heat (cp) | 381 | 2275 | 2000 | J/kg·K |
Density (ρ) | 8978 | 915 | 860 | kg/m3 |
Volumetric coefficient of thermal expansion (β) | - | 0.0008 | 0.001 | K−1 |
Melting temperature (Tm) | - | 319.15 | 353.15 | K |
Thermal conductivity (k) | 387.6 | 0.14 | 0.2 | W/m·K |
Latent heat of fusion (λ) | - | 187,210 | 176,000 | J/kg |
Solidus temperature (Ts) | - | 316.65 | 351.15 | K |
Dynamic viscosity (μ) | - | 0.008 | 0.03499 | Pa·s |
Liquidus temperature (Tl) | - | 321.35 | 355.15 | K |
Solution Methods | Object | ||
---|---|---|---|
First-Order Implicit | Transient Formulation | ||
SIMPLE Scheme | Pressure–Velocity Coupling | ||
Spatial Discretization | Spatial Discretization | Energy | |
Pressure | |||
Gradient | |||
Momentum | |||
Absolute Convergence Criteria | Control of Solution | ||
Continuity Equation | 10−6 | Pressure | 0.3 |
Momentum Equation in X,Y Direction | 10−6 | Density | 1 |
Liquid Fraction | 0.9 | ||
Energy Equation | 10−8 | Momentum | 0.7 |
Energy | 0.8 |
Case | ||||||
---|---|---|---|---|---|---|
1 | 0.99 | 0.99 | 0.98 | 0.97 | 0.99 | 0.98 |
2 | 0.99 | 0.97 | 0.99 | 0.98 | 0.99 | 0.98 |
3 | 0.98 | 0.98 | 0.99 | 0.97 | 0.98 | 0.99 |
4 | 0.97 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
5 | 0.97 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 |
6 | 0.97 | 0.97 | 0.97 | 0.97 | 0.98 | 0.98 |
TD | 0.97 | 0.97 | 0.97 | 0.98 | 0.97 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.; Liu, J.; Chen, J.; Su, J.; Su, C. Justification of Pore Configuration of Metal-Foam-Filled Thermal Energy Storage Tank: Optimization of Energy Performance. Energies 2025, 18, 4859. https://doi.org/10.3390/en18184859
Huang C, Liu J, Chen J, Su J, Su C. Justification of Pore Configuration of Metal-Foam-Filled Thermal Energy Storage Tank: Optimization of Energy Performance. Energies. 2025; 18(18):4859. https://doi.org/10.3390/en18184859
Chicago/Turabian StyleHuang, Chuanqing, Jiajie Liu, Jiajun Chen, Junwei Su, and Chang Su. 2025. "Justification of Pore Configuration of Metal-Foam-Filled Thermal Energy Storage Tank: Optimization of Energy Performance" Energies 18, no. 18: 4859. https://doi.org/10.3390/en18184859
APA StyleHuang, C., Liu, J., Chen, J., Su, J., & Su, C. (2025). Justification of Pore Configuration of Metal-Foam-Filled Thermal Energy Storage Tank: Optimization of Energy Performance. Energies, 18(18), 4859. https://doi.org/10.3390/en18184859